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allanvar
Allan variance

Syntax
[avar,tau] = allanvar(Omega)
[avar,tau] = allanvar(Omega,m)
[avar,tau] = allanvar(Omega,ptStr)
[avar,tau] = allanvar(___,fs)

Description
Allan variance is used to measure the frequency stability of oscillation for a sequence of data in the
time domain. It can also be used to determine the intrinsic noise in a system as a function of the
averaging time. The averaging time series τ can be specified as τ = m/fs. Here fs is the sampling
frequency of data, and m is a list of ascending averaging factors (such as 1, 2, 4, 8, …).

[avar,tau] = allanvar(Omega) returns the Allan variance avar as a function of averaging time
tau. The default averaging time tau is an octave sequence given as (1, 2, ..., 2floor{log2[(N-1)/2]}), where
N is the number of samples in Omega. If Omega is specified as a matrix, allanvar operates over the
columns of omega.

[avar,tau] = allanvar(Omega,m) returns the Allan variance avar for specific values of tau
defined by m. Since the default frequency fs is assumed to be 1, the output tau is exactly same with
m.

[avar,tau] = allanvar(Omega,ptStr) sets averaging factor m to the specified point
specification, ptStr. Since the default frequency fs is 1, the output tau is exactly equal to the
specified m. ptStr can be specified as 'octave' or 'decade'.

[avar,tau] = allanvar(___,fs) also allows you to provide the sampling frequency fs of the
input data omega in Hz. This input parameter can be used with any of the previous syntaxes.

Examples

Determine Allan Variance of Single Axis Gyroscope

Load gyroscope data from a MAT file, including the sample rate of the data in Hz. Calculate the Allan
variance.

load('LoggedSingleAxisGyroscope','omega','Fs')
[avar,tau] = allanvar(omega,'octave',Fs);

Plot the Allan variance on a loglog plot.

loglog(tau,avar)
xlabel('\tau')
ylabel('\sigma^2(\tau)')
title('Allan Variance')
grid on
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Determine Allan Deviation at Specific Values of τ

Generate sample gyroscope noise, including angle random walk and rate random walk.

numSamples = 1e6;
Fs = 100;
nStd = 1e-3;
kStd = 1e-7;
nNoise = nStd.*randn(numSamples,1);
kNoise = kStd.*cumsum(randn(numSamples,1));
omega = nNoise+kNoise;

Calculate the Allan deviation at specific values of m = τ. The Allan deviation is the square root of the
Allan variance.

m = 2.^(9:18);
[avar,tau] = allanvar(omega,m,Fs);
adev = sqrt(avar);

Plot the Allan deviation on a loglog plot.

loglog(tau,adev)
xlabel('\tau')
ylabel('\sigma(\tau)')
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title('Allan Deviation')
grid on

Input Arguments
Omega — Input data
N-by-1 vector | N-by-M matrix

Input data specified as an N-by-1 vector or an N-by-M matrix. N is the number of samples, and M is
the number of sample sets. If specified as a matrix, allanvar operates over the columns of Omega.
Data Types: single | double

m — Averaging factor
scalar | vector

Averaging factor, specified as a scalar or vector with ascending integer values less than (N-1)/2,
where N is the number of samples in Omega.
Data Types: single | double

ptStr — Point specification of m
'octave' (default) | 'decade'

Point specification of m, specified as 'octave' or 'decade'. Based on the value of ptStr, m is
specified as following:
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• If ptStr is specified as 'octave', m is:

20, 21...2 log2
N − 1

2

• If ptStr is specified as 'decade', m is:

100, 101...10 log10
N − 1

2

N is the number of samples in Omega.

fs — Basic frequency of input data in Hz
scalar

Basic frequency of the input data, Omega, in Hz, specified as a positive scalar.
Data Types: single | double

Output Arguments
avar — Allan variance of input data
vector | matrix

Allan variance of input data at tau, returned as a vector or matrix.

tau — Averaging time of Allan variance
vector | matrix

Averaging time of Allan variance, returned as a vector, or a matrix.

Version History
Introduced in R2019a

See Also
gyroparams | imuSensor
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angdiff
Difference between two angles

Syntax
delta = angdiff(alpha,beta)

delta = angdiff(alpha)

Description
delta = angdiff(alpha,beta) calculates the difference between the angles alpha and beta.
This function subtracts alpha from beta with the result wrapped on the interval [-pi,pi]. You can
specify the input angles as single values or as arrays of angles that have the same number of values.

delta = angdiff(alpha) returns the angular difference between adjacent elements of alpha
along the first dimension whose size does not equal 1. If alpha is a vector of length n, the first entry
is subtracted from the second, the second from the third, etc. The output, delta, is a vector of length
n-1. If alpha is an m-by-n matrix with m greater than 1, the output, delta, will be a matrix of size
m-1-by-n. If alpha is a scalar, delta returns as an empty vector.

Examples

Calculate Difference Between Two Angles

d = angdiff(pi,2*pi)

d = 3.1416

Calculate Difference Between Two Angle Arrays

d = angdiff([pi/2 3*pi/4 0],[pi pi/2 -pi])

d = 1×3

    1.5708   -0.7854   -3.1416

Calculate Angle Differences of Adjacent Elements

angles = [pi pi/2 pi/4 pi/2];
d = angdiff(angles)

d = 1×3
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   -1.5708   -0.7854    0.7854

Input Arguments
alpha — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array. This is the angle that
is subtracted from beta when specified. If alpha is a scalar, delta returns as an empty vector.
Example: pi/2

beta — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array of the same size as
alpha. This is the angle that alpha is subtracted from when specified.
Example: pi/2

Output Arguments
delta — Difference between two angles
scalar | vector | matrix | multidimensional array

Angular difference between two angles, returned as a scalar, vector, or array. delta is wrapped to
the interval [-pi,pi]. If alpha is a scalar, delta returns as an empty vector.

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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axang2quat
Convert axis-angle rotation to quaternion

Syntax
quat = axang2quat(axang)

Description
quat = axang2quat(axang) converts a rotation given in axis-angle form, axang, to quaternion,
quat.

Examples

Convert Axis-Angle Rotation to Quaternion

axang = [1 0 0 pi/2];
quat = axang2quat(axang)

quat = 1×4

    0.7071    0.7071         0         0

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Version History
Introduced in R2015a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2axang | quaternion
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axang2rotm
Convert axis-angle rotation to rotation matrix

Syntax
rotm = axang2rotm(axang)

Description
rotm = axang2rotm(axang) converts a rotation given in axis-angle form, axang, to an
orthonormal rotation matrix, rotm. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Rotation Matrix

axang = [0 1 0 pi/2];
rotm = axang2rotm(axang)

rotm = 3×3

    0.0000         0    1.0000
         0    1.0000         0
   -1.0000         0    0.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

1 Functions

1-10



Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2axang | so2 | so3
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axang2tform
Convert axis-angle rotation to homogeneous transformation

Syntax
tform = axang2tform(axang)

Description
tform = axang2tform(axang) converts a rotation given in axis-angle form, axang, to a
homogeneous transformation matrix, tform. When using the transformation matrix, premultiply it
with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Homogeneous Transformation
axang = [1 0 0 pi/2]; 
tform = axang2tform(axang)

tform = 4×4

    1.0000         0         0         0
         0    0.0000   -1.0000         0
         0    1.0000    0.0000         0
         0         0         0    1.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the transformation matrix, premultiply it with the coordinates to be
formed (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2axang | se2 | se3
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buildMap
Build occupancy map from lidar scans

Syntax
map = buildMap(scans,poses,mapResolution,maxRange)

Description
map = buildMap(scans,poses,mapResolution,maxRange) creates a occupancyMap map by
inserting lidar scans at the given poses. Specify the resolution of the resulting map,
mapResolution, and the maximum range of the lidar sensor, maxRange.

Examples

Build Occupancy Map from Lidar Scans and Poses

The buildMap function takes in lidar scan readings and associated poses to build an occupancy grid
as lidarScan objects and associated [x y theta] poses to build an occupancyMap.

Load scan and pose estimates collected from sensors on a robot in a parking garage. The data
collected is correlated using a lidarSLAM algorithm, which performs scan matching to associate
scans and adjust poses over the full robot trajectory. Check to make sure scans and poses are the
same length.

load scansAndPoses.mat
length(scans) == length(poses)

ans = logical
   1

Build the map. Specify the scans and poses in the buildMap function and include the desired map
resolution (10 cells per meter) and the max range of the lidar (19.2 meters). Each scan is added at
the associated poses and probability values in the occupancy grid are updated.

occMap = buildMap(scans,poses,10,19.2);
figure
show(occMap)
title('Occupancy Map of Garage')
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Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an optimized pose
graph of the robot trajectory. To get an occupancy map from the associated poses and scans, use the
buildMap function.

Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking garage on a
Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a high frequency and
each scan is not needed for SLAM. Therefore, down sample the scans by selecting only every 40th
scan.

load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure threshold, and
search radius. Tune these parameters for your specific robot and environment. Create the
lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;
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Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to compare each
added scan to previously added ones. To improve the map, the object optimizes the pose graph
whenever it detects a loop closure. Every 10 scans, display the stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end

View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling buildMap
with the scans and poses. Use the same map resolution and max range you used with the SLAM
object.

[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')
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Input Arguments
scans — Lidar scans
cell array of lidarScan objects

Lidar scans used to build the map, specified as a cell array of lidarScan objects.

poses — Poses of lidar scans
n-by-3 matrix

Poses of lidar scans, specified as an n-by-3 matrix. Each row is an [x y theta] vector representing
the xy-position and orientation angle of a scan.

mapResolution — Resolution of occupancy grid
positive integer

Resolution of the output occupancyMap map, specified as a positive integer in cells per meter.

maxRange — Maximum range of lidar sensor
positive scalar

Maximum range of lidar sensor, specified as a positive scalar in meters. Points in the scans outside
this range are ignored.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ['MapWidth',10]

MapWidth — Width of occupancy grid
positive scalar

Width of the occupancy grid, specified as the comma-separated pair consisting of 'MapWidth' and a
positive scalar. If this value is not specified, the map is automatically scaled to fit all laser scans.

MapHeight — Height of occupancy grid
positive scalar

Height of occupancy grid, specified as the comma-separated pair consisting of 'MapHeight' and a
positive scalar. If this value is not specified, the map is automatically scaled to fit all laser scans.

Output Arguments
map — Occupancy Map
occupancyMap object

Occupancy map, returned as a occupancyMap object.

Version History
Introduced in R2019b

See Also
Functions
matchScans | matchScansGrid | lidarScan | transformScan

Classes
lidarSLAM | occupancyMap

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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cart2hom
Convert Cartesian coordinates to homogeneous coordinates

Syntax
hom = cart2hom(cart)

Description
hom = cart2hom(cart) converts a set of points in Cartesian coordinates to homogeneous
coordinates.

Examples

Convert 3-D Cartesian Points to Homogeneous Coordinates

c = [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975];
h = cart2hom(c)

h = 2×4

    0.8147    0.1270    0.6324    1.0000
    0.9058    0.9134    0.0975    1.0000

Input Arguments
cart — Cartesian coordinates
n-by-k matrix

Cartesian coordinates, specified as an n-by-k matrix, containing n points. Each row of cart
represents a point in k-dimensional space. k must be greater than or equal to 1.
Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Output Arguments
hom — Homogeneous points
n-by-(k+1) matrix

Homogeneous points, returned as an n-by-(k+1) matrix, containing n points. k must be greater than
or equal to 1.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

Version History
Introduced in R2015a
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R2023a: cart2hom Supports 2-D Cartesian Coordinates

The cart argument now accepts 2-D Cartesian coordinates and cart2hom outputs 2-D homogeneous
points.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hom2cart
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checkMapCollision
Check for collision between 3-D occupancy map and geometry

Syntax
collisionStatus = checkMapCollision(map,geometry)
[collisionStatus,details] = checkMapCollision(map,geometry,options)

Description
Check for collision between a 3-D occupancy map and a convex collision geometry. The
checkMapCollision function can search for collisions in two phases: first, a broad-phase search
using a broad-phase search using simple bounding volumes, and then by a narrow-phase collision
check if the simple volumes collide. For the broad-phase search, the function checks between simple
primitives consisting of axially-aligned bounding boxes (AABB). For the narrow-phase, the function
checks between occupied cells, represented by a collisionBox objects, and the input collision
geometry object.

collisionStatus = checkMapCollision(map,geometry) checks if a 3-D occupancy map, map,
and a collision geometry, geometry, are in collision.

[collisionStatus,details] = checkMapCollision(map,geometry,options) specifies the
additional collision-checking options options, and returns the collision details details.

Examples

Check Collision Between 3-D Map and Collision Geometries

Create a 3-D occupancy map.

map = occupancyMap3D;

Specify 25 random coordinates in the occupancy map as occupied.

rng(0)
pt = (rand(25,3)-.5)*20;
setOccupancy(map,pt,1);

Create a collision sphere and a collision cylinder object.

sphere = collisionSphere(1);
cylinder = collisionCylinder(3,6);
sphere.Pose = trvec2tform([6.1 -4 -7.5]);

Visualize the occupancy map and collision geometry in the same figure.

exampleHelperPlotCylinderAndSphere(map,cylinder,sphere)
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Perform only the broad-phase collision check for both the sphere and cylinder by setting the
CheckNarrowPhase property of an occupancyMap3DCollisionOptions object to false. Return
voxel information and the distance to the nearest occupied voxels.

bpOpts = occupancyMap3DCollisionOptions(CheckNarrowPhase=false,ReturnDistance=true,ReturnVoxels=true);
[bpIsCollidingCylinder,bpResultsCylinder] = checkMapCollision(map,cylinder,bpOpts);

Check the voxel distances for the collision geometries. Note that, because the cylinder is in collision
with voxels, the distance values are NaN. Because the sphere is not in collision with any voxels, its
distance results are non-NaN values.

bpDistCylinder = bpResultsCylinder.DistanceInfo.Distance

bpDistCylinder = NaN

bpWitnessptsCylinder = bpResultsCylinder.DistanceInfo.WitnessPoints

bpWitnessptsCylinder = 3×2

   NaN   NaN
   NaN   NaN
   NaN   NaN

Because the cylinder is in collision with the voxels, the distance results contain NaN values. Since the
sphere is not in collision with the voxels, the distance results consist of non-NaN values.
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[bpIsCollidingSphere,bpResultsSphere] = checkMapCollision(map,sphere,bpOpts);
bpDistSphere = bpResultsSphere.DistanceInfo.Distance

bpDistSphere = 2.3259

bpWitnessptsSphere = bpResultsSphere.DistanceInfo.WitnessPoints

bpWitnessptsSphere = 3×2

    3.0000    5.1000
   -6.0000   -5.0000
   -7.5000   -7.5000

Plot a line between the sphere and the closest voxel to it using its witness points.

figure
exampleHelperPlotCylinderAndSphere(map,cylinder,sphere)
hold on
plot3(bpWitnessptsSphere(1,:),bpWitnessptsSphere(2,:),bpWitnessptsSphere(3,:),LineWidth=2,Color='r')
hold off

Now perform a narrow-phase check, by using an occupancyMap3DCollisionOptions object with
the CheckNarrowPhase property set to true.

npOpts = occupancyMap3DCollisionOptions(CheckNarrowPhase=true,ReturnDistance=true,ReturnVoxels=true);
[npIsCollidingSphere,bpResultsSphere] = checkMapCollision(map,sphere,npOpts);
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Return the voxel distance and witness point coordinates for the sphere. The distance and witness
points are slightly more accurate this time, because the narrow phase uses the distance between the
primitive and the voxel, whereas the broad phase before uses the distance between the axis-aligned
bounding box (AABB) of the collision object and the voxel.

npDist = bpResultsSphere.DistanceInfo.Distance

npDist = 2.6892

npWitnesspts = bpResultsSphere.DistanceInfo.WitnessPoints

npWitnesspts = 3×2

    3.0000    5.2596
   -6.0000   -4.5419
   -7.5000   -7.5000

Visualize the occupancy map again and plot line showing the shortest distance between the voxel and
sphere. The line between the witness points visually appears accurate after performing the narrow-
phase check.

exampleHelperPlotCylinderAndSphere(map,cylinder,sphere)
hold on
plot3(npWitnesspts(1,:),npWitnesspts(2,:),npWitnesspts(3,:),LineWidth=2,Color='r')
hold off
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Input Arguments
map — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.
Example: occupancyMap3D(10)

geometry — Collision geometry
collision geometry object

Collision geometry, specified as one of these objects:

• collisionBox
• collisionCapsule
• collisionCylinder
• collisionMesh
• collisionSphere

Example: collisionBox(1,1,3)

options — Collision-checking options
occupancyMap3DCollisionOptions object

Collision-checking options, specified as an occupancyMap3DCollisionOptions object.
Example:
occupancyMap3DCollisionOptions(CheckNarrowPhase=false,ReturnDistance=true);

Output Arguments
collisionStatus — Collision status
0 | 1

Collision status, returned as 0 or 1. If the geometry intersects with any occupied voxel,
collisionStatus is 1. Otherwise, the value is 0.
Data Types: double

details — Collision details
structure

Collision details, returned as a structure that can contain up to two fields, DistanceInfo and
VoxelInfo:

• DistanceInfo — This field is present when the ReturnDistance property of options is true.
The field is a structure that contains these fields.

• Distance — If the NarrowPhase property of options is set to true, this field contains the
minimum distance between the collision geometry and the nearest voxel or occupied cell,
represented as a collisionBox object. If NarrowPhase is false, then Distance is the
minimum distance between the AABBs of the collision geometry and the nearest voxel.
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For collision geometries that are not in collision, Distance is returned as a numeric scalar.
For collision geometries that are in collision, Distance is returned as NaN.

• WitnessPoints — Witness points between the collision geometry and the nearest voxel. If the
collision geometry is not in collision, WitnessPoints is returned as returned as a 3-by-2

matrix, where each column represents the witness points in the form 
X
Y
Z

. If the collision

geometry is in collision, WitnessPoints is returned as nan(3,2).
• VoxelInfo — This field is present when the ReturnVoxels property of options is true. The
field is a structure that contains these fields.

• Location — Center(s) of the colliding voxels. The format of this field depends on the value of
the Exhaustive property of options:

• true — N-by-3 matrix, where N is the total number of colliding voxels. Each row is a
coordinate in the form [X Y Z].

• false — Three-element row vector that contains the first collision voxel as a coordinate in
the form [X Y Z], or as an empty vector if there is no collision.

• Size — Edge lengths of the colliding voxels. The format of this field depends on the value of
the Exhaustive property of options:

• true — N-element column vector, where N is the total number of colliding voxels. The edge
length of each element defines the size of the voxel centered at the corresponding location
in Location.

• false — Edge length of the first colliding voxel, returned as a numeric scalar if there is a
collision, or as an empty vector if there is no collision.

Version History
Introduced in R2022b

R2023a: Code Generation Support

checkMapCollision now supports code generation.

Note that checkMapCollision does not support code generation using the packNGo function if you
set the packType argument to "flat".

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

checkMapCollision does not support code generation using the packNGo function if you set the
packType argument to "flat".

See Also
occupancyMap3D | occupancyMap3DCollisionOptions

1 Functions

1-26



connect
Connect poses for given connection type

Syntax
[pathSegments,pathCosts] = connect(connectionObj,start,goal)
[pathSegments,pathCosts] = connect(connectionObj,start,
goal,'PathSegments','all')

Description
[pathSegments,pathCosts] = connect(connectionObj,start,goal) connects the start and
goal poses using the specified dubinsConnection object. The path segment object with the lowest
cost is returned.

[pathSegments,pathCosts] = connect(connectionObj,start,
goal,'PathSegments','all') returns all possible path segments as a cell array with their
associated costs.

Examples

Connect Poses Using Dubins Connection Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Connect Poses Using ReedsShepp Connection Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Input Arguments
connectionObj — Path connection type
dubinsPathSegment object | reedsSheppPathSegment object

Path connection type, specified as a dubinsConnection or reedsSheppConnection object. This
object defines the parameters of the connection, including the minimum turning radius of the robot
and the valid motion types.

start — Initial pose of robot
[x, y, Θ] vector or matrix

This property is read-only.

Initial pose of the robot at the start of the path segment, specified as an [x, y, Θ] vector or matrix.
Each row of the matrix corresponds to a different start pose.

x and y are in meters. Θ is in radians.

The connect function supports:

• Singular start pose with singular goal pose.
• Multiple start pose with singular goal pose.
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• Singular start pose with multiple goal pose.
• Multiple start pose with multiple goal pose.

The output pathSegments cell array size reflects the singular or multiple pose options.

goal — Goal pose of robot
[x, y, Θ] vector or matrix

This property is read-only.

Goal pose of the robot at the end of the path segment, specified as an [x, y, Θ] vector or matrix. Each
row of the matrix corresponds to a different goal pose.

x and y are in meters. Θ is in radians.

The connect function supports:

• Singular start pose with singular goal pose.
• Multiple start pose with singular goal pose.
• Singular start pose with multiple goal pose.
• Multiple start pose with multiple goal pose.

The output pathSegments cell array size reflects the singular or multiple pose options.

Output Arguments
pathSegments — Path segments
cell array of objects

Path segments, specified as a cell array of objects. The type of object depends on the input
connectionObj. The size of the cell array depends on whether you use singular or multiple start
and goal poses. By default, the function returns the path with the lowest cost for each start and
goal pose. When call connect using the 'PathSegments','all' name-value pair, the cell array
contains all valid path segments between the specified start and goal poses.

pathCosts — Cost of path segment
positive numeric scalar | positive numeric vector | positive numeric matrix

Cost of path segments, specified as a positive numeric scalar, vector, or matrix. Each element of the
cost vector or matrix corresponds to a path segment in pathSegment. By default, the function
returns the path with the lowest cost for each start and goal pose.
Example: [7.6484,7.5122]

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
interpolate | show

Objects
dubinsConnection | dubinsPathSegment | reedsSheppConnection |
reedsSheppPathSegment
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createPlanningTemplate
Create sample implementation for path planning interface

Syntax
createPlanningTemplate
createPlanningTemplate("StateValidator")

Description
createPlanningTemplate creates a planning template for a subclass of the nav.StateSpace
class. The function opens a file in the MATLAB® Editor. Save your custom implementation and ensure
the file is available on the MATLAB path. Alternative syntax:
createPlanningTemplate("StateSpace")

createPlanningTemplate("StateValidator") creates a template for a subclass of the
nav.StateValidator class.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state space definition and sampler to use with path planning algorithms. A
simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateSpace class. For this example, create a property for the uniform and normal
distributions. You can specify any additional user-defined properties here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
end

Save your custom state space class and ensure your file name matches the class name.
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Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and define its
boundaries. Alternatively, you can add input arguments to the function and pass the variables in when
you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values using
predefined NormalDistribution and UniformDistribution classes.

• Specify any other user-defined property values here.

methods
    function obj = MyCustomStateSpace
        spaceName = "MyCustomStateSpace";
        numStateVariables = 3;
        stateBounds = [-100 100;  % [min max]
                       -100 100;
                       -100 100];
        
        obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
        
        obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
        obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
        % User-defined property values here
    end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same name, state bounds, and distributions.

function copyObj = copy(obj)
    copyObj = feval(class(obj));
    copyObj.StateBounds = obj.StateBounds;
    copyObj.UniformDistribution = obj.UniformDistribution.copy;
    copyObj.NormalDistribution = obj.NormalDistribution.copy;
end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the state values
get saturated at the minimum or maximum values for the state bounds.

function boundedState = enforceStateBounds(obj, state)
    nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
    boundedState = state;
    boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
        obj.StateBounds(:,2)');
    
end
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Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to
constrain the uniform distribution to a nearby state within a certain distance and sample multiple
states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the varying
input arguments.

 function state = sampleUniform(obj, varargin)
    narginchk(1,4);
    [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
    
    obj.UniformDistribution.RandomVariableLimits = stateBounds;
    state = obj.UniformDistribution.sample(numSamples);
 end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for
sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

function state = sampleGaussian(obj, meanState, stdDev, varargin)    
    narginchk(3,4);
    
    [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
    
    obj.NormalDistribution.Mean = meanState;
    obj.NormalDistribution.Covariance = diag(stdDev.^2);
    
    state = obj.NormalDistribution.sample(numSamples);
    state = obj.enforceStateBounds(state);
    
end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input, fraction, to
determine how to sample along the path between two states. For this example, define a basic linear
interpolation method using the difference between states.

function interpState = interpolate(obj, state1, state2, fraction)
    narginchk(4,4);
    [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
    
    stateDiff = state2 - state1;
    interpState = state1 + fraction' * stateDiff;
end
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Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the state1 and
state2 inputs to define the start and end positions. Both inputs can be a single state (row vector) or
multiple states (matrix of row vectors). For this example, calculate the distance based on the
Euclidean distance between each pair of state positions.

function dist = distance(obj, state1, state2)
    
    narginchk(3,3);
    
    nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
    nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

    stateDiff = bsxfun(@minus, state2, state1);
    dist = sqrt( sum( stateDiff.^2, 2 ) );
end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an object for
your state space.

Create Custom State Space Validator for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state validation class. State validation is used with path planning algorithms to
ensure valid paths. The template function provides a basic implementation for example purposes.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation. Save this file.

createPlanningTemplate("StateValidator")

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateValidator class. You can specify any additional user-defined properties here.

classdef MyCustomStateValidator < nav.StateValidator & ...
        matlabshared.planning.internal.EnforceScalarHandle
    properties
       % User-defined properties
    end

Save your custom state validator class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space validator and specify the state space object.
Set a default value for the state space if one is not provided. Call the constructor of the base class.
Initialize any other user-defined properties. This example uses a default of MyCustomStateSpace,
which was illustrated in the previous example.
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methods
        function obj = MyCustomStateValidator(space)
            narginchk(0,1)
            
            if nargin == 0
                space = MyCustomStateSpace;
            end

            obj@nav.StateValidator(space);
            
           % Initialize user-defined properties
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same type.

        function copyObj = copy(obj)
            copyObj = feval(class(obj), obj.StateSpace);
        end

Check State Validity

Define how a given state is validated. The state input can either be a single row vector, or a matrix
of row vectors for multiple states. Customize this function for any special validation behavior for your
state space like collision checking against obstacles.

        function isValid = isStateValid(obj, state) 
            narginchk(2,2);
            nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ...
                "isStateValid", "state");
            
            bounds = obj.StateSpace.StateBounds';
            inBounds = state >= bounds(1,:) & state <= bounds(2,:);
            isValid = all(inBounds, 2);
            
        end

Check Motion Validity

Define how to generate the motion between states and determine if it is valid. For this example, use
linspace to evenly interpolate between states and check if these states are valid using
isStateValid. Customize this function to sample between states or consider other analytical
methods for determining if a vehicle can move between given states.

        function [isValid, lastValid] = isMotionValid(obj, state1, state2)
            narginchk(3,3);
            state1 = nav.internal.validation.validateStateVector(state1, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state1");
            state2 = nav.internal.validation.validateStateVector(state2, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state2");
            
            if (~obj.isStateValid(state1))
                error("statevalidator:StartStateInvalid", "The start state of the motion is invalid.");
            end
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            % Interpolate at a fixed interval between states and check state validity
            numInterpPoints = 100;
            interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints));
            interpValid = obj.isStateValid(interpStates);
            
            % Look for invalid states. Set lastValid state to index-1.
            firstInvalidIdx = find(~interpValid, 1);
            if isempty(firstInvalidIdx)
                isValid = true;
                lastValid = state2;
            else
                isValid = false;
                lastValid = interpStates(firstInvalidIdx-1,:);
            end
            
        end

Terminate the methods and class sections.

    end
end

Save your state space validator class definition. You can now use the class constructor to create an
object for validation of states for a given state space.

Version History
Introduced in R2019b

See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 | validatorOccupancyMap
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ecompass
Orientation from magnetometer and accelerometer readings

Syntax
orientation = ecompass(accelerometerReading,magnetometerReading)
orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat)
orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat,'ReferenceFrame',RF)

Description
orientation = ecompass(accelerometerReading,magnetometerReading) returns a
quaternion that can rotate quantities from a parent (NED) frame to a child (sensor) frame.

orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat) specifies the orientation format as quaternion or rotation matrix.

orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat,'ReferenceFrame',RF) also allows you to specify the reference frame RF
of the orientation output. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The
default value is 'NED'.

Examples

Determine Declination of Boston

Use the known magnetic field strength and proper acceleration of a device pointed true north in
Boston to determine the magnetic declination of Boston.

Define the known acceleration and magnetic field strength in Boston.

magneticFieldStrength = [19.535 -5.109 47.930];
properAcceleration = [0 0 9.8];

Pass the magnetic field strength and acceleration to the ecompass function. The ecompass function
returns a quaternion rotation operator. Convert the quaternion to Euler angles in degrees.

q = ecompass(properAcceleration,magneticFieldStrength);
e = eulerd(q,'ZYX','frame');

The angle, e, represents the angle between true north and magnetic north in Boston. By convention,
magnetic declination is negative when magnetic north is west of true north. Negate the angle to
determine the magnetic declination.

magneticDeclinationOfBoston = -e(1)

magneticDeclinationOfBoston = -14.6563
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Return Rotation Matrix

The ecompass function fuses magnetometer and accelerometer data to return a quaternion that,
when used within a quaternion rotation operator, can rotate quantities from a parent (NED) frame to
a child frame. The ecompass function can also return rotation matrices that perform equivalent
rotations as the quaternion operator.

Define a rotation that can take a parent frame pointing to magnetic north to a child frame pointing to
geographic north. Define the rotation as both a quaternion and a rotation matrix. Then, convert the
quaternion and rotation matrix to Euler angles in degrees for comparison.

Define the magnetic field strength in microteslas in Boston, MA, when pointed true north.

m = [19.535 -5.109 47.930];
a = [0 0 9.8];

Determine the quaternion and rotation matrix that is capable of rotating a frame from magnetic north
to true north. Display the results for comparison.

q = ecompass(a,m);
quaterionEulerAngles = eulerd(q,'ZYX','frame')

quaterionEulerAngles = 1×3

   14.6563         0         0

r = ecompass(a,m,'rotmat');
theta = -asin(r(1,3));
psi = atan2(r(2,3)/cos(theta),r(3,3)/cos(theta));
rho = atan2(r(1,2)/cos(theta),r(1,1)/cos(theta));
rotmatEulerAngles = rad2deg([rho,theta,psi])

rotmatEulerAngles = 1×3

   14.6563         0         0

Determine Gravity Vector

Use ecompass to determine the gravity vector based on data from a rotating IMU.

Load the inertial measurement unit (IMU) data.

load 'rpy_9axis.mat' sensorData Fs

Determine the orientation of the sensor body relative to the local NED frame over time.

orientation = ecompass(sensorData.Acceleration,sensorData.MagneticField);

To estimate the gravity vector, first rotate the accelerometer readings from the sensor body frame to
the NED frame using the orientation quaternion vector.
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gravityVectors = rotatepoint(orientation,sensorData.Acceleration);

Determine the gravity vector as an average of the recovered gravity vectors over time.

gravityVectorEstimate = mean(gravityVectors,1)

gravityVectorEstimate = 1×3

    0.0000   -0.0000   10.2102

Track Spinning Platform

Fuse modeled accelerometer and gyroscope data to track a spinning platform using both idealized
and realistic data.

Generate Ground-Truth Trajectory

Describe the ground-truth orientation of the platform over time. Use the kinematicTrajectory
System object™ to create a trajectory for a platform that has no translation and spins about its z-axis.

duration = 12;
fs = 100;
numSamples = fs*duration;

accelerationBody = zeros(numSamples,3);

angularVelocityBody = zeros(numSamples,3);
zAxisAngularVelocity = [linspace(0,4*pi,4*fs),4*pi*ones(1,4*fs),linspace(4*pi,0,4*fs)]';
angularVelocityBody(:,3) = zAxisAngularVelocity;

trajectory = kinematicTrajectory('SampleRate',fs);

[~,orientationNED,~,accelerationNED,angularVelocityNED] = trajectory(accelerationBody,angularVelocityBody);

Model Receiving IMU Data

Use an imuSensor System object to mimic data received from an IMU that contains an ideal
magnetometer and an ideal accelerometer.

IMU = imuSensor('accel-mag','SampleRate',fs);
[accelerometerData,magnetometerData] = IMU(accelerationNED, ...
                                           angularVelocityNED, ...
                                           orientationNED);

Fuse IMU Data to Estimate Orientation

Pass the accelerometer data and magnetometer data to the ecompass function to estimate
orientation over time. Convert the orientation to Euler angles in degrees and plot the result.

orientation = ecompass(accelerometerData,magnetometerData);
orientationEuler = eulerd(orientation,'ZYX','frame');

timeVector = (0:numSamples-1).'/fs;

figure(1)
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plot(timeVector,orientationEuler)
legend('z-axis','y-axis','x-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation from Ideal IMU')

Repeat Experiment with Realistic IMU Sensor Model

Modify parameters of the IMU System object to approximate realistic IMU sensor data. Reset the IMU
and then call it with the same ground-truth acceleration, angular velocity, and orientation. Use
ecompass to fuse the IMU data and plot the results.

IMU.Accelerometer = accelparams( ...
    'MeasurementRange',20, ...
    'Resolution',0.0006, ...
    'ConstantBias',0.5, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',0.004, ...
    'BiasInstability',0.5);
IMU.Magnetometer = magparams( ...
    'MeasurementRange',200, ...
    'Resolution',0.01);
reset(IMU)

[accelerometerData,magnetometerData] = IMU(accelerationNED,angularVelocityNED,orientationNED);

orientation = ecompass(accelerometerData,magnetometerData);
orientationEuler = eulerd(orientation,'ZYX','frame');
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figure(2)
plot(timeVector,orientationEuler)
legend('z-axis','y-axis','x-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation from Realistic IMU')

Input Arguments
accelerometerReading — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in sensor body coordinate system in m/s2, specified as an N-by-3 matrix. The
columns of the matrix correspond to the x-, y-, and z-axes of the sensor body. The rows in the matrix,
N, correspond to individual samples. The accelerometer readings are normalized before use in the
function.
Data Types: single | double

magnetometerReading — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix

Magnetometer readings in sensor body coordinate system in µT, specified as an N-by-3 matrix. The
columns of the matrix correspond to the x-, y-, and z-axes of the sensor body. The rows in the matrix,
N, correspond to individual samples. The magnetometer readings are normalized before use in the
function.
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Data Types: single | double

orientationFormat — Format used to describe orientation
'quaternion' (default) | 'rotmat'

Format used to describe orientation, specified as 'quaternion' or 'rotmat'.
Data Types: char | string

Output Arguments
orientation — Orientation that rotates quantities from global coordinate system to sensor
body coordinate system
N-by-1 vector of quaternions (default) | 3-by-3-by-N array

Orientation that can rotate quantities from a global coordinate system to a body coordinate system,
returned as a vector of quaternions or an array. The size and type of the orientation depends on
the format used to describe orientation:

• 'quaternion' –– N-by-1 vector of quaternions with the same underlying data type as the input
• 'rotmat' –– 3-by-3-by-N array the same data type as the input

Data Types: quaternion | single | double

Algorithms
The ecompass function returns a quaternion or rotation matrix that can rotate quantities from a
parent (NED for example) frame to a child (sensor) frame. For both output orientation formats, the
rotation operator is determined by computing the rotation matrix.

The rotation matrix is first calculated with an intermediary:

R = (a × m) × a a × m a

and then normalized column-wise. a and m are the accelerometerReading input and the
magnetometerReading input, respectively.

To understand the rotation matrix calculation, consider an arbitrary point on the Earth and its
corresponding local NED frame. Assume a sensor body frame, [x,y,z], with the same origin.
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Recall that orientation of a sensor body is defined as the rotation operator (rotation matrix or
quaternion) required to rotate a quantity from a parent (NED) frame to a child (sensor body) frame:

R pparent = pchild

where

• R is a 3-by-3 rotation matrix, which can be interpreted as the orientation of the child frame.
• pparent is a 3-by-1 vector in the parent frame.
• pchild is a 3-by-1 vector in the child frame.

For a stable sensor body, an accelerometer returns the acceleration due to gravity. If the sensor body
is perfectly aligned with the NED coordinate system, all acceleration due to gravity is along the z-
axis, and the accelerometer reads [0 0 1]. Consider the rotation matrix required to rotate a quantity
from the NED coordinate system to a quantity indicated by the accelerometer.
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r11 r21 r31
r12 r22 r32
r13 r23 r33

0
0
1

=
a1
a2
a3

The third column of the rotation matrix corresponds to the accelerometer reading:

r31
r32
r33

=
a1
a2
a3

A magnetometer reading points toward magnetic north and is in the N-D plane. Again, consider a
sensor body frame aligned with the NED coordinate system.

By definition, the E-axis is perpendicular to the N-D plane, therefore D ⨯ N = E, within some
amplitude scaling. If the sensor body frame is aligned with NED, both the acceleration vector from
the accelerometer and the magnetic field vector from the magnetometer lie in the N-D plane.
Therefore a ⨯ m = y, again with some amplitude scaling.

Consider the rotation matrix required to rotate NED to the child frame, [x y z].

r11 r21 r31
r12 r22 r32
r13 r23 r33

0
1
0

=
a1
a2
a3

×
m1
m2
m3

The second column of the rotation matrix corresponds to the cross product of the accelerometer
reading and the magnetometer reading:
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r21
r22
r23

=
a1
a2
a3

×
m1
m2
m3

By definition of a rotation matrix, column 1 is the cross product of columns 2 and 3:

r11
r12
r13

=
r21
r22
r23

×
r31
r32
r33

= a × m × a

Finally, the rotation matrix is normalized column-wise:

Ri j =
Ri j

∑
i = 1

3
Ri j

2
, ∀ j

Note The ecompass algorithm uses magnetic north, not true north, for the NED coordinate system.

Version History
Introduced in R2018b

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/

tree/master/docs

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | imufilter
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enu2lla
Transform local east-north-up coordinates to geodetic coordinates

Syntax
lla = enu2lla(xyzENU,lla0,method)

Description
lla = enu2lla(xyzENU,lla0,method) transforms the local east-north-up (ENU) Cartesian
coordinates xyzENU to geodetic coordinates lla. Specify the origin of the local ENU system as the
geodetic coordinates lla0.

Note

• The latitude and longitude values in the geodetic coordinate system use the World Geodetic
System of 1984 (WGS84) standard.

• Specify altitude as height in meters above the WGS84 reference ellipsoid.

Examples

Transform ENU Coordinates to Geodetic Coordinates

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]

Specify the ENU coordinates of a point of interest, in meters. In this case, the point of interest is the
Matterhorn.

xyzENU = [-7134.8 -4556.3 2852.4]; % [xEast yNorth zUp]

Transform the local ENU coordinates to geodetic coordinates using flat earth approximation.

lla = enu2lla(xyzENU,lla0,'flat')

lla = 1×3
103 ×

    0.0460    0.0077    4.5254

Input Arguments
xyzENU — Local ENU Cartesian coordinates
three-element row vector | n-by-3 matrix
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Local ENU Cartesian coordinates, specified as a three-element row vector or an n-by-3 matrix. n is
the number of points to transform. Specify each point in the form [xEast yNorth zUp]. xEast, yNorth,
and zUp are the respective x-, y-, and z-coordinates, in meters, of the point in the local ENU system.
Example: [-7134.8 -4556.3 2852.4]
Data Types: double

lla0 — Origin of local ENU system in geodetic coordinates
three-element row vector | n-by-3 matrix

Origin of the local ENU system in the geodetic coordinates, specified as a three-element row vector
or an n-by-3 matrix. n is the number of origin points. Specify each point in the form [lat0 lon0
alt0]. lat0 and lon0 specify the latitude and longitude of the origin, respectively, in degrees. alt0
specifies the altitude of the origin in meters.
Example: [46.017 7.750 1673]
Data Types: double

method — Transformation method
'flat' | 'ellipsoid'

Transformation method, specified as 'flat' or 'ellipsoid'. This argument specifies whether the
function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.
• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and

longitude. This method has higher accuracy over small distances from the initial geodetic latitude
and longitude, and closer to the equator. The method calculates a longitude with higher accuracy
when the variation in latitude is smaller.

• Latitude values of +90 and -90 degree may return unexpected values because of singularity at the
poles.

Data Types: char | string

Output Arguments
lla — Geodetic coordinates
three-element row vector | n-by-3 matrix

Geodetic coordinates, returned as a three-element row vector or an n-by-3 matrix. n is the number of
transformed points. Each point is in the form [lat lon alt]. lat and lon specify the latitude and
longitude, respectively, in degrees. alt specifies the altitude in meters.
Data Types: double

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
lla2enu | lla2ned | ned2lla
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eul2quat
Convert Euler angles to quaternion

Syntax
quat = eul2quat(eul)
quat = eul2quat(eul,sequence)

Description
quat = eul2quat(eul) converts a given set of Euler angles, eul, to the corresponding quaternion,
quat. The default order for Euler angle rotations is "ZYX".

quat = eul2quat(eul,sequence) converts a set of Euler angles into a quaternion. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler angle
rotations is "ZYX".

Examples

Convert Euler Angles to Quaternion
eul = [0 pi/2 0];
qZYX = eul2quat(eul)

qZYX = 1×4

    0.7071         0    0.7071         0

Convert Euler Angles to Quaternion Using Default ZYZ Axis Order
eul = [pi/2 0 0];
qZYZ = eul2quat(eul,"ZYZ")

qZYZ = 1×4

    0.7071         0         0    0.7071

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of intrinsic Euler rotation angles. Each
row represents one Euler angle set in the sequence defined by the sequence argument. For example,
with the default sequence "ZYX", each row of eul is of the form [zAngle yAngle xAngle].

1 Functions

1-50



Example: [0 0 1.5708]

sequence — Axis-rotation sequence
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Axis-rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Each character indicates the corresponding axis. For example, if the sequence is "ZYX", then the
three specified Euler angles are interpreted in order as a rotation around the z-axis, a rotation around
the y-axis, and a rotation around the x-axis. When applying this rotation to a point, it will apply the
axis rotations in the order x, then y, then z.
Data Types: string | char

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Version History
Introduced in R2015a

R2023a: Additional Euler sequence support

eul2quat supports additional Euler sequences for the sequences argument. These are all the
supported Euler sequences:

• "ZYX"
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1-51



• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2eul | quaternion
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eul2rotm
Convert Euler angles to rotation matrix

Syntax
rotm = eul2rotm(eul)
rotm = eul2rotm(eul,sequence)

Description
rotm = eul2rotm(eul) converts a set of Euler angles, eul, to the corresponding rotation matrix,
rotm. When using the rotation matrix, premultiply it with the coordinates to be rotated (as opposed
to postmultiplying). The default order for Euler angle rotations is "ZYX".

rotm = eul2rotm(eul,sequence) converts Euler angles to a rotation matrix, rotm. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler angle
rotations is "ZYX".

Examples

Convert Euler Angles to Rotation Matrix

eul = [0 pi/2 0];
rotmZYX = eul2rotm(eul)

rotmZYX = 3×3

    0.0000         0    1.0000
         0    1.0000         0
   -1.0000         0    0.0000

Convert Euler Angles to Rotation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
rotmZYZ = eul2rotm(eul,'ZYZ')

rotmZYZ = 3×3

    0.0000   -0.0000    1.0000
    1.0000    0.0000         0
   -0.0000    1.0000    0.0000
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Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of intrinsic Euler rotation angles. Each
row represents one Euler angle set in the sequence defined by the sequence argument. For example,
with the default sequence "ZYX", each row of eul is of the form [zAngle yAngle xAngle].
Example: [0 0 1.5708]

sequence — Axis-rotation sequence
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Axis-rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Each character indicates the corresponding axis. For example, if the sequence is "ZYX", then the
three specified Euler angles are interpreted in order as a rotation around the z-axis, a rotation around
the y-axis, and a rotation around the x-axis. When applying this rotation to a point, it will apply the
axis rotations in the order x, then y, then z.
Data Types: string | char

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Version History
Introduced in R2015a
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R2023a: Additional Euler sequence support

eul2rotm supports additional Euler sequences for the sequences argument. These are all the
supported Euler sequences:

• "ZYX"
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2eul | so2 | so3

 eul2rotm

1-55



eul2tform
Convert Euler angles to homogeneous transformation

Syntax
tform = eul2tform(eul)
tform = eul2tform(eul,sequence)

Description
tform = eul2tform(eul) converts a set of Euler angles, eul, into a homogeneous transformation
matrix, tform. When using the transformation matrix, premultiply it with the coordinates to be
transformed (as opposed to postmultiplying). The default order for Euler angle rotations is "ZYX".

tform = eul2tform(eul,sequence) converts Euler angles to a homogeneous transformation.
The Euler angles are specified in the axis rotation sequence, sequence. The default order for Euler
angle rotations is "ZYX".

Examples

Convert Euler Angles to Homogeneous Transformation Matrix

eul = [0 pi/2 0];
tformZYX = eul2tform(eul)

tformZYX = 4×4

    0.0000         0    1.0000         0
         0    1.0000         0         0
   -1.0000         0    0.0000         0
         0         0         0    1.0000

Convert Euler Angles to Homogeneous Transformation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
tformZYZ = eul2tform(eul,'ZYZ')

tformZYZ = 4×4

    0.0000   -0.0000    1.0000         0
    1.0000    0.0000         0         0
   -0.0000    1.0000    0.0000         0
         0         0         0    1.0000
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Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of intrinsic Euler rotation angles. Each
row represents one Euler angle set in the sequence defined by the sequence argument. For example,
with the default sequence "ZYX", each row of eul is of the form [zAngle yAngle xAngle].
Example: [0 0 1.5708]

sequence — Axis-rotation sequence
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Axis-rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Each character indicates the corresponding axis. For example, if the sequence is "ZYX", then the
three specified Euler angles are interpreted in order as a rotation around the z-axis, a rotation around
the y-axis, and a rotation around the x-axis. When applying this rotation to a point, it will apply the
axis rotations in the order x, then y, then z.
Data Types: string | char

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n array of n homogeneous
transformation matrices. When using the transformation matrix, premultiply it with the coordinates
to be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Version History
Introduced in R2015a
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R2023a: Additional Euler sequence support

eul2tform supports additional Euler sequences for the sequences argument. These are all the
supported Euler sequences:

• "ZYX"
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2eul | se2 | se3
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exportOccupancyMap3D
Export 3-D occupancy map as octree or binary tree file

Syntax
exportOccupancyMap3D(map3D,filename)

Description
exportOccupancyMap3D(map3D,filename) exports the 3-D occupancy map, map3D, into either an
octree file (.ot) that contains all the occupancy data, or a binary tree file (.bt) that contains only the
maximum-likelihood information at the specified location, filename

Examples

Create and Export 3-D Occupancy Map

Create an occupancyMap3D object.

map3D = occupancyMap3D;

Create a ground plane and set occupancy values to 0.

[xGround,yGround,zGround] = meshgrid(0:100,0:100,0);
xyzGround = [xGround(:) yGround(:) zGround(:)];
occval = 0;
setOccupancy(map3D,xyzGround,occval)

Create obstacles in specific world locations of the map.

[xBuilding1,yBuilding1,zBuilding1] = meshgrid(20:30,50:60,0:30);
[xBuilding2,yBuilding2,zBuilding2] = meshgrid(50:60,10:30,0:40);
[xBuilding3,yBuilding3,zBuilding3] = meshgrid(40:60,50:60,0:50);
[xBuilding4,yBuilding4,zBuilding4] = meshgrid(70:80,35:45,0:60);

xyzBuildings = [xBuilding1(:) yBuilding1(:) zBuilding1(:);...
                xBuilding2(:) yBuilding2(:) zBuilding2(:);...
                xBuilding3(:) yBuilding3(:) zBuilding3(:);...
                xBuilding4(:) yBuilding4(:) zBuilding4(:)];

Update the obstacles with new probability values and display the map.

obs = 0.65;
updateOccupancy(map3D,xyzBuildings,obs)
show(map3D)
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Check if the map file named citymap.ot already exist in the current directory and delete it before
creating the map file.

if exist("citymap.ot",'file')
    delete("citymap.ot")
end

Export the map as an octree file.

filePath = fullfile(pwd,"citymap.ot");
exportOccupancyMap3D(map3D,filePath)

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as a occupancyMap3D object.
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filename — Absolute or relative path to octree or binary tree file
string scalar | character vector

Absolute or relative path to octree file (.ot) or binary tree file (.bt), specified as a string scalar or
character vector.
Example: "path/to/file/map.ot"
Data Types: char | string

Version History
Introduced in R2020a

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
insertPointCloud | inflate | setOccupancy | show
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extractNMEASentence
Verify and extract NMEA sentence data into string array

Syntax
[isValid,splitString] = extractNMEASentence(unparsedData,'MessageID')

Description
[isValid,splitString] = extractNMEASentence(unparsedData,'MessageID') verifies
the checksum of an unparsed NMEA sentence, identified using its Message ID, and extracts the
NMEA fields from NMEA sentence data into a string array, splitString.

Examples

Extract NMEA Fields of NMEA Sentence

Provide unparsed GGA, GSA, and RMC sentences as the input.

unparsedGGALine = '$GPGGA,111357.771,5231.364,N,01324.240,E,1,12,1.0,0.0,M,0.0,M,,*69';
unparsedGSALine = '$GPGSA,A,3,01,02,03,04,05,06,07,08,09,10,11,12,1.0,1.0,1.0*30';
unparsedRMCLine = '$GPRMC,111357.771,A,5231.364,N,01324.240,E,10903,221.5,020620,000.0,W*44';

Create a string array to include the three sentences

unparsedNMEAData = [unparsedGGALine,newline,unparsedGSALine,newline,unparsedRMCLine]

unparsedNMEAData = 
    '$GPGGA,111357.771,5231.364,N,01324.240,E,1,12,1.0,0.0,M,0.0,M,,*69
     $GPGSA,A,3,01,02,03,04,05,06,07,08,09,10,11,12,1.0,1.0,1.0*30
     $GPRMC,111357.771,A,5231.364,N,01324.240,E,10903,221.5,020620,000.0,W*44'

Specify GSA as the Message ID to extract the NMEA fields from the NMEA sentence into string array.

[isValid, splitString] = extractNMEASentence(unparsedNMEAData,'GSA')

isValid = logical
   1

splitString = 1x19 string
    "GP"    "GSA"    "A"    "3"    "01"    "02"    "03"    "04"    "05"    "06"    "07"    "08"    "09"    "10"    "11"    "12"    "1.0"    "1.0"    "1.0"

Input Arguments
unparsedData — Unparsed NMEA data from the device
string | character array
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The unparsed NMEA data as obtained from the device.

MessageID — Message ID of the unparsed NMEA sentence
string | character array

The Message ID to identify the unparsed NMEA sentence.

Output Arguments
isValid — Validity of unparsed NMEA sentence based on checksum
0 | 1

Determine the validity of unparsed NMEA sentence based on checksum. A value of 1 indicates that
the checksum is valid. A value of 0 indicates that the checksum is invalid; however, the fields of
NMEA sentence appear in the splitString output if the specified MessageID is matching.
Data Types: logical

splitString — Output data as split strings
string array

Output data as split strings based on the structure that you defined. If the specified MessageID is not
found in the NMEA sentence, the function returns an empty splitString.
Data Types: string

Version History
Introduced in R2021b

See Also
Objects
nmeaParser
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flush
Flush all GPS data accumulated in the buffers and reset properties

Syntax
flush(gps)

Description
flush(gps) clears the buffers and resets the values of SamplesRead and SamplesAvailable
properties.

Examples

Read Data from GPS Receiver as Matrix

Read data from the GPS receiver connected to the host computer using serialport object.

Required Hardware

To run this example, you need:

• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires

Hardware Connection
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Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Connect to the GPS receiver using serialport object. Specify the port name and the baud rate.
Specify the output format of the data as matrix.

s = serialport('COM4',9600);
gps = gpsdev(s,'OutputFormat',"matrix")

gps = 
  gpsdev with properties:

                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)

                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Read the GPS data

Read the GPS data and return them as matrices.

[lla,speed,course,dops,gpsReceiverTime,timestamp,overruns] = read(gps)

lla = 1×3

   NaN   NaN   NaN

speed = NaN

course = NaN

dops = 1×3

   NaN   NaN   NaN

gpsReceiverTime = datetime
   NaT
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timestamp = datetime
   22-Mar-2021 03:41:00.274

overruns = 1

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 1

gps.SamplesAvailable

ans = 0

Flush all GPS data accumulated in the buffers and reset the SamplesRead and SamplesAvailable
properties.

flush(gps)

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 0

gps.SamplesAvailable

ans = 0

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;
clear s;

Input Arguments
gps — GPS sensor
gpsdev object

The GPS sensor, specified as a gpsdev object.

Version History
Introduced in R2020b

See Also
Objects
gpsdev
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Functions
release | writeBytes | read | info

 flush
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gnssconstellation
Satellite locations at specified time

Syntax
[satPos,satVel] = gnssconstellation(t)
[satPos,satVel,satID] = gnssconstellation(t,navData)
[satPos,satVel,satID] = gnssconstellation(t,navData,GNSSFileType=
gnssFileType)

Description
[satPos,satVel] = gnssconstellation(t) returns the satellite positions and velocities at the
datetime t. The function returns positions and velocities in the Earth-centered Earth-fixed (ECEF)
coordinate system in meters and meters per second, respectively. If the time zone for the datetime is
not specified, it is assumed to be UTC.

[satPos,satVel,satID] = gnssconstellation(t,navData) returns the satellite positions,
velocities, and IDs at time t in the specified RINEX navigation message data navData.

[satPos,satVel,satID] = gnssconstellation(t,navData,GNSSFileType=
gnssFileType) additionally specifies the GNSS file type from which you obtained the navigation
message data. This syntax enables you to process navigation data obtained from either a RINEX file,
a SEM almanac file, or a YUMA almanac file.

Note The gnssconstellation function determines the satellite position and satellite velocities by
propagating the current orbital parameters specified by the RINEX file, SEM almanac file, or YUMA
almanac file to the query time. To get more accurate satellite positions and velocities, ensure you are
using the navigation file released for the time that you are querying at.

Examples

Get Current Satellite Positions and Velocities

Get the current satellite positions and velocities from the GNSS satellites. Access the orbital
parameters from IS-GPS-200M Interface Specification and calculate the position and velocities in
ECEF coordinates for the given time. Display the satellite positions.

t = datetime('now','TimeZone','Local');
[satPos,satVel] = gnssconstellation(t);
disp(satPos)

   1.0e+07 *

    1.5471    0.2129    2.1483
   -0.5458   -2.5847   -0.2746
   -0.2505    2.5080   -0.8374
   -0.9852    1.7558   -1.7322
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   -0.3225   -1.6035   -2.0926
   -1.3709   -0.8182   -2.1226
    2.1641   -1.5312    0.1631
   -1.0429    2.0216    1.3710
    2.2526   -0.6297    1.2584
    1.8177   -0.6393   -1.8280
   -2.0437   -1.4728   -0.8416
   -2.5193   -0.7627    0.3543
    0.1882    1.6470    2.0752
    1.1375    2.0723   -1.2107
   -1.5264   -0.8670    1.9931
   -1.5026    0.2541    2.1753
    0.8398   -1.9723   -1.5682
    0.4023    2.6246   -0.0638
   -2.2921    0.8699    1.0217
    0.7713   -1.9934    1.5766
    1.3802    0.8088   -2.1201
    1.7782   -1.8869    0.5760
   -0.3053   -1.6701    2.0425
    2.2953    1.2649   -0.4307
    2.5237    0.6059    0.5639
   -1.6018    0.8219   -1.9526
   -2.3653   -0.0546   -1.2069

Get Satellite Look Angles for Receiver Position

Use the lookangles function to get the azimuth and elevation angles of satellites for given satellite
and receiver positions. Specify a mask angle of 5 degrees. Get the satellite positions using the
gnssconstellation function.

Specify a receiver position in geodetic coordinates (latitude, longitude, altitude).

recPos = [42 -71 50];

Get the satellite positions for the current time.

t = datetime('now');
gpsSatPos = gnssconstellation(t);

Specify a mask angle of 5 degrees.

maskAngle = 5;

Get the azimuth and elevation look angles for the satellite positions. The vis output indicates which
satellites are visible. Get the total using nnz.

[az,el,vis] = lookangles(recPos,gpsSatPos,maskAngle);
fprintf('%d satellites visible at %s.\n',nnz(vis),t);

8 satellites visible at 04-Mar-2023 01:25:04.
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Retrieve Satellite Positions, Velocities, and IDs from RINEX File

Read one set of GPS satellites from the GPS navigation message in a RINEX file.

filename = "GODS00USA_R_20211750000_01D_GN.rnx"; 
data = rinexread(filename);
gpsData = data.GPS;
[~,satIdx] = unique(gpsData.SatelliteID);
gpsData = gpsData(satIdx,:);

Get the satellite positions, velocities, and IDs at the first time step.

t = gpsData.Time(1);
[satPos,satVel,satID] = gnssconstellation(t,gpsData)

satPos = 31×3
107 ×

   -1.5630   -0.1882    2.1186
    1.3808    2.1970   -0.4861
   -2.0061    0.7606    1.5492
   -2.5625   -0.0140   -0.7096
    1.4896    0.5448   -2.1487
    0.6129    2.5407    0.4615
   -1.0081    1.3751   -1.9877
   -2.5811   -0.6135   -0.3246
   -1.9289    0.8690   -1.6134
    0.9542   -2.2526    1.0113
      ⋮

satVel = 31×3
103 ×

   -0.8888   -2.5914   -0.8416
    0.0362    0.7543    3.1043
    1.1203   -1.6505    2.2591
   -0.8301   -0.4385    2.9967
   -1.6023    2.1607   -0.5493
   -0.3948   -0.4708    3.1591
   -1.0322   -2.4133   -1.1748
    0.4370   -0.1710   -3.1339
   -1.9860   -0.5032    2.1087
    0.9968   -0.8308   -2.8502
      ⋮

satID = 31×1

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
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      ⋮

Retrieve Satellite Positions, Velocities, and IDs from SEM Almanac File

Read GPS navigation message data from a SEM almanac file.

data = semread("semalmanac_2022-4-10.al3")

data=31×16 timetable
            Time            GPSWeekNumber    GPSTimeOfApplicability    PRNNumber    SVN    AverageURANumber    Eccentricity    InclinationOffset    RateOfRightAscension    SqrtOfSemiMajorAxis    GeographicLongitudeOfOrbitalPlane    ArgumentOfPerigee    MeanAnomaly    ZerothOrderClockCorrection    FirstOrderClockCorrection    SatelliteHealth    SatelliteConfiguration
    ____________________    _____________    ______________________    _________    ___    ________________    ____________    _________________    ____________________    ___________________    _________________________________    _________________    ___________    __________________________    _________________________    _______________    ______________________

    12-Apr-2022 16:50:54        2205               2.3347e+05              1        63            0                0.01171          0.014391            -2.4484e-09               5153.6                        -0.9271                      0.28359          -0.23387              0.00038624                    -7.276e-12                  0                     11          
    12-Apr-2022 16:50:54        2205               2.3347e+05              2        61            0               0.020515         0.0074596            -2.5029e-09               5153.6                       -0.95587                     -0.45355          -0.18869             -0.00065327                             0                  0                      9          
    12-Apr-2022 16:50:54        2205               2.3347e+05              3        69            0              0.0040326         0.0096912            -2.5757e-09               5153.6                       -0.59787                      0.29979          -0.59118             -0.00020409                   -1.4552e-11                  0                     11          
    12-Apr-2022 16:50:54        2205               2.3347e+05              4        74            0              0.0017715         0.0059814            -2.4665e-09               5153.6                       -0.25353                     -0.95004           0.31619             -0.00017643                     3.638e-12                  0                     12          
    12-Apr-2022 16:50:54        2205               2.3347e+05              5        50            0              0.0059118         0.0055599            -2.6193e-09               5153.6                       -0.61097                      0.32122           0.61334             -7.8201e-05                             0                  0                     10          
    12-Apr-2022 16:50:54        2205               2.3347e+05              6        67            0              0.0026565          0.014187             -2.452e-09               5153.7                       -0.92973                     -0.28158           -0.1523              0.00026417                    1.4552e-11                  0                     11          
    12-Apr-2022 16:50:54        2205               2.3347e+05              7        48            0               0.015865         0.0028152            -2.5138e-09               5153.6                        0.07053                     -0.72524          -0.44853              0.00032043                             0                  0                     10          
    12-Apr-2022 16:50:54        2205               2.3347e+05              8        72            0              0.0074387         0.0068531            -2.4738e-09               5153.7                        0.72894                     0.048076             0.467             -6.3896e-05                             0                  0                     11          
    12-Apr-2022 16:50:54        2205               2.3347e+05              9        68            0              0.0021076         0.0037479            -2.5029e-09               5153.5                       -0.27053                      0.59743           0.61325             -0.00034428                     3.638e-12                  0                     11          
    12-Apr-2022 16:50:54        2205               2.3347e+05             10        73            0              0.0075555         0.0096321            -2.5793e-09               5153.6                       -0.59875                     -0.79359          -0.88495              -0.0003767                   -1.0914e-11                  0                     11          
    12-Apr-2022 16:50:54        2205               2.3347e+05             11        78            0             0.00031376         0.0064716            -2.5393e-09               5153.7                        -0.9136                      0.85276           0.49013             -4.1962e-05                     7.276e-12                 63                     12          
    12-Apr-2022 16:50:54        2205               2.3347e+05             12        58            0              0.0087256          0.008585            -2.5575e-09               5153.5                        0.42482                      0.40497          -0.64747             -0.00019932                    -7.276e-12                  0                     10          
    12-Apr-2022 16:50:54        2205               2.3347e+05             13        43            0              0.0058503         0.0083656            -2.4374e-09               5153.6                       -0.22159                      0.29646           0.31699              0.00029278                     7.276e-12                  0                      9          
    12-Apr-2022 16:50:54        2205               2.3347e+05             14        77            0              0.0016966         0.0033073            -2.6121e-09               5153.6                        0.41456                      0.97049          -0.63662             -0.00010204                    -3.638e-12                  0                     12          
    12-Apr-2022 16:50:54        2205               2.3347e+05             15        55            0               0.013989         -0.003952            -2.5866e-09               5153.7                       -0.30476                      0.34521           0.16087             -6.9618e-05                     3.638e-12                  0                     10          
    12-Apr-2022 16:50:54        2205               2.3347e+05             16        56            0               0.012782         0.0085545            -2.5611e-09               5153.6                        0.43073                      0.23073           0.76066             -0.00049114                    -3.638e-12                  0                      9          
      ⋮

Get the satellite positions, velocities, and IDs at the first time step.

t = data.Time(1);
[satPos,satVel,satID] = gnssconstellation(t,data,GNSSFileType="SEM")

satPos = 31×3
107 ×

    1.3899   -2.2151    0.3074
   -1.6755    0.5872   -1.9147
    1.5377   -1.2781   -1.7528
    0.6332   -1.6385   -1.9887
   -2.5716    0.5413    0.4215
   -1.0251   -1.1336   -2.1646
    0.2694   -2.3585    1.1775
    1.3414   -0.7139    2.1761
   -0.3881   -2.2626   -1.3395
    1.5043    1.1879    1.8656
      ⋮

satVel = 31×3
103 ×
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    0.0014    0.4854    3.2261
    0.8625   -2.4217   -1.4348
    2.2113    0.0321    1.9394
    1.4081    2.1049   -1.2936
   -0.5761   -0.2150   -3.1036
    1.2999   -2.4327    0.6643
    0.9229   -1.1620   -2.6758
    1.5581    2.2893   -0.1743
    1.1480    1.2668   -2.4877
   -2.3150    0.2417    1.6982
      ⋮

satID = 31×1

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
      ⋮

Retrieve Satellite Positions, Velocities, and IDs from YUMA Almanac File

Read GPS navigation message data from a YUMA almanac file.

data = yumaread("yumaAlmanac_2022-9-27.alm")

data=31×13 timetable
            Time            PRN    Health    Eccentricity    TimeOfApplicability    OrbitalInclination    RateOfRightAscen    SQRTA     RightAscenAtWeek    ArgumentOfPerigee    MeanAnom        Af0           Af1        Week
    ____________________    ___    ______    ____________    ___________________    __________________    ________________    ______    ________________    _________________    ________    ___________    __________    ____

    29-Sep-2022 16:38:06     1       0          0.012008          4.055e+05              0.98891            -7.5432e-09       5153.6          0.3651              0.9438           -1.095     0.00027561    -7.276e-12    2229
    29-Sep-2022 16:38:06     2       0              0.02          4.055e+05              0.96685            -7.7946e-09       5154.9         0.27125              -1.393          -1.6195    -0.00064468             0    2229
    29-Sep-2022 16:38:06     3       0         0.0044999          4.055e+05              0.97519             -7.726e-09       5153.5          1.3977              1.0651          -2.1966    -0.00035858    -3.638e-12    2229
    29-Sep-2022 16:38:06     4       0         0.0020423          4.055e+05              0.96187             -7.966e-09       5153.7          2.4795             -3.1045          0.81839    -0.00011158     7.276e-12    2229
    29-Sep-2022 16:38:06     5       0         0.0060811          4.055e+05              0.96224            -7.8403e-09       5153.7          1.3543              1.1188            1.415    -9.8228e-05             0    2229
    29-Sep-2022 16:38:06     6       0         0.0024514          4.055e+05              0.98822            -7.5546e-09       5153.5         0.35683             -0.8974         -0.87447     0.00047684    1.0914e-11    2229
    29-Sep-2022 16:38:06     7       0          0.016406          4.055e+05              0.95104            -7.7832e-09       5153.6         -2.7871             -2.2412          -1.7241     0.00030327    -3.638e-12    2229
    29-Sep-2022 16:38:06     8       0         0.0075631          4.055e+05              0.96192            -8.2403e-09       5153.5        -0.71955             0.16395           1.1555    -8.6784e-05             0    2229
    29-Sep-2022 16:38:06     9       0         0.0025387          4.055e+05              0.95495            -8.0575e-09       5153.7          2.4248              1.9083           1.5732    -0.00028992     3.638e-12    2229
    29-Sep-2022 16:38:06    10       0         0.0079675          4.055e+05              0.97498            -7.7489e-09       5153.6           1.395             -2.5116          -3.0858     -5.722e-06             0    2229
    29-Sep-2022 16:38:06    11       0        0.00075054          4.055e+05              0.96415            -7.7832e-09       5153.6         0.40358             -3.1036          0.81271    -2.0981e-05    -3.638e-12    2229
    29-Sep-2022 16:38:06    12       0         0.0085082          4.055e+05              0.96755             -7.966e-09       5153.7         -1.6731              1.3158          -2.4318     -0.0002861    -7.276e-12    2229
    29-Sep-2022 16:38:06    13       0         0.0065126          4.055e+05              0.96921            -7.8518e-09       5153.6          2.5812             0.94039          0.67456     0.00039673     7.276e-12    2229
    29-Sep-2022 16:38:06    14       0          0.002305          4.055e+05              0.95095            -8.1261e-09       5153.6          -1.708             -3.0302          -2.4903    -0.00010014     3.638e-12    2229
    29-Sep-2022 16:38:06    15       0          0.014625          4.055e+05              0.93093            -8.3203e-09       5153.6          2.3127              1.1401          0.17435    -2.4796e-05     3.638e-12    2229
    29-Sep-2022 16:38:06    16       0          0.012809          4.055e+05              0.96738            -7.9889e-09       5153.7         -1.6547             0.73255           2.0697    -0.00052547             0    2229
      ⋮
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Get the satellite positions, velocities, and IDs at the first time step.

t = data.Time(1);
[satPos,satVel,satID] = gnssconstellation(t,data,GNSSFileType="YUMA")

satPos = 31×3
107 ×

   -1.3549    2.2358   -0.3793
    1.4926   -2.1942   -0.1952
   -1.2477    1.2357   -2.0018
   -0.4096    2.0385   -1.6467
    2.2427   -0.7207    1.2218
    1.4711    0.4089   -2.1680
   -0.0841    2.0989    1.6373
   -1.0615    1.1949    2.1111
    0.5989    2.4816   -0.7333
   -1.9686   -1.1518    1.4018
      ⋮

satVel = 31×3
103 ×

   -0.4388    0.2295    3.2113
    0.0460    0.4065   -3.1646
   -2.4900   -0.3576    1.3500
   -0.9647   -1.8691   -2.0833
    1.5583    0.3175   -2.6224
   -1.6003    2.2475   -0.6531
   -1.3741    1.5034   -2.0994
   -1.2344   -2.3991    0.7711
   -0.6518   -0.7124   -2.9785
    1.7466    0.0160    2.4627
      ⋮

satID = 31×1

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
      ⋮

Input Arguments
t — Current time for satellite simulation
scalar datetime array
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Current time for the satellite simulation, specified as a scalar datetime array.

The default time zone for a datetime array is UTC. For information on specifying a different time
zone, see datetime.

GPS start time is January 6, 1980 at 00:00 (UTC). Specifying any datetime prior to this time will use
the GPS start time.
Example: datetime('now','TimeZone','Local');
Data Types: datetime

navData — Navigation data
timetable

Navigation data, specified as a timetable. For a RINEX file, you can obtain this timetable from the
structure returned by the rinexread function. For a SEM almanac file, you can use the timetable
returned by the semread function. For a YUMA almanac file, you can use the timetable returned by
the yumaread function.

Read Navigation Data from RINEX File

The gnssconstellation function can process the GPS or Galileo data read from a RINEX file. The
contents of the structure returned by the rinexread function vary depending on the type of satellite
system described by the RINEX file. For more information on the contents of the structure, see the
rinexread function “More About” on page 1-239 section.

To read GPS navigation message data from a RINEX file, extract the GPS field from the returned
structure. For example:

rinexData = rinexread("GODS00USA_R_20211750000_01D_GN.rnx");
navData = rinexData.GPS;

To read Galileo navigation message data from a RINEX file, extract the Galileo field from the returned
structure. For example:

rinexData = rinexread("GODS00USA_R_20211750000_01D_EN.rnx");
navData = rinexData.Galileo;

Read Navigation Data from SEM Almanac File

The gnssconstellation function can process the GPS data read from a SEM almanac file. The
timetable returned by the semread function contains the parameters of each satellite in the almanac
file associated with the specified date. For more information on the contents of the timetable, see the
“data” on page 1-0  argument of the semread function.

Because semread returns a timetable, you can directly specify navData as the semread output
argument. For example:

navData = semread("semalmanac_2022-1-18.al3")

Read Navigation Data from YUMA Almanac File

The gnssconstellation function can process the GPS and QZSS data read from a YUMA almanac
file. The timetable returned by the yumaread function contains the parameters of each satellite in the
almanac file associated with the specified date. For more information on the contents of the
timetable, see the “data” on page 1-0  argument of the yumaread function.
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Because yumaread returns a timetable, you can directly specify navData as the yumaread output
argument. For example:

navData = yumaread("yumaAlmanac_2022-4-20.alm")

gnssFileType — GNSS file type
"RINEX" | "SEM" | "YUMA"

GNSS file type, specified as "RINEX", "SEM", or "YUMA". Specify the GNSS file type as "RINEX"
when specifying the navigation data as a timetable obtained from the structure returned by the
rinexread function. Specify the GNSS file type as "SEM" when specifying the navigation data as a
timetable returned by the semread function. Specify the GNSS file type as "YUMA" when specifying
the navigation data as a timetable returned by the yumaread function.
Example: GNSSFileType="RINEX"
Example: GNSSFileType="SEM"
Example: GNSSFileType="YUMA"
Data Types: char | string

Output Arguments
satPos — Satellite positions
N-by-3 matrix of scalars

Satellite positions in the Earth-centered Earth-fixed (ECEF) coordinate system in meters, returned as
an N-by-3 matrix of scalars. N is the number of satellites in the constellation.
Data Types: single | double

satVel — Satellite velocities
N-by-3 matrix of scalar

Satellite velocities in the Earth-centered Earth-fixed (ECEF) coordinate system in meters per second,
returned as an N-by-3 matrix of scalars. N is the number of satellites in the constellation.
Data Types: single | double

satID — Satellite identification numbers
N-element column vector

Satellite identification numbers, returned as an N-element column vector. N is the number of
satellites in the constellation.
Data Types: single | double

More About
Orbital Parameters

The initial satellite positions and velocities are defined by orbital parameters in Table A.2-2 in GPS
SPS Performance Standard, and are given in Earth-centered Earth-fixed (ECEF) coordinates. To get
accurate position and velocity calculations, ensure that you are using the correct orbital parameters
for the corresponding querying time.
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Position calculations use equations from Table 30-II in the same IS-GPS-200M Interface Specification.

Velocity calculations use equations 8.21–8.27 in Principles of GNSS, Inertial, and Multisensor
Integrated Navigation Systems [1].

Version History
Introduced in R2021a

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Only MEX functions are supported for code generation.

See Also
Objects
gnssSensor | gpsSensor | imuSensor

Functions
skyplot | lookangles | pseudoranges | receiverposition | rinexread | rinexinfo |
semread | yumaread

Topics
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
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headingFromXY
Compute heading angle from XY-points of path

Syntax
heading = headingFromXY(path)

Description
heading = headingFromXY(path) computes the heading angle heading based on the XY-points
of the path path.

Examples

Compute Heading from XY-Points of Path

Create a binary occupancy map using the mapClutter function.

rng("default")
map = mapClutter(5,MapSize=[20,20],MapResolution=1);

Create a plannerAStarGrid object using the map. Plan a path.

planner = plannerAStarGrid(map);
pathXY = plan(planner,[1 1],[18 18],"world");

Compute the heading angle (orientation of the robot) from the path.

heading = headingFromXY(pathXY);

Visualize the heading angle on the path.

show(map)
hold on
plot(pathXY(:,1),pathXY(:,2),".-")
quiver(pathXY(:,1),pathXY(:,2),cos(heading),sin(heading),0.2)
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Input Arguments
path — Path
N-by-2 matrix

Path, specified as an N-by-2 matrix, where the first column represents the X-coordinate and the
second column represents the Y-coordinate of each point on the path.
Data Types: single | double

Output Arguments
heading — Heading angle
N-element column vector

Heading angle, returned as an N-element column vector, in radians. Element N is the same as the
element (N-1).

Version History
Introduced in R2023a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
velocityCommand

Objects
controllerTEB | plannerAStarGrid | mobileRobotPRM
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hom2cart
Convert homogeneous coordinates to Cartesian coordinates

Syntax
cart = hom2cart(hom)

Description
cart = hom2cart(hom) converts a set of homogeneous points to Cartesian coordinates.

Examples

Convert Homogeneous Points to 3-D Cartesian Points

h = [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5];
c = hom2cart(h)

c = 2×3

    0.5570    1.9150    0.3152
    1.0938    1.9298    1.9412

Input Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, returned as an n-by-k matrix, containing n points. k must be greater than or
equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

Output Arguments
cart — Cartesian coordinates
n-by-(k-1) matrix

Cartesian coordinates, specified as an n-by-(k-1) matrix, containing n points. Each row of cart
represents a point in k-dimensional space. k must be greater than or equal to 1.
Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Version History
Introduced in R2015a
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R2023a: hom2cart Supports 2-D Homogeneous Points

The hom argument now accepts 2-D homogeneous points and hom2cart outputs 2-D Cartesian
coordinates.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cart2hom
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importFactorGraph
Import factor graph from g2o log file

Syntax
graph = importFactorGraph(filename)

Description
graph = importFactorGraph(filename) imports a factor graph from the specified G2o file
filename.

Examples

Import Factor Graph from G2o Log File

Import a factor graph from a G2o log file.

G = importFactorGraph("factorGraphLog.g2o");

Input Arguments
filename — Name of G2o log file
string scalar | character vector

Name of the G2o log file to import a factor graph from, specified as a string scalar or character
vector. The specified G2o log file must contain either only 'EDGE_SE2' and 'VERTEX_SE2' tokens,
or only 'EDGE_SE3:QUAT' and 'VERTEX_SE3:QUAT' tokens.

Output Arguments
graph — Factor graph imported from G2o file
factorGraph object

Factor graph imported from the G2o file, returned as a factorGraph object.

Version History
Introduced in R2022a

See Also
Objects
factorGraph | factorGraphSolverOptions
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estimateGravityRotation
Estimate gravity rotation using IMU measurements and factor graph optimization

Syntax
[gRot,info] = estimateGravityRotation(poses,gyroscopeReadings,
accelerometerReadings,Name=Value)

Description
The estimateGravityRotation function estimates the gravity rotation that helps transform input
poses to the local navigation reference frame of IMU using IMU measurements and factor graph
optimization. The gravity rotation transforms the gravity vector from the local navigation reference
frame of IMU to the pose reference frame.

The accelerometer measurements contain constant gravity acceleration that does not contribute to
motion. You must remove this from the measurements for accurate fusion with other sensor data. The
input pose reference frame may not always match the local navigation reference frame of IMU,
North-East-Down (NED) or East-North-Up (ENU) in which the gravity direction is known. So, it is
necessary to transform the input poses to the local navigation frame to remove the known gravity
effect. The estimated rotation helps align the input pose reference frame and local navigation
reference frame of IMU.

[gRot,info] = estimateGravityRotation(poses,gyroscopeReadings,
accelerometerReadings,Name=Value) estimates the rotation required to transform the gravity
vector from the local navigation reference frame of IMU (NED or ENU) to the input pose reference
frame.

Note Input poses must be in the initial IMU reference frame unless you specify the
SensorTransform name-value argument, then the poses can be in a different frame.

Examples

Estimate Gravity Rotation and Direction Using IMU Measurements and Factor Graph
Optimization

Specify input poses in the first camera pose reference frame.

poses = [0.1 0 0 0.7071 0 0 0.7071; ...
         0.1 0.4755 -0.1545 0.7071 0 0 0.7071];

Specify 10 gyroscope and accelerometer readings between consecutive camera frames.

accelReadings = repmat([97.9887 -3.0315 -22.0285],10,1);
gyroReadings = zeros(10,3);

Specify IMU parameters.
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params = factorIMUParameters(SampleRate=100, ...
                             ReferenceFrame="NED");

Specify a transformation consisting of 3-D translation and rotation to transform input poses from the
initial camera pose reference frame to the initial IMU pose reference frame. Initial sensor reference
frame has first sensor pose at it's origin.

sensorTransform = se3(eul2rotm([-pi/2 0 0]),[0 0.1 0]);

Specify factor graph solver options.

opts = factorGraphSolverOptions(MaxIterations=50);

Estimate gravity rotation using IMU measurements between camera pose estimates.

[gRot,solutionInfo] = estimateGravityRotation(poses, ...
                      {gyroReadings},{accelReadings}, ...
                      IMUParameters=params, ...
                      SensorTransform=sensorTransform, ...
                      SolverOptions=opts)

gRot = 3×3

    0.0058   -0.6775   -0.7355
    0.1023    0.7320   -0.6736
    0.9947   -0.0713    0.0736

solutionInfo = struct with fields:
             InitialCost: 2.3123e+03
               FinalCost: 19.0067
      NumSuccessfulSteps: 23
    NumUnsuccessfulSteps: 18
               TotalTime: 0.0030
         TerminationType: 0
        IsSolutionUsable: 1

Use gravity rotation to transform gravity vector from local navigation frame to initial camera pose
reference frame.

% gravity direction in NED frame is along Z-Axis.
gravityDirectionNED = [0; 0; 1];
% gravity direction in pose reference frame.
gravityDirection = gRot*gravityDirectionNED

gravityDirection = 3×1

   -0.7355
   -0.6736
    0.0736

% gravity vector in pose reference frame.
gravityMagnitude = 9.81;
gravity = gravityDirection*gravityMagnitude

gravity = 3×1
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   -7.2149
   -6.6076
    0.7221

Input Arguments
poses — Camera or lidar poses
N-by-7 matrix | array of se3 objects | table | array of rigidtform3d objects

Camera or lidar poses, with similar metric units as IMU measurements estimated by stereo-visual-
inertial or lidar-inertial systems, respectively, specified as one of these pose types:

• N-by-7 matrix, where each row is of the form [x y z qw qx qy qz]. Each row defines the xyz-
position, in meters, and quaternion orientation, [qw qx qy qz].

• Array of se3 objects.
• Camera pose table returned by the poses function of the imageviewset object.
• Array of rigidtform3d objects.

gyroscopeReadings — Gyroscope readings between consecutive camera views or poses
cell array of N-by-3 matrices

Gyroscope readings between consecutive camera views or poses, specified as a cell array of N-by-3
matrices, in radians per second. N is the number of samples, and the three columns of
gyroscopeReadings represent the [x y z] measurements.
Data Types: cell

accelerometerReadings — Accelerometer readings between consecutive camera views or
poses
cell array of N-by-3 matrices

Accelerometer readings between consecutive camera views or poses, specified as a cell array of N-
by-3 matrices, in meters per second squared. N is the number of samples, and the three columns of
accelerometerReadings represent the [x y z] measurements.
Data Types: cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
estimateGravityRotation(poses,gyroscopeReadings,accelerometerReadings,IMUPara
meters=factorIMUParameters(SampleRate=100)) estimates the gravity rotation based on an
IMU.

IMUParameters — IMU parameters
factorIMUParameters() (default) | factorIMUParameters object

IMU parameters, specified as a factorIMUParameters object.
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Example: IMUParameters=factorIMUParameters(SampleRate=100)

SolverOptions — Solver options
factorGraphSolverOptions() (default) | factorGraphSolverOptions object

Solver options, specified as a factorGraphSolverOptions object.
Example: SolverOptions=factorGraphSolverOptions(MaxIterations=50)

SensorTransform — Transformation consisting of 3-D translation and rotation to transform
pose or point in input pose reference frame to initial IMU frame
se3() (default) | se3 object

Transformation consisting of 3-D translation and rotation to transform a quantity like a pose or a
point in the input pose reference frame to the initial IMU sensor reference frame, specified as a se3
object.

For example, if the input poses are camera poses in the initial camera sensor reference frame, then
the sensor transform rotates and translates a pose or a point in the initial camera sensor reference
frame to the initial IMU sensor reference frame. The initial sensor reference frame has the very first
sensor pose at its origin.
Example: SensorTransform=se3(eul2rotm([-pi/2,0,0]),[0,0.1,0])

Output Arguments
gRot — Gravity rotation
3-by-3 matrix | se3 object | rigidtform3d object

Gravity rotation, returned as a 3-by-3 matrix, se3 object, or rigidtform3d object similar to input
pose type. It contains the rotation required to transform the gravity vector from the local navigation
reference frame of IMU (NED or ENU) to the input pose reference frame.

info — Factor graph optimization solution information
structure

Factor graph optimization solution information, returned as a structure. The fields of the structure
are:

Field Description
InitialCost Initial cost of the non-linear least squares

problem formulated by the factor graph before
the optimization.

FinalCost Final cost of the non-linear least squares problem
formulated by the factor graph after the
optimization.

Note Cost is the sum of error terms, known as
residuals, where each residual is a function of a
subset of factor measurements.
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Field Description
NumSuccessfulSteps Number of iterations in which the solver

decreases the cost. This value includes the
initialization iteration at 0 in addition to the
minimizer iterations.

NumUnsuccessfulSteps Number of iterations in which the iteration is
numerically invalid or the solver does not
decrease the cost.

TotalTime Total solver optimization time in seconds.
TerminationType Termination type as an integer in the range [0, 2]:

• 0 — Solver found a solution that meets
convergence criterion and decreases in cost
after optimization.

• 1 — Solver could not find a solution that
meets convergence criterion after running for
the maximum number of iterations.

• 2 — Solver terminated due to an error.
IsSolutionUsable Solution is usable if 1 (true), not usable if 0

(false).

Use this information to check whether the optimization required for alignment has converged or not.
Data Types: struct

Version History
Introduced in R2023a

References
[1] Campos, Carlos, Richard Elvira, Juan J. Gomez Rodriguez, Jose M. M. Montiel, and Juan D. Tardos.

“ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap
SLAM.” IEEE Transactions on Robotics 37, no. 6 (December 2021): 1874–90. https://doi.org/
10.1109/TRO.2021.3075644.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
factorIMU | factorIMUParameters | estimateGravityRotationAndPoseScale
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estimateGravityRotationAndPoseScale
Estimate gravity rotation and pose scale using IMU measurements and factor graph optimization

Syntax
[gRot,scale,info] = estimateGravityRotationAndPoseScale(poses,
gyroscopeReadings,accelerometerReadings,Name=Value)

Description
The estimateGravityRotationAndPoseScale function estimates the gravity rotation and pose
scale that helps in transforming input poses to the local navigation reference frame of IMU using
IMU measurements and factor graph optimization. The gravity rotation transforms the gravity vector
from the local navigation reference frame of IMU to the pose reference frame. The pose scale brings
input poses to the metric scale, similar to IMU measurements.

The accelerometer measurements contain constant gravity acceleration that does not contribute to
motion. You must remove this from the measurements for accurate fusion with other sensor data. The
input pose reference frame may not always match the local navigation reference frame of IMU,
North-East-Down (NED) or East-North-Up (ENU) in which the gravity direction is known. So, it is
necessary to transform the input poses to the local navigation frame to remove the known gravity
effect. The estimated rotation helps in transforming the input pose reference frame to the local
navigation reference frame of IMU.

Monocular camera sensor-based structure from motion (SfM) estimates poses at an unknown scale
different from metric measurements obtained by an IMU. The accelerometer readings help estimate
scale factor to bring input poses to metric scale similar to IMU measurements.

[gRot,scale,info] = estimateGravityRotationAndPoseScale(poses,
gyroscopeReadings,accelerometerReadings,Name=Value) estimates the rotation required to
transform the gravity vector from the local navigation reference frame of IMU (NED or ENU) to the
input pose reference frame. The function also estimates scale, so input poses at an unknown scale
can be converted to metric units similar to those in the IMU measurements.

Note Input poses must be in the initial IMU reference frame unless you specify the
SensorTransform name-value argument, then the poses can be in a different frame.

Examples

Estimate Gravity Rotation and Direction and Pose Scale Using IMU Measurements and
Factor Graph Optimization

Specify input poses in the initial camera pose reference frame.

poses = [0.1 0 0 0.7071 0 0 0.7071; ...
         0.1 0.4755 -0.1545 0.7071 0 0 0.7071];

Specify 10 gyroscope and accelerometer readings between consecutive camera frames.
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accelReadings = repmat([97.9887 -3.0315 -22.0285],10,1);
gyroReadings = zeros(10,3);

Specify IMU parameters.

params = factorIMUParameters(SampleRate=100, ...
                             ReferenceFrame="NED");

Specify a transformation consisting of 3-D translation and rotation to transform poses from the initial
camera pose reference frame to the initial IMU pose reference frame.

sensorTransform = se3(eul2rotm([-pi/2 0 0]),[0 0.1 0]);

Specify factor graph solver options.

opts = factorGraphSolverOptions(MaxIterations=50);

Estimate the gravity rotation and pose scale using IMU measurements between camera frames.

[gRot,scale,solutionInfo] = estimateGravityRotationAndPoseScale(poses, ...
                            {gyroReadings},{accelReadings}, ...
                            IMUParameters=params, ...
                            SensorTransform=sensorTransform, ...
                            SolverOptions=opts)

gRot = 3×3

    0.9804   -0.0654   -0.1856
   -0.1765    0.1251   -0.9763
    0.0871    0.9900    0.1111

scale = 0.7357

solutionInfo = struct with fields:
             InitialCost: 2.3123e+03
               FinalCost: 27.9808
      NumSuccessfulSteps: 30
    NumUnsuccessfulSteps: 21
               TotalTime: 0.0267
         TerminationType: 1
        IsSolutionUsable: 1

Use gravity rotation to transform gravity vector from local navigation frame to initial camera pose
reference frame.

% gravity direction in NED frame is along Z-Axis.
gravityDirectionNED = [0; 0; 1];
% gravity direction in pose reference frame.
gravityDirection = gRot*gravityDirectionNED

gravityDirection = 3×1

   -0.1856
   -0.9763
    0.1111
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% gravity vector in pose reference frame.
gravityMagnitude = 9.81;
gravity = gravityDirection*gravityMagnitude

gravity = 3×1

   -1.8210
   -9.5777
    1.0900

Input Arguments
poses — Camera poses
N-by-7 matrix | array of se3 objects | table | array of rigidtform3d objects

Camera poses, at an unknown scale estimated by monocular camera-based structure from motion
(SfM), specified as one of these pose types:

• N-by-7 matrix, where each row is of the form [x y z qw qx qy qz]. Each row defines the xyz-
position, in meters, and quaternion orientation, [qw qx qy qz].

• Array of se3 objects.
• Camera pose table returned by the poses function of the imageviewset object.
• Array of rigidtform3d objects.

gyroscopeReadings — Gyroscope readings between consecutive camera views or poses
cell array of N-by-3 matrices

Gyroscope readings between consecutive camera views or poses, specified as a cell array of N-by-3
matrices, in radians per second. N is the number of samples, and the three columns of
gyroscopeReadings represent the [x y z] measurements.
Data Types: cell

accelerometerReadings — Accelerometer readings between consecutive camera views or
poses
cell array of N-by-3 matrices

Accelerometer readings between consecutive camera views or poses, specified as a cell array of N-
by-3 matrices, in meters per second squared. N is the number of samples, and the three columns of
accelerometerReadings represent the [x y z] measurements.
Data Types: cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
estimateGravityRotationAndPoseScale(poses,gyroscopeReadings,accelerometerRead
ings,IMUParameters=factorIMUParameters(SampleRate=100)) estimates the gravity
rotation based on an IMU.
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IMUParameters — IMU parameters
factorIMUParameters() (default) | factorIMUParameters object

IMU parameters, specified as a factorIMUParameters object.
Example: IMUParameters=factorIMUParameters(SampleRate=100)

SolverOptions — Solver options
factorGraphSolverOptions() (default) | factorGraphSolverOptions object

Solver options, specified as a factorGraphSolverOptions object.
Example: SolverOptions=factorGraphSolverOptions(MaxIterations=50)

SensorTransform — Transformation consisting of 3-D translation and rotation to transform
pose or point in input pose reference frame to initial IMU frame
se3() (default) | se3 object

Transformation consisting of 3-D translation and rotation to transform a quantity like a pose or a
point in the input pose reference frame to the initial IMU sensor reference frame, specified as a se3
object.

For example, if the input poses are camera poses in the initial camera sensor reference frame, then
the sensor transform rotates and translates a pose or a point in the initial camera sensor reference
frame to the initial IMU sensor reference frame. The initial sensor reference frame has the very first
sensor pose at its origin.
Example: SensorTransform=se3(eul2rotm([-pi/2,0,0]),[0,0.1,0])

Output Arguments
gRot — Gravity rotation
3-by-3 matrix | se3 object | rigidtform3d object

Gravity rotation, returned as a 3-by-3 matrix, se3 object, or rigidtform3d object similar to input
pose type. It contains the rotation required to transform the gravity vector from the local navigation
reference frame of IMU (NED or ENU) to the input pose reference frame.

scale — Multiplier by which to scale input poses
numeric scalar

Multiplier by which to scale the input poses, returned as a numeric scalar. Use this value to scale the
input poses to the same metric units as the IMU measurements.
Data Types: double

info — Factor graph optimization solution information
structure

Factor graph optimization solution information, returned as a structure. The fields of the structure
are:
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Field Description
InitialCost Initial cost of the non-linear least squares

problem formulated by the factor graph before
the optimization.

FinalCost Final cost of the non-linear least squares problem
formulated by the factor graph after the
optimization.

Note Cost is the sum of error terms, known as
residuals, where each residual is a function of a
subset of factor measurements.

NumSuccessfulSteps Number of iterations in which the solver
decreases the cost. This value includes the
initialization iteration at 0 in addition to the
minimizer iterations.

NumUnsuccessfulSteps Number of iterations in which the iteration is
numerically invalid or the solver does not
decrease the cost.

TotalTime Total solver optimization time in seconds.
TerminationType Termination type as an integer in the range [0, 2]:

• 0 — Solver found a solution that meets
convergence criterion and decreases in cost
after optimization.

• 1 — Solver could not find a solution that
meets convergence criterion after running for
the maximum number of iterations.

• 2 — Solver terminated due to an error.
IsSolutionUsable Solution is usable if 1 (true), not usable if 0

(false).

Use this information to check whether the optimization required for alignment has converged or not.
Data Types: struct

Version History
Introduced in R2023a

References
[1] Campos, Carlos, Richard Elvira, Juan J. Gomez Rodriguez, Jose M. M. Montiel, and Juan D. Tardos.

“ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap
SLAM.” IEEE Transactions on Robotics 37, no. 6 (December 2021): 1874–90. https://doi.org/
10.1109/TRO.2021.3075644.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
factorIMU | factorIMUParameters | estimateGravityRotation
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importOccupancyMap3D
Import octree or binary tree file as 3-D occupancy map

Syntax
map3D = importOccupancyMap3D(mapPath)

Description
map3D = importOccupancyMap3D(mapPath) imports the octree file (.ot) or binary tree file (.bt)
specified at the relative or absolute file path, mapPath

Examples

Check Occupancy Status and Get Occupancy Values in 3-D Occupancy Map

Import a 3-D occupancy map.

map3D = importOccupancyMap3D("citymap.ot")

map3D = 
  occupancyMap3D with properties:

    ProbabilitySaturation: [1.0000e-03 0.9990]
               Resolution: 1
        OccupiedThreshold: 0.6500
            FreeThreshold: 0.2000

Display the map.

show(map3D)
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Check the occupancy statuses of different locations and get their occupancy values.

iOccVal1 = checkOccupancy(map3D,[50 15 0])

iOccVal1 = 0

OccVal1 = getOccupancy(map3D,[50 15 0])

OccVal1 = 0.0019

iOccVal2 = checkOccupancy(map3D,[50 15 15])

iOccVal2 = 1

OccVal2 = getOccupancy(map3D,[50 15 15])

OccVal2 = 0.6500

iOccVal3 = checkOccupancy(map3D,[50 15 45])

iOccVal3 = -1

OccVal3 = getOccupancy(map3D,[50 15 45])

OccVal3 = 0.5000
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Input Arguments
mapPath — Absolute or relative path to octree or binary tree file
string scalar | character vector

Absolute or relative path to octree file (.ot) or binary tree file (.bt) , specified as a string scalar or
character vector.
Example: "path/to/file/map.ot"
Data Types: char | string

Output Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as a occupancyMap3D object.

Version History
Introduced in R2020a

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
insertPointCloud | inflate | setOccupancy | show
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info
Read update rate, GPS lock information and number of satellites in view for the GPS receiver

Syntax
gpsInfo = info(gps)

Description
gpsInfo = info(gps) returns the update rate of the GPS receiver, GPS lock information and
number of satellites from which the GPS can read signals. info gets updated after every execution of
read command.

Examples

Read Information from GPS Receiver

Read information from the GPS receiver connected to the host computer on a specific serial port.

Required Hardware

To run this example, you need:

• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires

Hardware Connection
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Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Create a gpsdev object for the GPS receiver connected to a specific port.

gps = gpsdev('COM4')

gps = 
  gpsdev with properties:

                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)

                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Read the GPS Module Information

Read the GPS module information and return them as a structure.

gpsInfo = info(gps)

gpsInfo = struct with fields:
          UpdateRate: []
           GPSLocked: 0
    SatellitesInView: 0

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;

Input Arguments
gps — GPS sensor
gpsdev object

The GPS sensor, specified as a gpsdev object.

1 Functions

1-98



Output Arguments
gpsInfo — GPS module information
structure

GPS module information such as update rate, and number of satellites. The output has three fields:

• UpdateRate — Update Rate of the GPS Module in Hz. Update Rate of GPS receiver is estimated
from the difference in time at which two RMC sentences are obtained. This value might be slightly
varying from actual Update Rate of the module.

• GPSLocked — This property specifies if GPS has enough information to get valid data. GPS signals
are acquired easily in locations that have a clear view of the sky. It can be either a 0 or 1 (logical).
If GPSLocked is 0, the GPS does not have the lock to compute location or time information. If
GPSLocked is 1, GPS module has enough data to compute location or time information.

• NumberOfSatellitesInView — Number of satellites from which the GPS module can read the
signals.

Data Types: struct

Version History
Introduced in R2020b

See Also
Objects
gpsdev

Functions
flush | release | read | writeBytes
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insfilter
Create inertial navigation filter

Syntax
filter = insfilter
filter = insfilter('ReferenceFrame',RF)

Description
filter = insfilter returns an insfilterMARG inertial navigation filter object that estimates
pose based on accelerometer, gyroscope, GPS, and magnetometer measurements. See
insfilterMARG for more details.

filter = insfilter('ReferenceFrame',RF) returns an insfilterMARG inertial navigation
filter object that estimates pose relative to a reference frame specified by RF. Specify RF as 'NED'
(North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'. See insfilterMARG for
more details.

Examples

Create Default INS Filter

The default INS filter is the insfilterMARG object. Call insfilter with no input arguments to
create the default INS filter.

filter = insfilter

filter = 
  insfilterMARG with properties:

        IMUSampleRate: 100               Hz         
    ReferenceLocation: [0 0 0]           [deg deg m]
                State: [22x1 double]                
      StateCovariance: [22x22 double]               

   Multiplicative Process Noise Variances
            GyroscopeNoise: [1e-09 1e-09 1e-09]       (rad/s)²
        AccelerometerNoise: [0.0001 0.0001 0.0001]    (m/s²)² 
        GyroscopeBiasNoise: [1e-10 1e-10 1e-10]       (rad/s)²
    AccelerometerBiasNoise: [0.0001 0.0001 0.0001]    (m/s²)² 

   Additive Process Noise Variances
    GeomagneticVectorNoise: [1e-06 1e-06 1e-06]    uT²
     MagnetometerBiasNoise: [0.1 0.1 0.1]          uT²
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Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
imufilter | ahrsfilter | insfilterErrorState | insfilterAsync |
insfilterNonholonomic | insfilterMARG
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interpolate
Interpolate poses along path segment

Syntax
poses = interpolate(pathSeg)
poses = interpolate(pathSeg,lengths)
[poses,directions] = interpolate( ___ )

Description
poses = interpolate(pathSeg) interpolates along the path segment at the transitions between
motion types.

poses = interpolate(pathSeg,lengths) interpolates along the path segment at the specified
lengths along the path. Transitions between motion types are always included.

[poses,directions] = interpolate( ___ ) also returns the direction of motion along the path
for each section as a vector of 1s (forward) and –1s (reverse) using the previous inputs.

Examples

Interpolate Poses For Dubins Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Interpolate poses along the path. Get a pose every 0.2 meters, including the transitions between
turns.

length = pathSegObj{1}.Length;
poses = interpolate(pathSegObj{1},0:0.2:length)

poses = 32×3

         0         0         0
    0.1987   -0.0199    6.0832
    0.3894   -0.0789    5.8832
    0.5646   -0.1747    5.6832
    0.7174   -0.3033    5.4832
    0.8309   -0.4436    5.3024
    0.8418   -0.4595    5.3216
    0.9718   -0.6110    5.5216
    1.1293   -0.7337    5.7216
    1.3081   -0.8226    5.9216
      ⋮

Use the quiver function to plot these poses.

quiver(poses(:,1),poses(:,2),cos(poses(:,3)),sin(poses(:,3)),0.5)
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Input Arguments
pathSeg — Path segment
dubinsPathSegment object | reedsSheppPathSegment object

Path segment, specified as a dubinsPathSegment or reedsSheppPathSegment object.

lengths — Lengths along path to interpolate at
positive numeric vector

Lengths along path to interpolate at, specified as a positive numeric vector. For example, specify
[0:0.1:pathSegObj{1}.Length] to interpolate at every 0.1 meters along the path. Transitions
between motion types are always included.

Output Arguments
poses — Interpolated poses
[x, y, Θ] matrix

This property is read-only.

Interpolated poses along the path segment, specified as an [x, y, Θ] matrix. Each row of the matrix
corresponds to a different interpolated pose along the path.
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x and y are in meters. Θ is in radians.

directions — Directions of motion
vector of 1s (forward) and –1s (reverse)

Directions of motion for each segment of the interpolated path, specified as a vector of 1s (forward)
and –1s (reverse).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
connect | show

Objects
dubinsConnection | dubinsPathSegment | reedsSheppConnection |
reedsSheppPathSegment
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lla2enu
Transform geodetic coordinates to local east-north-up coordinates

Syntax
xyzENU = lla2enu(lla,lla0,method)

Description
xyzENU = lla2enu(lla,lla0,method) transforms the geodetic coordinates lla to local east-
north-up (ENU) Cartesian coordinates xyzENU. Specify the origin of the local ENU system as the
geodetic coordinates lla0.

Note

• The latitude and longitude values in the geodetic coordinate system use the World Geodetic
System of 1984 (WGS84) standard.

• Specify altitude as height in meters above the WGS84 reference ellipsoid.

Examples

Transform Geodetic Coordinates to ENU Coordinates

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]

Specify the geodetic coordinates of a point of interest. In this case, the point of interest is the
Matterhorn.

lla = [45.976 7.658 4531]; % [lat lon alt]

Transform the geodetic coordinates to local ENU coordinates using flat earth approximation.

xyzENU = lla2enu(lla,lla0,'flat')

xyzENU = 1×3
103 ×

   -7.1244   -4.5572    2.8580

Input Arguments
lla — Geodetic coordinates
three-element row vector | n-by-3 matrix
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Geodetic coordinates, specified as a three-element row vector or an n-by-3 matrix. n is the number of
points to transform. Specify each point in the form [lat lon alt]. lat and lon specify the latitude
and longitude respectively in degrees. alt specifies the altitude in meters.
Example: [45.976 7.658 4531]
Data Types: double

lla0 — Origin of local ENU system in geodetic coordinates
three-element row vector | n-by-3 matrix

Origin of the local ENU system in the geodetic coordinates, specified as a three-element row vector
or an n-by-3 matrix. n is the number of origin points. Specify each point in the form [lat0 lon0
alt0]. lat0 and lon0 specify the latitude and longitude of the origin, respectively, in degrees. alt0
specifies the altitude of the origin in meters.
Example: [46.017 7.750 1673]
Data Types: double

method — Transformation method
'flat' | 'ellipsoid'

Transformation method, specified as 'flat' or 'ellipsoid'. This argument specifies whether the
function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.
• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and

longitude. This method has higher accuracy over small distances from the initial geodetic latitude
and longitude, and closer to the equator. The method calculates a longitude with higher accuracy
when the variation in latitude is smaller.

• Latitude values of +90 and -90 degree may return unexpected values because of singularity at the
poles.

Data Types: char | string

Output Arguments
xyzENU — Local ENU Cartesian coordinates
three-element row vector | n-by-3 matrix

Local ENU Cartesian coordinates, returned as a three-element row vector or an n-by-3 matrix. n is
the number of transformed points. Each point is in the form [xEast yNorth zUp]. xEast, yNorth,
and zUp are the respective x-, y-, and z-coordinates, in meters, of the point in the local ENU system.
Data Types: double

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
enu2lla | lla2ned | ned2lla
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lla2ned
Transform geodetic coordinates to local north-east-down coordinates

Syntax
xyzNED = lla2ned(lla,lla0,method)

Description
xyzNED = lla2ned(lla,lla0,method) transforms the geodetic coordinates lla to local north-
east-down (NED) Cartesian coordinates xyzNED. Specify the origin of the local NED system as the
geodetic coordinates lla0.

Note

• The latitude and longitude values in the geodetic coordinate system use the World Geodetic
System of 1984 (WGS84) standard.

• Specify altitude as height in meters above the WGS84 reference ellipsoid.

Examples

Transform Geodetic Coordinates to NED Coordinates

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]

Specify the geodetic coordinates of a point of interest. In this case, the point of interest is the
Matterhorn.

lla = [45.976 7.658 4531]; % [lat lon alt]

Transform the geodetic coordinates to local NED coordinates using flat earth approximation.

xyzNED = lla2ned(lla,lla0,'flat')

xyzNED = 1×3
103 ×

   -4.5572   -7.1244   -2.8580

Input Arguments
lla — Geodetic coordinates
three-element row vector | n-by-3 matrix
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Geodetic coordinates, specified as a three-element row vector or an n-by-3 matrix. n is the number of
points to transform. Specify each point in the form [lat lon alt]. lat and lon specify the latitude
and longitude respectively in degrees. alt specifies the altitude in meters.
Example: [45.976 7.658 4531]
Data Types: double

lla0 — Origin of local NED system in geodetic coordinates
three-element row vector | n-by-3 matrix

Origin of the local NED system with the geodetic coordinates, specified as a three-element row vector
or an n-by-3 matrix. n is the number of origin points. Specify each point in the form [lat0 lon0
alt0]. lat0 and lon0 specify the latitude and longitude respectively in degrees. alt0 specifies the
altitude in meters.
Example: [46.017 7.750 1673]
Data Types: double

method — Transformation method
'flat' | 'ellipsoid'

Transformation method, specified as 'flat' or 'ellipsoid'. This argument specifies whether the
function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.
• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and

longitude. This method has higher accuracy over small distances from the initial geodetic latitude
and longitude, and closer to the equator. The method calculates a longitude with higher accuracy
when the variation in latitude is smaller.

• Latitude values of +90 and -90 degree may return unexpected values because of singularity at the
poles.

Data Types: char | string

Output Arguments
xyzNED — Local NED Cartesian coordinates
three-element row vector | n-by-3 matrix

Local NED Cartesian coordinates, returned as a three-element row vector or an n-by-3 matrix. n is
the number of transformed points. Each point is in the form [xNorth yEast zDown]. xNorth,
yEast, and zDown are the respective x-, y-, and z-coordinates, in meters, of the point in the local NED
system.
Data Types: double

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
enu2lla | lla2enu | ned2lla
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lookangles
Satellite look angles from receiver and satellite positions

Syntax
[az,el,vis] = lookangles(recPos,satPos)
[az,el,vis] = lookangles(recPos,satPos,maskAngle)

Description
[az,el,vis] = lookangles(recPos,satPos) returns the look angles and visibilities of satellite
positions for a given receiver position. The azimuth az and elevation el are the look angles in
degrees in the Earth-centered Earth-fixed (ECEF) coordinate system. The visibility of the satellites
vis is a logical array that the function calculates using the default receiver mask angle of 10
degrees.

[az,el,vis] = lookangles(recPos,satPos,maskAngle) returns the look angles and
visibilities of satellites with a specified mask angle maskAngle in degrees.

Examples

Get Satellite Look Angles for Receiver Position

Use the lookangles function to get the azimuth and elevation angles of satellites for given satellite
and receiver positions. Specify a mask angle of 5 degrees. Get the satellite positions using the
gnssconstellation function.

Specify a receiver position in geodetic coordinates (latitude, longitude, altitude).

recPos = [42 -71 50];

Get the satellite positions for the current time.

t = datetime('now');
gpsSatPos = gnssconstellation(t);

Specify a mask angle of 5 degrees.

maskAngle = 5;

Get the azimuth and elevation look angles for the satellite positions. The vis output indicates which
satellites are visible. Get the total using nnz.

[az,el,vis] = lookangles(recPos,gpsSatPos,maskAngle);
fprintf('%d satellites visible at %s.\n',nnz(vis),t);

8 satellites visible at 04-Mar-2023 01:25:04.
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Input Arguments
recPos — Receiver position
three-element vector of the form [lat lon alt]

Receiver position in geodetic coordinates, specified as a three-element vector of the form [latitude
longitude altitude]
Data Types: single | double

satPos — Satellite positions
N-by-3 matrix of scalars

Satellite positions in the Earth-centered Earth-fixed (ECEF) coordinate system in meters, specified as
an N-by-3 matrix of scalars. N is the number of satellites in the constellation.
Data Types: single | double

maskAngle — Elevation mask angle
positive scalar

Elevation mask angle of the receiver, specified as a positive scalar in degrees.
Data Types: single | double

Output Arguments
az — Azimuth angles for visible satellite positions
n-element vector of angles

Azimuth angles for visible satellite positions, returned as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Azimuth angles are measured in degrees, clockwise-
positive from the north direction looking down.
Example: [25 45 182 356]
Data Types: double

el — Elevation angles for visible satellite positions
n-element vector of angles

Elevation angles for visible satellite positions, returned as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Elevation angles are measured from the horizon line
with 90 degrees being directly up.
Example: [45 90 27 74]
Data Types: double

vis — Satellite visibility
n-element logical array

Satellite visibility, returned as an n-element logical array. Each element indicates whether the
satellite position given by az and el is visible.
Data Types: logical
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
gnssSensor | gpsSensor | imuSensor

Functions
skyplot | gnssconstellation | pseudoranges | receiverposition
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ned2lla
Transform local north-east-down coordinates to geodetic coordinates

Syntax
lla = ned2lla(xyzNED,lla0,method)

Description
lla = ned2lla(xyzNED,lla0,method) transforms the local north-east-down (NED) Cartesian
coordinates xyzNED to geodetic coordinates lla. Specify the origin of the local NED system as the
geodetic coordinates lla0.

Note

• The latitude and longitude values in the geodetic coordinate system use the World Geodetic
System of 1984 (WGS84) standard.

• Specify altitude as height in meters above the WGS84 reference ellipsoid.

Examples

Transform NED Coordinates to Geodetic Coordinates

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]

Specify the NED coordinates of a point of interest, in meters. In this case, the point of interest is the
Matterhorn.

xyzNED = [-4556.3 -7134.8 -2852.4]; % [xNorth yEast zDown]

Transform the local NED coordinates to geodetic coordinates using flat earth approximation.

lla = ned2lla(xyzNED,lla0,'flat')

lla = 1×3
103 ×

    0.0460    0.0077    4.5254

Input Arguments
xyzNED — Local NED Cartesian coordinates
three-element row vector | n-by-3 matrix

 ned2lla

1-115



Local NED Cartesian coordinates, specified as a three-element row vector or an n-by-3 matrix. n is
the number of points to transform. Specify each point in the form [xNorth yEast zDown]. xNorth,
yEast, and zDown are the respective x-, y-, and z-coordinates, in meters, of the point in the local NED
system.
Example: [-4556.3 -7134.8 -2852.4]
Data Types: double

lla0 — Origin of local NED system in geodetic coordinates
three-element row vector | n-by-3 matrix

Origin of the local NED system with the geodetic coordinates, specified as a three-element row vector
or an n-by-3 matrix. n is the number of origin points. Specify each point in the form [lat0 lon0
alt0]. lat0 and lon0 specify the latitude and longitude respectively in degrees. alt0 specifies the
altitude in meters.
Example: [46.017 7.750 1673]
Data Types: double

method — Transformation method
'flat' | 'ellipsoid'

Transformation method, specified as 'flat' or 'ellipsoid'. This argument specifies whether the
function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.
• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and

longitude. This method has higher accuracy over small distances from the initial geodetic latitude
and longitude, and closer to the equator. The method calculates a longitude with higher accuracy
when the variation in latitude is smaller.

• Latitude values of +90 and -90 degree may return unexpected values because of singularity at the
poles.

Data Types: char | string

Output Arguments
lla — Geodetic coordinates
three-element row vector | n-by-3 matrix

Geodetic coordinates, returned as a three-element row vector or an n-by-3 matrix. n is the number of
transformed points. Each point is in the form [lat lon alt]. lat and lon specify the latitude and
longitude, respectively, in degrees. alt specifies the altitude in meters.
Data Types: double

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
enu2lla | lla2enu | lla2ned
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copy
Create copy of path object

Syntax
path2 = copy(path1)

Description
path2 = copy(path1) creates a copy of the path object, path2, from the path object, path1.

Examples

Create Copy of navPath Object

Create a navPath object.

path = navPath

path = 
  navPath with properties:

      StateSpace: [1x1 stateSpaceSE2]
          States: [0x3 double]
       NumStates: 0
    MaxNumStates: Inf

Create copy of navPath object.

pathNew = copy(path)

pathNew = 
  navPath with properties:

      StateSpace: [1x1 stateSpaceSE2]
          States: [0x3 double]
       NumStates: 0
    MaxNumStates: Inf

Input Arguments
path1 — path object
navPath object

Path object, specified as a navPath object.
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Output Arguments
path2 — path object
navPath object

Path object, returned as a navPath object.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navPath

Functions
append | interpolate | pathLength
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magcal
Magnetometer calibration coefficients

Syntax
[A,b,expmfs] = magcal(D)
[A,b,expmfs] = magcal(D,fitkind)

Description
[A,b,expmfs] = magcal(D) returns the coefficients needed to correct uncalibrated
magnetometer data D.

To produce the calibrated magnetometer data C, use equation C = (D-b)*A. The calibrated data C
lies on a sphere of radius expmfs.

[A,b,expmfs] = magcal(D,fitkind) constrains the matrix A to be the type specified by
fitkind. Use this syntax when only the soft- or hard-iron effect needs to be corrected.

Examples

Correct Data Lying on Ellipsoid

Generate uncalibrated magnetometer data lying on an ellipsoid.

c = [-50; 20; 100]; % ellipsoid center
r = [30; 20; 50]; % semiaxis radii

[x,y,z] = ellipsoid(c(1),c(2),c(3),r(1),r(2),r(3),20);
D = [x(:),y(:),z(:)];

Correct the magnetometer data so that it lies on a sphere. The option for the calibration is set by
default to 'auto'.

[A,b,expmfs] = magcal(D); % calibration coefficients
expmfs % Dipaly expected  magnetic field strength in uT

expmfs = 31.0723

C = (D-b)*A; % calibrated data

Visualize the uncalibrated and calibrated magnetometer data.

figure(1)
plot3(x(:),y(:),z(:),'LineStyle','none','Marker','X','MarkerSize',8)
hold on
grid(gca,'on')
plot3(C(:,1),C(:,2),C(:,3),'LineStyle','none','Marker', ...
            'o','MarkerSize',8,'MarkerFaceColor','r') 
axis equal
xlabel('uT')
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ylabel('uT')
zlabel('uT')
legend('Uncalibrated Samples', 'Calibrated Samples','Location', 'southoutside')
title("Uncalibrated vs Calibrated" + newline + "Magnetometer Measurements")
hold off

Input Arguments
D — Raw magnetometer data
N-by-3 matrix (default)

Input matrix of raw magnetometer data, specified as a N-by-3 matrix. Each column of the matrix
corresponds to the magnetometer measurements in the first, second and third axes, respectively.
Each row of the matrix corresponds to a single three-axis measurement.
Data Types: single | double

fitkind — Matrix output type
'auto' (default) | 'eye' | 'diag' | 'sym'

Matrix type for output A. The matrix type of A can be constrained to:

• 'eye' – identity matrix
• 'diag' – diagonal
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• 'sym' – symmetric
• 'auto' – whichever of the previous options gives the best fit

Output Arguments
A — Correction matrix for soft-iron effect
3-by-3 matrix

Correction matrix for the soft-iron effect, returned as a 3-by-3 matrix.

b — Correction vector for hard-iron effect
3-by-1 vector

Correction vector for the hard-iron effect, returned as a 3-by-1 array.

expmfs — Expected magnetic field strength
scalar

Expected magnetic filed strength, returned as a scalar.

More About
Soft- and Hard-Iron Effects

Because a magnetometer usually rotates through a full range of 3-D rotation, the ideal measurements
from a magnetometer should form a perfect sphere centered at the origin if the magnetic field is
unperturbed. However, due to distorting magnetic fields from the sensor circuit board and the
surrounding environment, the spherical magnetic measurements can be perturbed. In general, two
effects exist.

1 The soft-iron effect is described as the distortion of the ellipsoid from a sphere and the tilt of the
ellipsoid, as shown in the left figure. This effect is caused by disturbances that influence the
magnetic field but may not generate their own magnetic field. For example, metals such as nickel
and iron can cause this kind of distortion.

2 The hard-iron effect is described as the offset of the ellipsoid center from the origin. This effect is
produced by materials that exhibit a constant, additive field to the earth's magnetic field. This
constant additive offset is in addition to the soft-iron effect as shown in the figure on the right.

The underlying algorithm in magcal determines the best-fit ellipsoid to the raw sensor readings and
attempts to "invert" the ellipsoid to produce a sphere. The goal is to generate a correction matrix A to
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account for the soft-iron effect and a vector b to account for the hard-iron effect. The three output
options, 'eye', 'diag' and 'sym' correspond to three parameter-solving algorithms, and the 'auto' option
chooses among these three options to give the best fit.

Version History
Introduced in R2019a

R2022b: magcal supports code generation

The magcal supports C/C++ code generation.

References
[1] Ozyagcilar, T. "Calibrating an eCompass in the Presence of Hard and Soft-iron Interference."

Freescale Semiconductor Ltd. 1992, pp. 1-17.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
magparams

Objects
imuSensor
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mapClutter
Generate map with randomly scattered obstacles

Syntax
map = mapClutter
map = mapClutter(numObst)
map = mapClutter(numObst,shapes)
map = mapClutter( ___ ,Name,Value)

Description
map = mapClutter generates a 2-D occupancy map as a binaryOccupancyMap object map, with a
width and height of 50 meters and a resolution of 5 cells per meter. The map contains 20 randomly
distributed obstacles of types Box and Circle. Generated obstacles have random sizes.

map = mapClutter(numObst) generates a 2-D occupancy map, of the default size and resolution,
with a specified number of randomly distributed obstacles, numObst, of default shapes.

map = mapClutter(numObst,shapes) generates a 2-D occupancy map, of the default size and
resolution, with a specified number of obstacles, numObst, of specified shapes, shapes.

map = mapClutter( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any combination of input arguments from previous syntaxes. For example,
'MapSize',[50 30] generates a randomly distributed obstacle map with a width of 50 meters and
height of 30 meters.

Examples

Generate Randomly Distributed Obstacle Map

Generate a 2-D occupancy map with ten randomly scattered obstacles of types Box, Circle, and
Plus. Specify the size of the map as 50 meters wide and 30 meters high with a resolution of 5 cells
per meters.

map = mapClutter(10,{'Box','Plus','Circle'},'MapSize',[50 30],'MapResolution',5);

Visualize the generated obstacle map.

show(map)
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Input Arguments
numObst — Number of obstacles
20 (default) | positive integer

Number of obstacles, specified as a positive integer.
Data Types: single | double

shapes — Obstacle shapes
{'Box','Circle'} (default) | string scalar | character vector | string array | cell array of character
vectors

Obstacle shapes, specified as a string scalar, character vector, string array, or cell array of character
vectors. The only valid shapes are Box, Circle, and Plus.

When you specify a string scalar or a character vector, the function generates a map with obstacles of
only the specified shape.
Example: "Box"
Example: 'Box'

When you specify a string array or a cell array of character vectors, the function generates a map
with obstacles of each specified shape.
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Example: ["Box","Plus"]
Example: {'Box','Plus','Circle'}
Data Types: cell | string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MapSize',[50 40] generates a randomly distributed obstacle map with a width of 50
meters and height of 40 meters.

MapSize — Width and height of generated map
[50 50] (default) | two-element vector of positive real finite numbers

Width and height of the generated map, specified as the comma-separated pair consisting of
'MapSize' and a two-element vector of positive real finite numbers of the form [Width,Height].
Specify both values in meters.
Example: 'MapSize',[50 30]
Data Types: single | double

MapResolution — Resolution of generated map
5 (default) | positive real scalar

Resolution of the generated map, specified as the comma-separated pair consisting of
'MapResolution' and a positive real scalar in cells per meter.
Example: 'MapResolution',10
Data Types: single | double

Output Arguments
map — Map with randomly scattered obstacles
binaryOccupancyMap object

A map with randomly scattered obstacles, returned as a binaryOccupancyMap object.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
mapMaze | binaryOccupancyMap | validatorOccupancyMap
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mapMaze
Generate random 2-D maze map

Syntax
map = mapMaze
map = mapMaze(passageWidth)
map = mapMaze(passageWidth,wallThickness)
map = mapMaze( ___ ,Name,Value)

Description
map = mapMaze generates a random 2-D maze map, map, as a binaryOccupancyMap object with a
width and height of 50 meters and a resolution of 5 cells per meter. The maze map contains straight
passages, turns, and T-junctions with a passage width of 4 grid cells and wall thickness of 1 grid cell.

map = mapMaze(passageWidth) generates a binaryOccupancyMap of a maze of the default size
and resolution with a specified passage width, passageWidth, in number of grid cells.

map = mapMaze(passageWidth,wallThickness) specifies a wall thickness, wallThickness, in
number of grid cells.

map = mapMaze( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any combination of input arguments from previous syntaxes. For example,
'MapSize',[50 30] generates a random maze map with a width of 50 meters and height of 30
meters.

Examples

Generate Random Maze Map

Generate a random 2-D maze map with a passage width of 5 grid cells and wall thickness of 2 grid
cells. Specify the size of the map as 50 meters wide and 30 meters high with a resolution of 5 cells
per meter.

map = mapMaze(5,2,'MapSize',[50 30],'MapResolution',5);

Visualize the generated obstacle map.

show(map)
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Input Arguments
passageWidth — Width of maze passage
4 (default) | positive integer

Width of maze passage, specified as a positive integer in number of grid cells.
Data Types: single | double

wallThickness — Thickness of maze wall
1 (default) | positive integer

Thickness of maze wall, specified as a positive integer in number of grid cells.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MapSize',[50 40] generates a randomly distributed obstacle map with a width of 50
meters and height of 40 meters.
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MapSize — Width and height of generated map
[50 50] (default) | two-element vector of positive real finite numbers

Width and height of the generated map, specified as the comma-separated pair consisting of
'MapSize' and a two-element vector of positive real finite numbers of the form [Width Height].
Specify both values in meters.
Example: 'MapSize',[50 30]
Data Types: single | double

MapResolution — Resolution of generated map
5 (default) | positive real scalar

Resolution of the generated map, specified as the comma-separated pair consisting of
'MapResolution' and a positive real scalar in cells per meter.
Example: 'MapResolution',10
Data Types: single | double

Output Arguments
map — Random maze map
binaryOccupancyMap object

Random maze map, returned as a binaryOccupancyMap object.

Tips
• when the number of grid cells along map width could not accommodate given maze parameters,

ceil(MapWidth*MapResolution) must be greater than or equal to (passageWidth
+2*wallThickness).

• when the number of grid cells along map height could not accommodate given maze parameters,
ceil(MapHeight*MapResolution) must be greater than or equal to (passageWidth
+2*wallThickness).

Version History
Introduced in R2021a

See Also
mapClutter | binaryOccupancyMap | validatorOccupancyMap
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matchScans
Estimate pose between two laser scans

Syntax
pose = matchScans(currScan,refScan)
pose = matchScans(currRanges,currAngles,refRanges,refAngles)
[pose,stats] = matchScans( ___ )
[ ___ ] = matchScans( ___ ,Name,Value)

Description
pose = matchScans(currScan,refScan) finds the relative pose between a reference
lidarScan and a current lidarScan object using the normal distributions transform (NDT).

pose = matchScans(currRanges,currAngles,refRanges,refAngles) finds the relative pose
between two laser scans specified as ranges and angles.

[pose,stats] = matchScans( ___ ) returns additional statistics about the scan match result
using the previous input arguments.

[ ___ ] = matchScans( ___ ,Name,Value) specifies additional options specified by one or more
Name,Value pair arguments.

Examples

Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300); 
refScan = lidarScan(refRanges,refAngles);

Using the transformScan (Robotics System Toolbox) function, generate a second lidar scan at an
x,y offset of (0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan into the frame
of the first scan using the relative pose difference. Plot both the original scans and the aligned scans.

currScan2 = transformScan(currScan,pose);

subplot(2,1,1);
hold on
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plot(currScan)
plot(refScan)
title('Original Scans')
hold off

subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off

Match Laser Scans

This example uses the 'fminunc' solver algorithm to perform scan matching. This solver algorithm
requires an Optimization Toolbox™ license.

Specify a reference laser scan as ranges and angles.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);

Using the transformScan (Robotics System Toolbox) function, generate a second laser scan at an
x,y offset of (0.5,0.2).
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[currRanges,currAngles] = transformScan(refRanges,refAngles,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between them.

pose = matchScans(currRanges,currAngles,refRanges,refAngles,'SolverAlgorithm','fminunc');

Improve the estimate by giving an initial pose estimate.

pose = matchScans(currRanges,currAngles,refRanges,refAngles,...
                  'SolverAlgorithm','fminunc','InitialPose',[-0.4 -0.1 0]);

Use the transformScan function to align the scans by transforming the second scan into the frame
of the first scan using the relative pose difference. Plot both the original scans and the aligned scans.

[currRanges2,currAngles2] = transformScan(currRanges,currAngles,pose);

[x1, y1] = pol2cart(refAngles,refRanges);
[x2, y2] = pol2cart(currAngles,currRanges);
[x3, y3] = pol2cart(currAngles2,currRanges2);

subplot(1,2,1)
plot(x1,y1,'o',x2,y2,'*r')
title('Original Scans')
subplot(1,2,2)
plot(x1,y1,'o',x3,y3,'*r')
title('Aligned Scans')
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Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

currRanges — Current laser scan ranges
vector in meters

Current laser scan ranges, specified as a vector. Ranges are given as distances to objects measured
from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

currAngles — Current laser scan angles
vector in radians

Current laser scan angles, specified as a vector in radians. Angles are given as the orientations of the
corresponding range measurements.

refRanges — Reference laser scan ranges
vector in meters

Reference laser scan ranges, specified as a vector in meters. Ranges are given as distances to objects
measured from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

refAngles — Reference laser scan angles
vector in radians

Reference laser scan angles, specified as a vector in radians. Angles are given as the orientations of
the corresponding range measurements.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "InitialPose",[1 1 pi/2]

SolverAlgorithm — Optimization algorithm
"trust-region" (default) | "fminunc"
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Optimization algorithm, specified as either "trust-region" or "fminunc". Using "fminunc"
requires an Optimization Toolbox™ license.

InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

Initial guess of the current pose relative to the reference laser scan, specified as the comma-
separated pair consisting of "InitialPose" and an [x y theta] vector. [x y] is the translation
in meters and theta is the rotation in radians.

CellSize — Length of cell side
1 (default) | numeric scalar

Length of a cell side in meters, specified as the comma-separated pair consisting of "CellSize" and
a numeric scalar. matchScans uses the cell size to discretize the space for the NDT algorithm.

Tuning the cell size is important for proper use of the NDT algorithm. The optimal cell size depends
on the input scans and the environment of your robot. Larger cell sizes can lead to less accurate
matching with poorly sampled areas. Smaller cell sizes require more memory and less variation
between subsequent scans. Sensor noise influences the algorithm with smaller cell sizes as well.
Choosing a proper cell size depends on the scale of your environment and the input data.

MaxIterations — Maximum number of iterations
400 (default) | scalar integer

Maximum number of iterations, specified as the comma-separated pair consisting of
"MaxIterations" and a scalar integer. A larger number of iterations results in more accurate pose
estimates, but at the expense of longer execution time.

ScoreTolerance — Lower bounds on the change in NDT score
1e-6 (default) | numeric scalar

Lower bound on the change in NDT score, specified as the comma-separated pair consisting of
"ScoreTolerance" and a numeric scalar. The NDT score is stored in the Score field of the output
stats structure. Between iterations, if the score changes by less than this tolerance, the algorithm
converges to a solution. A smaller tolerance results in more accurate pose estimates, but requires a
longer execution time.

Output Arguments
pose — Pose of current scan
[x y theta]

Pose of current scan relative to the reference scan, returned as [x y theta], where [x y] is the
translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following fields:

• Score — Numeric scalar representing the NDT score while performing scan matching. This score
is an estimate of the likelihood that the transformed current scan matches the reference scan.
Score is always nonnegative. Larger scores indicate a better match.
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• Hessian — 3-by-3 matrix representing the Hessian of the NDT cost function at the given pose
solution. The Hessian is used as an indicator of the uncertainty associated with the pose estimate.

Version History
Introduced in R2019b

References
[1] Biber, P., and W. Strasser. "The Normal Distributions Transform: A New Approach to Laser Scan

Matching." Intelligent Robots and Systems Proceedings. 2003.

[2] Magnusson, Martin. "The Three-Dimensional Normal-Distributions Transform -- an Efficient
Representation for Registration, Surface Analysis, and Loop Detection." PhD Dissertation.
Örebro University, School of Science and Technology, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is supported for the default SolverAlgorithm, "trust-region". You cannot use
the "fminunc" algorithm in code generation.

See Also
Functions
matchScansGrid | matchScansLine | transformScan | lidarScan

Classes
occupancyMap | monteCarloLocalization

Topics
“Estimate Robot Pose with Scan Matching”
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matchScansGrid
Estimate pose between two lidar scans using grid-based search

Syntax
pose = matchScansGrid(currScan,refScan)
[pose,stats] = matchScansGrid( ___ )
[ ___ ] = matchScansGrid( ___ ,Name,Value)

Description
pose = matchScansGrid(currScan,refScan) finds the relative pose between a reference
lidarScan and a current lidarScan object using a grid-based search. matchScansGrid converts
lidar scan pairs into probabilistic grids and finds the pose between the two scans by correlating their
grids. The function uses a branch-and-bound strategy to speed up computation over large discretized
search windows.

[pose,stats] = matchScansGrid( ___ ) returns additional statistics about the scan match
result using the previous input arguments.

[ ___ ] = matchScansGrid( ___ ,Name,Value) specifies options using one or more Name,Value
pair arguments. For example, 'InitialPose',[1 1 pi/2] specifies an initial pose estimate for
scan matching.

Examples

Match Scans Using Grid-Based Search

Perform scan matching using a grid-based search to estimate the pose between two laser scans.
Generate a probabilistic grid from the scans and estimate the pose difference from those grids.

Load the laser scan data. These two scans are from an actual lidar sensor with changes in the robot
pose and are stored as lidarScan objects.

load laserScans.mat scan scan2
plot(scan)
hold on
plot(scan2)
hold off
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Use matchScansGrid to estimate the pose between the two scans.

relPose = matchScansGrid(scan2,scan);

Using the estimated pose, transform the current scan back to the reference scan. The scans overlap
closely when you plot them together.

scan2Tformed = transformScan(scan2,relPose);

plot(scan)
hold on
plot(scan2Tformed)
hold off
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Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'InitialPose',[1 1 pi/2]
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InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

Initial guess of the current pose relative to the reference laser scan, specified as the comma-
separated pair consisting of 'InitialPose' and an [x y theta] vector. [x y] is the translation
in meters and theta is the rotation in radians.

Resolution — Grid cells per meter
20 (default) | positive integer

Grid cells per meter, specified as the comma-separated pair consisting of 'Resolution' and a
positive integer. The accuracy of the scan matching result is accurate up to the grid cell size.

MaxRange — Maximum range of lidar sensor
8 (default) | positive scalar

Maximum range of lidar sensor, specified as the comma-separated pair consisting of 'MaxRange'
and a positive scalar.

TranslationSearchRange — Search range for translation
[4 4] (default) | [x y] vector

Search range for translation, specified as the comma-separated pair consisting of
'TranslationSearchRange' and an [x y] vector. These values define the search window in
meters around the initial translation estimate given in InitialPose. If the InitialPose is given as
[x0 y0], then the search window coordinates are [x0-x x0+x] and [y0-y y0+y]. This parameter
is used only when InitialPose is specified.

RotationSearchRange — Search range for rotation
pi/4 (default) | positive scalar

Search range for rotation, specified as the comma-separated pair consisting of
'RotationSearchRange' and a positive scalar. This value defines the search window in radians
around the initial rotation estimate given in InitialPose. If the InitialPose rotation is given as
th0, then the search window is [th0-a th0+a], where a is the rotation search range. This
parameter is used only when InitialPose is specified.

Output Arguments
pose — Pose of current scan
[x y theta] vector

Pose of current scan relative to the reference scan, returned as an [x y theta] vector, where [x
y] is the translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following field:

• Score — Numeric scalar representing the score while performing scan matching. This score is an
estimate of the likelihood that the transformed current scan matches the reference scan. Score is
always nonnegative. Larger scores indicate a better match, but values vary depending on the lidar
data used.
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• Covariance — Estimated covariance representing the confidence of the computed relative pose,
returned as a 3-by-3 matrix.

Version History
Introduced in R2019b

References
[1] Hess, Wolfgang, Damon Kohler, Holger Rapp, and Daniel Andor. "Real-Time Loop Closure in 2D

LIDAR SLAM." 2016 IEEE International Conference on Robotics and Automation (ICRA).
2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
matchScans | matchScansLine | lidarScan | transformScan

Classes
lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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matchScansLine
Estimate pose between two laser scans using line features

Syntax
relpose = matchScansLine(currScan,refScan,initialRelPose)
[relpose,stats] = matchScansLine( ___ )
[relpose,stats,debugInfo] = matchScansLine( ___ )
[ ___ ] = matchScansLine( ___ ,Name,Value)

Description
relpose = matchScansLine(currScan,refScan,initialRelPose) estimates the relative
pose between two scans based on matched line features identified in each scan. Specify an initial
guess on the relative pose, initialRelPose.

[relpose,stats] = matchScansLine( ___ ) returns additional information about the covariance
and exit condition in stats as a structure using the previous inputs.

[relpose,stats,debugInfo] = matchScansLine( ___ ) returns additional debugging info,
debugInfo, from the line-based scan matching result.

[ ___ ] = matchScansLine( ___ ,Name,Value) specifies options using one or more Name,Value
pair arguments.

Examples

Estimate Pose of Scans with Line Features

This example shows how to use the matchScansLine function to estimate the relative pose between
lidar scans given an initial estimate. The identified line features are visualized to show how the scan-
matching algorithm associates features between scans.

Load a pair of lidar scans. The .mat file also contains an initial guess of the relative pose difference,
initGuess, which could be based on odometry or other sensor data.

load tb3_scanPair.mat
plot(s1)
hold on
plot(s2)
hold off
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Set parameters for line feature extraction and association. The noise of the lidar data determines the
smoothness threshold, which defines when a line break occurs for a specific line feature. Increase
this value for more noisy lidar data. The compatibility scale determines when features are considered
matches. Increase this value for looser restrictions on line feature parameters.

smoothnessThresh = 0.2;
compatibilityScale = 0.002;

Call matchScansLine with the given initial guess and other parameters specified as name-value
pairs. The function calculates line features for each scan, attempts to match them, and uses an
overall estimate to get the difference in pose.

[relPose, stats, debugInfo] = matchScansLine(s2, s1, initGuess, ...
                                       'SmoothnessThreshold', smoothnessThresh, ...
                                       'CompatibilityScale', compatibilityScale);

After matching the scans, the debugInfo output gives you information about the detected line
feature parameters, [rho alpha], and the hypothesis of which features match between scans.

debugInfo.MatchHypothesis states that the first, second, and sixth line feature in s1 match the
fifth, second, and fourth features in s2.

debugInfo.MatchHypothesis                                  

ans = 1×6

     5     2     0     0     0     4
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The provided helper function plots these two scans and the features extracted with labels. s2 is
transformed to be in the same frame based on the initial guess for relative pose.

exampleHelperShowLineFeaturesInScan(s1, s2, debugInfo, initGuess);

Use the estimated relative pose from matchScansLine to transform s2. Then, plot both scans to
show that the relative pose difference is accurate and the scans overlay to show the same
environment.

s2t = transformScan(s2,relPose);
clf
plot(s1)
hold on
plot(s2t)
hold off
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Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScanobject.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

initialRelPose — Initial guess of relative pose
[x y theta]

Initial guess of the current pose relative to the reference laser scan frame, specified an [x y
theta] vector. [x y] is the translation in meters and theta is the rotation in radians.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "LineMergeThreshold",[0.10 0.2]

SmoothnessThreshold — Threshold to detect line break points in scan
0.1 (default) | scalar

Threshold to detect line break points in scan, specified as a scalar. Smoothness is defined by calling
diff(diff(scanData)) and assumes equally spaced scan angles. Scan points corresponding to
smoothness values higher than this threshold are considered break points. For lidar scan data with a
higher noise level, increase this threshold.

MinPointsPerLine — Minimum number of scan points in each line feature
10 (default) | positive integer greater than 3

Minimum number of scan points in each line feature, specified as a positive integer greater than 3.

A line feature cannot be identified from a set of scan points if the number of points in that set is
below this threshold. When the lidar scan data is noisy, setting this property too small may result in
low-quality line features being identified and skew the matching result. On the other hand, some key
line features may be missed if this number is set too large.

LineMergeThreshold — Threshold on line parameters to merge line features
[0.05 0.1] (default) | two-element vector [rho alpha]

Threshold on line parameters to merge line features, specified as a two-element vector [rho
alpha]. A line is defined by two parameters:

• rho –– Distance from the origin to the line along a vector perpendicular to the line, specified in
meters.

• alpha –– Angle between the x-axis and the rho vector, specified in radians.

If the difference between these parameters for two line features is below the given threshold, the line
features are merged.

MinCornerPromenance — Lower bound on prominence value to detect a corner
0.05 (default) | positive scalar

Lower bound on prominence value to detect a corner, specified as a positive scalar.

Prominence measures how much a local extrema stands out in the lidar data. Only values higher than
this lower bound are considered a corner. Corners help identify line features, but are not part of the
feature itself. For noisy lidar scan data, increase this lower bound.

CompatibilityScale — Scale used to adjust the compatibility thresholds for feature
association
0.0005 (default) | positive scalar

Scale used to adjust the compatibility thresholds for feature association, specified as a positive scalar.
A lower scale means tighter compatibility threshold for associating features. If no features are found

1 Functions

1-146



in lidar data with obvious line features, increase this value. For invalid feature matches, reduce this
value.

Output Arguments
relpose — Pose of current scan
[x y theta]

Pose of current scan relative to the reference scan, returned as [x y theta], where [x y] is the
translation in meters and theta is the rotation in radians.

stats — Scan matching information
structure

Scan matching information, returned as a structure with the following fields:

• Covariance –– 3-by-3 matrix representing the covariance of the relative pose estimation. The
matScansLine function does not provide covariance between the (x,y) and the theta
components of the relative pose. Therefore, the matrix follows the pattern: [Cxx, Cxy 0; Cyx
Cyy 0; 0 0 Ctheta].

• ExitFlag –– Scalar value indicating the exit condition of the solver:

• 0 –– No error.
• 1 –– Insufficient number of line features (< 2) are found in one or both of the scans. Consider

using different scans with more line features.
• 2 –– Insufficient number of line feature matches are identified. This may indicate the

initialRelPose is invalid or scans are too far apart.

debugInfo — Debugging information for line-based scan matching result
structure

Debugging information for line-based scan matching result, returned as a structure with the following
fields:

• ReferenceFeatures –– Line features extracted from the reference scan as an n-by-2 matrix.
Each line feature is represented as [rho alpha] for the parametric equation, rho = x∙cos(alpha)
+ y∙sin(alpha).

• ReferenceScanMask –– Mask indicating which points in the reference scan are used for each
line feature as an n-by-p matrix. Each row corresponds to a row in ReferenceFeatures and
contains zeros and ones for each point in refScan.

• CurrentFeatures –– Line features extracted from the current scan as an n-by-2 matrix. Each
line feature is represented as [rho alpha] for the parametric equation, rho = x∙cos(alpha) +
y∙sin(alpha).

• CurrentScanMask –– Mask indicating which points in the current scan are used for each line
feature as an n-by-p matrix. Each row corresponds to a row in ReferenceFeatures and contains
zeros and ones for each point in refScan.

• MatchHypothesis –– Best line feature matching hypothesis as an n element vector, where n is
the number of line features in CurrentFeatures. Each element represents the corresponding
feature in ReferenceFeaturesand gives the index of the matched feature in
ReferenceFeatures is an index match the
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• MatchValue –– Scalar value indicating a score for each MatchHypothesis. A lower value is
considered a better match. If two elements of MatchHypothesis have the same index, the
feature with a lower score is used.

Version History
Introduced in R2020a

References
[1] Neira, J., and J.d. Tardos. “Data Association in Stochastic Mapping Using the Joint Compatibility

Test.” IEEE Transactions on Robotics and Automation 17, no. 6 (2001): 890–97. https://
doi.org/10.1109/70.976019.

[2] Shen, Xiaotong, Emilio Frazzoli, Daniela Rus, and Marcelo H. Ang. “Fast Joint Compatibility
Branch and Bound for Feature Cloud Matching.” 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016. https://doi.org/10.1109/iros.2016.7759281.

See Also
matchScans | matchScansGrid | lidarSLAM

Topics
“Estimate Robot Pose with Scan Matching”
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

1 Functions

1-148



optimizePath
Optimize path while maintaining safe distance from obstacle

Syntax
optPath = optimizePath(path)
optPath = optimizePath(path,map)
optPath = optimizePath(path,options)
optPath = optimizePath(path,map,options)
[optPath,kineticInfo] = optimizePath( ___ )
[optPath,kineticInfo,solutionInfo] = optimizePath( ___ )

Description
optPath = optimizePath(path) optimizes the travel time and smoothness of the specified path
for car-like robots in an empty map for the default parameters. The number of states in the optPath
can be different than in the path.

optPath = optimizePath(path,map) optimizes the path in the specified map for the default
parameters. The returned optimized path optPath tries to maintain a safety margin to obstacles in
the map map.

optPath = optimizePath(path,options) optimizes the path in an empty map by parameters
specified in options. Parameters related to trajectory, obstacle, and solver, along with the weights of
those parameters can be specified in options as an optimizePathOptions object.

optPath = optimizePath(path,map,options) optimizes the path in the specified map for by
parameters specified in options.

[optPath,kineticInfo] = optimizePath( ___ ) also returns kineticInfo as a structure that
contains the kinetic information of the optimized path.

[optPath,kineticInfo,solutionInfo] = optimizePath( ___ ) also returns solutionInfo
as a structure that contains the solution information of the optimized path.

Examples

Optimize Planned Path

Setup Environment

Load a map into the workspace.

map = load("exampleMaps.mat").complexMap;

Create a binary occupancy map.

map = binaryOccupancyMap(map);

Create a state validator object.
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stateValidator = validatorOccupancyMap;

Assign the map to the state validator object.

stateValidator.Map = map;

Set the validation distance for the validator.

stateValidator.ValidationDistance = 0.01;

Plan Path

Initialize the plannerHybridAStar object with the state validator object. Specify the
MinTurningRadius property of the planner as 2 meters.

planner = plannerHybridAStar(stateValidator,MinTurningRadius=2);

Define start and goal poses as [x y theta] vectors. x and y specify the position in meters, and theta
specifies the orientation angle in radians.

start = [6 3 pi/2];
goal = [32 32 0];

Plan a path from the start pose to the goal pose.

path = plan(planner,start,goal);
inpath = path.States;

Optimize Path

Configure options for optimization.

options = optimizePathOptions

options = 
optimizePathOptions

   Trajectory Parameters
                MaxPathStates: 200
           ReferenceDeltaTime: 0.3000
             MinTurningRadius: 1
                  MaxVelocity: 0.4000
           MaxAngularVelocity: 0.3000
              MaxAcceleration: 0.5000
       MaxAngularAcceleration: 0.5000

   Obstacle Parameters
         ObstacleSafetyMargin: 0.5000
       ObstacleCutOffDistance: 2.5000
    ObstacleInclusionDistance: 0.7500

   Solver Parameters
                 NumIteration: 4
           MaxSolverIteration: 15

   Weights
                   WeightTime: 10
             WeightSmoothness: 1000
       WeightMinTurningRadius: 10
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               WeightVelocity: 100
        WeightAngularVelocity: 10
           WeightAcceleration: 10
    WeightAngularAcceleration: 10
              WeightObstacles: 50

Set the minimum turning radius value as same as in the planner.

options.MinTurningRadius = 2;

Specify the maximum number of poses allowed in the optimized path.

options.MaxPathStates = size(inpath,1) * 3;

Maintain a safe distance of 0.75 meters from the obstacles.

options.ObstacleSafetyMargin = 0.75;

Optimize the path generated by the planner.

optpath = optimizePath(inpath,map,options);

Visualize

Visualize input path and optimized path in the map.

show(map)
hold on
quiver(inpath(:,1),inpath(:,2),cos(inpath(:,3)),sin(inpath(:,3)),0.1);
quiver(optpath(:,1),optpath(:,2),cos(optpath(:,3)),sin(optpath(:,3)),0.1);
legend("Input Path","Optimized Path")
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Input Arguments
path — Path states
real-valued M-by-2 matrix of the form [x y] | real-valued M-by-3 matrix of the form [x y theta]

Path states, specified as a real-valued M-by-2 matrix of the form [x y] or M-by-3 matrix of the form [x
y theta]. x and y specify the position in meters. theta specifies the orientation in radians. M is the
number of states in the path. The number of states in the path must be greater than or equal to 3.
Data Types: single | double

map — Map representation
binaryOccupancyMap object | occupancyMap object | vehicleCostMap object

Map representation, specified as a binaryOccupancyMap, occupancyMap, or vehicleCostmap
object. This object represents the environment of the vehicle.

options — Optimization options
optimizePathOptions object

Optimization options, specified as optimizePathOptions object.

Output Arguments
optPath — Optimized path
real-valued N-by-2 matrix of the form [x y] | real-valued N-by-3 matrix of the form [x y theta]

1 Functions

1-152



Path states, returned as a real-valued N-by-2 matrix of the form [x y] or N-by-3 matrix of the form [x y
theta]. x and y specify the position in meters. theta specifies the orientation in radians. N is the
number of states in the path. The number of states in the optPath can be different than in the path.

kineticInfo — Kinetic Information
structure

Kinetic Information, returned as a structure. The fields of the structure are:

Fields of kineticInfo

Fields Description
TimeStamps Time corresponding to the pose in the optimized

path.
Velocity Velocity to travel between two consecutive poses.
AngularVelocity Angular Velocity between two consecutive poses.

Data Types: struct

solutionInfo — Solution Information
structure

Solution Information, returned as a structure. The fields of the structure are:

Fields of solutionInfo

Fields Description
NumIterations Number of iterations performed.
Cost Final cost of the path.

Data Types: struct

Version History
Introduced in R2022a

References
[1] Rosmann, Christoph, Frank Hoffmann, and Torsten Bertram. “Kinodynamic Trajectory

Optimization and Control for Car-like Robots.” In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 5681–86. Vancouver, BC: IEEE, 2017. https://doi.org/
10.1109/IROS.2017.8206458.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
optimizePathOptions
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optimizePoseGraph
Optimize nodes in pose graph

Syntax
updatedGraph = optimizePoseGraph(poseGraph)
updatedGraph = optimizePoseGraph(poseGraph,solver)
[updatedGraph,solutionInfo] = optimizePoseGraph( ___ )
[ ___ ] = optimizePoseGraph( ___ ,Name,Value)

Description
updatedGraph = optimizePoseGraph(poseGraph) adjusts the poses based on their edge
constraints defined in the specified graph to improve the overall graph. You optimize either a 2-D or
3-D pose graph. The returned pose graph has the same topology with updated nodes.

This pose graph optimization assumes all edge constraints and loop closures are valid. To consider
trimming edges based on bad loop closures, see the trimLoopClosures function.

updatedGraph = optimizePoseGraph(poseGraph,solver) specifies the solver type for
optimizing the pose graph.

[updatedGraph,solutionInfo] = optimizePoseGraph( ___ ) returns additional statistics
about the optimization process in solutionInfo using any of the previous syntaxes.

[ ___ ] = optimizePoseGraph( ___ ,Name,Value) specifies additional options using one or
more Name,Value pairs. For example, 'MaxIterations',1000 increases the maximum number of
iterations to 1000.

Examples

Optimize a 3-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in this example
is taken from the MIT Dataset and was generated using information extracted from a parking garage.

Load the pose graph from the MIT dataset. Inspect the poseGraph3D object to view the number of
nodes and loop closures.

load parking-garage-posegraph.mat pg
disp(pg);

  poseGraph3D with properties:

               NumNodes: 1661
               NumEdges: 6275
    NumLoopClosureEdges: 4615
     LoopClosureEdgeIDs: [128 129 130 132 133 134 135 137 138 139 140 142 143 144 146 147 148 150 151 204 205 207 208 209 211 212 213 215 216 217 218 220 221 222 223 225 226 227 228 230 231 232 233 235 236 237 238 240 241 242 243 244 246 247 248 ... ]
        LandmarkNodeIDs: [1x0 double]
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Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

title('Original Pose Graph')
show(pg,'IDs','off');
view(-30,45)

Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop closures. Plot
the optimized pose graph to see the adjustment of the nodes with loop closures.

updatedPG = optimizePoseGraph(pg);
figure
title('Updated Pose Graph')
show(updatedPG,'IDs','off');
view(-30,45)
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Input Arguments
poseGraph — 2-D or 3-D pose graph
poseGraph object | poseGraph3D object | digraph object

2-D or 3-D pose graph, specified as a poseGraph, poseGraph3D, digraph object.

To use the digraph object, generate the pose graph using createPoseGraph from an
imageviewset or pcviewset object. You must have Computer Vision Toolbox™ and the solver
must be set to "builtin-trust-region". The 'LoopClosuresToIgnore' and
'FirstNodePose' name-value pairs are ignored if specified.

The edges of digraph object are described by simtform3d or rigidtform3d objects.

solver — Pose graph solver
"builtin-trust-region" (default) | "g2o-levenberg-marquardt"

Pose graph solver, specified as either "builtin-trust-region" or "g2o-levenberg-
marquardt". To tune either solver, use the name-value pair arguments for that solver.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxTime', 300

Note Depending on the solver input, the function supports different name-value pairs.

If the solver input is set to "builtin-trust-region":

MaxTime — Maximum time allowed
500 (default) | positive numeric scalar

Maximum time allowed, specified as the comma-separated pair consisting of 'MaxTime' and a
positive numeric scalar in seconds. The optimizer exits after it exceeds this time.

GradientTolerance — Lower bound on norm of gradient
0.5e-8 (default) | scalar

Lower bound on the norm of the gradient, specified as the comma-separated pair consisting of
'GradientTolerance' and a scalar. The norm of the gradient is calculated based on the cost
function of the optimization. If the norm falls below this value, the optimizer exits.

FunctionTolerance — Lower bound on change in cost function
1e-8 (default) | scalar

Lower bound on the change in the cost function, specified as the comma-separated pair consisting of
'FunctionTolerance' and a scalar. If the cost function change falls below this value between
optimization steps, the optimizer exits.

StepTolerance — Lower bound on step size
1e-12 (default) | scalar

Lower bound on the step size, specified as the comma-separated pair consisting of
'StepTolerance' and a scalar. If the norm of the optimization step falls below this value, the
optimizer exits.

InitialTrustRegionRadius — Initial trust region radius
100 (default) | scalar

Initial trust region radius, specified as a scalar.

VerboseOutput — Display intermediate iteration information
'off' (default) | 'on'

Display intermediate iteration information on the MATLAB command line, specified as the comma-
separated pair consisting of 'VerboseOutput' and either 'off' or 'on'.

LoopClosuresToIgnore — IDs of loop closure edges in pose graph
vector

IDs of loop closure edges in poseGraph, specified as the comma-separated pair consisting of
'LoopClosuresToIgnore' and a vector. To get edge IDs from the pose graph, use findEdgeID.

FirstNodePose — Pose of first node
[0 0 0] or [0 0 0 1 0 0 0] (default) | [x y theta] | [x y z qw qx qy qz]
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Pose of the first node in poseGraph, specified as the comma-separated pair consisting of
'FirstNodePose' and a pose vector.

For poseGraph (2-D), the pose is an [x y theta] vector, which defines the relative xy-position and
orientation angle, theta.

For poseGraph3D, the pose is an [x y z qw qx qy qz] vector, which defines the relative xyz-
position and quaternion orientation, [qw qx qy qz].

Note Many other sources for 3-D pose graphs, including .g2o formats, specify the quaternion
orientation in a different order, for example, [qx qy qz qw]. Check the source of your pose graph
data before adding nodes to your poseGraph3D object.

If the solver input is set to "g2o-levenberg-marquardt":

MaxIterations — Maximum number of iterations
300 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer. The optimizer exits after it exceeds this number of
iterations.

MaxTime — Maximum time allowed
500 (default) | positive numeric scalar

Maximum time allowed, specified as the comma-separated pair consisting of 'MaxTime' and a
positive numeric scalar in seconds. The optimizer exits after it exceeds this time.

FunctionTolerance — Lower bound on change in cost function
1e-8 (default) | scalar

Lower bound on the change in the cost function, specified as the comma-separated pair consisting of
'FunctionTolerance' and a scalar. If the cost function change falls below this value between
optimization steps, the optimizer exits.

VerboseOutput — Display intermediate iteration information
'off' (default) | 'on'

Display intermediate iteration information on the MATLAB command line, specified as the comma-
separated pair consisting of 'VerboseOutput' and either 'off' or 'on'.

LoopClosuresToIgnore — IDs of loop closure edges in pose graph
vector

IDs of loop closure edges in poseGraph, specified as the comma-separated pair consisting of
'LoopClosuresToIgnore' and a vector. To get edge IDs from the pose graph, use findEdgeID.

FirstNodePose — Pose of first node
[0 0 0] or [0 0 0 1 0 0 0] (default) | [x y theta] | [x y z qw qx qy qz]

Pose of the first node in poseGraph, specified as the comma-separated pair consisting of
'FirstNodePose' and a pose vector.
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For poseGraph (2-D), the pose is an [x y theta] vector, which defines the relative xy-position and
orientation angle, theta.

For poseGraph3D, the pose is an [x y z qw qx qy qz] vector, which defines the relative xyz-
position and quaternion orientation, [qw qx qy qz].

Note Many other sources for 3-D pose graphs, including .g2o formats, specify the quaternion
orientation in a different order, for example, [qx qy qz qw]. Check the source of your pose graph
data before adding nodes to your poseGraph3D object.

Output Arguments
updatedGraph — Optimized 2-D or 3-D pose graph
poseGraph object | poseGraph3D object

Optimized 2-D or 3-D pose graph, returned as a poseGraph or poseGraph3D object.

solutionInfo — Statistics of optimization process
structure

Statistics of optimization process, returned as a structure with these fields:

• Iterations — Number of iterations used in optimization.
• ResidualError — Value of cost function when optimizer exits.
• Exit Flag — Exit condition for optimizer:

• 1 — Local minimum found.
• 2 — Maximum number of iterations reached. See MaxIterations name-value pair argument.
• 3 — Algorithm timed out during operation.
• 4 — Minimum step size. The step size is below the StepTolerance name-value pair argument.
• 5 — The change in error is below the minimum.
• 8 — Trust region radius is below the minimum set in InitialTrustRegionRadius.

Version History
Introduced in R2019b

References
[1] Grisetti, G., R. Kummerle, C. Stachniss, and W. Burgard. "A Tutorial on Graph-Based SLAM." IEEE

Intelligent Transportation Systems Magazine. Vol. 2, No. 4, 2010, pp. 31–43. doi:10.1109/
mits.2010.939925.

[2] Carlone, Luca, Roberto Tron, Kostas Daniilidis, and Frank Dellaert. "Initialization Techniques for
3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization." 2015
IEEE International Conference on Robotics and Automation (ICRA). 2015, pp. 4597–4604.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies
an upper bound on the number of edges and nodes allowed in the pose graph when generating
code. This limit is only required when generating code.

• The "g2o-levenberg-marquardt" solver input argument is not supported for code
generation.

See Also
Functions
trimLoopClosures | addRelativePose | removeEdges | edgeNodePairs | edgeConstraints |
findEdgeID | nodeEstimates

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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plotTransforms
Plot 3-D transforms from translations and rotations

Syntax
ax = plotTransforms(translations,rotations)
ax = plotTransforms(transformations)
ax = plotTransforms( ___ ,Name,Value)

Description
ax = plotTransforms(translations,rotations) draws transform frames in a 3-D figure
window using the specified translations translations, and rotations, rotations. The z-axis always
points upward.

ax = plotTransforms(transformations) draws transform frames for the specified SE(2) or
SE(3) transformations, transformations.

ax = plotTransforms( ___ ,Name,Value) specifies additional options using name-value
arguments. Specify multiple name-value arguments to set multiple options.

Input Arguments
translations — xyz-positions
[x y z] vector | matrix of [x y z] vectors

xyz-positions specified as a vector or matrix of [x y z] vectors. Each row represents a new frame to
plot with a corresponding orientation in rotations.
Example: [1 1 1; 2 2 2]

rotations — Rotations of xyz-positions
quaternion array | matrix of [w x y z] quaternion vectors | N-element array of so2 or so3
objects

Rotations of xyz-positions specified as a quaternion array, N-by-4 matrix of [w x y z] quaternion
vectors, or an N-element array of so2 or so3 objects. N is the total number of rotations, and each
element of the array, each row of the matrix or rotation transformation objects represent the rotation
of the xyz-positions specified in translations.

If rotations is an N-element array of so2 or so3 objects, each element must be of the same type.
Example: [1 1 1 0; 1 3 5 0]

transformations — Transformation
se2 object | se3 object | M-element array of se2 or se3 objects

Transformations, specified as an se2 object, an se3 object, or an M-element array of se2 or se3
objects. M is the total number of transformations.

If you specify transformations as an array, each element must be of the same type.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FrameSize',5

FrameSize — Size of frames and attached meshes
positive numeric scalar

Size of frame and attached meshes, specified as positive numeric scalar.

FrameColor — Color of frames
"rgb" (default) | RGB triplet | string scalar

Color of frames, specified as an RGB triplet or string scalar.
Example: [0 0 1] or "green"

FrameAxisLabels — xyz labels of coordinate frame
"off" (default) | "on"

xyz labels of the coordinate frame, specified as "off" to hide the labels or "on" to show the labels.

FrameAxisLabels — Frame axis labels
"" (default) | string | N-element array of strings

Frame axis labels, specified as a string or N-element array of strings, where N is the total number of
frames and each string corresponds to one frame at the same index of transformations,
translations, or rotations.

AxisLabels — xyz labels of plotting axes
"off" (default) | "on"

xyz labels of the plotting axes, specified as "off" to hide the labels or "on"to show the labels.

InertialZDirection — Direction of positive z-axis of inertial frame
"up" (default) | "down"

Direction of the positive z-axis of inertial frame, specified as either "up" or "down". In the plot, the
positive z-axis always points up.

MeshFilePath — File path of mesh file attached to frames
character vector | string scalar

File path of mesh file attached to frames, specified as either a character vector or string scalar. The
mesh is attached to each plotted frame at the specified position and orientation. Provided .stl are

• "fixedwing.stl"
• "multirotor.stl"
• "groundvehicle.stl"

Example: 'fixedwing.stl'
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MeshColor — Color of attached mesh
"red" (default) | RGB triplet | string scalar

Color of attached mesh, specified as an RGB triplet or string scalar.
Example: [0 0 1] or "green"

View — Plot view
"3D" (default) | "2D" | three-element vector

Plot view, specified as "3D", "2D", or a three-element vector of the form [x,y,z] that sets the view
angle in Cartesian coordinates. The magnitude of x,y, and z are ignored.

Parent — Axes used to plot transforms
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of 'Parent' and
either an Axes or UIAxes object. See axes or uiaxes.

Output Arguments
ax — Axes used to plot transforms
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of 'Parent' and
either an Axes or UIAxesobject. See axes or uiaxes.

Version History
Introduced in R2018b

See Also
Functions
quaternion | hom2cart | eul2quat | tform2quat | rotm2quat

Objects
se2 | se3 | so2 | so3
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poseGraphSolverOptions
Solver options for pose graph optimization

Syntax
solverOptions = poseGraphSolverOptions(solverType)

Description
solverOptions = poseGraphSolverOptions(solverType) returns the set of solver options
with default values for the specified pose graph solver type.

Examples

Optimize and Trim Loop Closures For 2-D Pose Graphs

Optimize a pose graph based on the nodes and edge constraints. Trim loop closed based on their
edge residual errors.

Load the data set that contains a 2-D pose graph. Inspect the poseGraph object to view the number
of nodes and loop closures.

load grid-2d-posegraph.mat pg
disp(pg)

  poseGraph with properties:

               NumNodes: 120
               NumEdges: 193
    NumLoopClosureEdges: 74
     LoopClosureEdgeIDs: [120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 ... ]
        LandmarkNodeIDs: [1x0 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset. The poses
in the graph should follow a grid pattern, but show evidence of drift over time.

show(pg,'IDs','off');
title('Original Pose Graph')
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Optimize the pose graph using the optimizePoseGraph function. By default, this function uses the
"builtin-trust-region" solver. Because the pose graph contains some bad loop closures, the
resulting pose graph is actual not desirable.

pgOptim = optimizePoseGraph(pg);
figure;
show(pgOptim);
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Look at the edge residual errors for the original pose graph. Large outlier error values at the end
indicate bad loop closures.

resErrorVec = edgeResidualErrors(pg);
plot(resErrorVec);
title('Edge Residual Errors by Edge ID')
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Certain loop closures should be trimmed from the pose graph based on their residual error. Use the
trimLoopClosures function to trim these bad loop closures. Set the maximum and truncation
threshold for the trimmer parameters. This threshold is set based on the measurement accuracy and
should be tuned for your system.

trimParams.MaxIterations = 100;
trimParams.TruncationThreshold = 25;

solverOptions = poseGraphSolverOptions; 

Use the trimLoopClosures function with the trimmer parameters and solver options.

[pgNew, trimInfo, debugInfo] = trimLoopClosures(pg,trimParams,solverOptions);

From the trimInfo output, plot the loop closures removed from the optimized pose graph. By
plotting with the residual errors plot before, you can see the large error loop closures were removed.

removedLCs = trimInfo.LoopClosuresToRemove;

hold on
plot(removedLCs,zeros(length(removedLCs)),'or')
title('Edge Residual Errors and Removed Loop Closures')
legend('Residual Errors', 'Removed Loop Closures')
xlabel('Edge IDs')
ylabel('Edge Residual Error')
hold off
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Show the new pose graph with the bad loop closures trimmed.

show(pgNew,"IDs","off");
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Input Arguments
solverType — Pose graph solver type
'builtin-trust-region' (default) | 'g2o-levenberg-marquardt'

Pose graph solver type, specified as 'builtin-trust-region' or 'g2o-levenberg-marquardt'.

The function generates a set of solver options with default values for the specified pose graph solver
type:

pgSolverTrustRegion = poseGraphSolverOptions('builtin-trust-region')

pgSolverTrustRegion = 

TrustRegion (builtin-trust-region-dogleg) options:

               MaxIterations: 300
                     MaxTime: 10
           FunctionTolerance: 1.0000e-08
           GradientTolerance: 5.0000e-09
               StepTolerance: 1.0000e-12
    InitialTrustRegionRadius: 100
               VerboseOutput: 'off'

pgSolverG2o = poseGraphSolverOptions('g2o-levenberg-marquardt')
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pgSolverG2o = 

G2oLevenbergMarquardt (g2o-levenberg-marquardt) options:

        MaxIterations: 300
              MaxTime: 10
    FunctionTolerance: 1.0000e-09
        VerboseOutput: 'off'

Data Types: char | string

Output Arguments
solverOptions — Pose graph solver options
poseGraphSolverOptions parameters

Pose graph solver options, specified as a set of parameters generated by calling the
poseGraphSolverOptions function. The function generates a set of solver options with default
values for the specified pose graph solver type.
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If the solverType input is set to "builtin-trust-region":

 Default Description
MaxIterations 300 Maximum number of iterations,

specified as a positive integer.
The optimizer exits after it
exceeds this number of
iterations.

MaxTime 500 Maximum time allowed,
specified as a positive numeric
scalar in seconds. The optimizer
exits after it exceeds this time.

FunctionTolerance 1e-8 Lower bound on the change in
the cost function, specified as a
scalar. If the cost function
change falls below this value
between optimization steps, the
optimizer exits.

GradientTolerance 0.5e-8 Lower bound on the norm of the
gradient, specified as a scalar.
The norm of the gradient is
calculated based on the cost
function of the optimization. If
the norm falls below this value,
the optimizer exits.

StepTolerance 1e-12 Lower bound on the step size,
specified as a scalar. If the norm
of the optimization step falls
below this value, the optimizer
exits.

InitialTrustRegionRadius 100 Initial trust region radius,
specified as a scalar.

VerboseOutput 'off' or 'on' Display intermediate iteration
information on the MATLAB
command line.
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If the solver input is set to "g2o-levenberg-marquardt":

 Default Description
MaxIterations 300 Maximum number of iterations,

specified as a positive integer.
The optimizer exits after it
exceeds this number of
iterations.

MaxTime 500 Maximum time allowed,
specified as a positive numeric
scalar in seconds. The optimizer
exits after it exceeds this time.

FunctionTolerance 1e-8 Lower bound on the change in
the cost function, specified as a
scalar. If the cost function
change falls below this value
between optimization steps, the
optimizer exits.

VerboseOutput 'off' or 'on' Display intermediate iteration
information on the MATLAB
command line.

Version History
Introduced in R2020b

See Also
Functions
trimLoopClosures | edgeResidualErrors | edgeResidualErrors | removeEdges |
edgeNodePairs | edgeConstraints

Objects
poseGraph | poseGraph3D | lidarSLAM
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poseplot
3-D pose plot

Syntax
poseplot
poseplot(quat)
poseplot(R)
poseplot( ___ ,position)
poseplot( ___ ,frame)
poseplot( ___ ,Name=Value)
poseplot(ax, ___ )
p = poseplot( ___ )

Description
poseplot plots the pose (position and orientation) at the coordinate origin position with zero
rotation. The default navigation frame is the north-east-down (NED) frame.

poseplot(quat) plots the pose with orientation specified by a quaternion quat. The position by
default is [0 0 0].

poseplot(R) plots the pose with orientation specified by a rotation matrix R. The position by default
is [0 0 0].

poseplot( ___ ,position) specifies the position of the pose plot.

poseplot( ___ ,frame) specifies the navigation frame of the pose plot.

poseplot( ___ ,Name=Value) specifies pose patch properties using one or more name-value
arguments. For example, poseplot(PatchFaceColor="r") plots the pose with red face color. For
a list of properties, see PosePatch Properties.

poseplot(ax, ___ ) specifies the parent axes of the pose plot.

p = poseplot( ___ ) returns the PosePatch object. Use p to modify properties of the pose patch
after creation. For a list of properties, see PosePatch Properties.

Examples

Visualize Pose Using poseplot

Plot the default pose using the poseplot function with default settings.

poseplot
xlabel("North-x (m)")
ylabel("East-y (m)")
zlabel("Down-z (m)");
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Next, plot a pose with specified orientation and position.

q = quaternion([35 10 50],"eulerd","ZYX","frame");
position = [1 1 1];
poseplot(q,position)
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Then, plot a second pose on the figure and return the PosePatch object. Plot the second pose with a
smaller size by using the ScaleFactor name-value argument.

hold on
p = poseplot(eye(3),[5 5 5],ScaleFactor=0.5)

p = 
  PosePatch with properties:

    Orientation: [3x3 double]
       Position: [5 5 5]

  Show all properties

legend("First Pose","Second Pose")
hold off
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Animate Pose Using poseplot

Animate a series of poses using the poseplot function. First, define the initial and final positions.

ps = [0 0 0];
pf = [10 0 0];

Then, define the initial and final orientations using the quaternion object.

qs = quaternion([45,0,0],'eulerd','ZYX','frame');
qf = quaternion([-45,0,0],'eulerd','ZYX','frame');

Show the starting pose.

patch = poseplot(qs,ps);
ylim([-2 2])
xlim([-2 12])
xlabel("North-x (m)")
ylabel("East-y (m)")
zlabel("Down-z (m)");
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Change the position and orientation continuously using coefficients, and update the pose using the
set object function.

for coeff = 0:0.01:1
    q = slerp(qs,qf,coeff);
    position = ps + (pf - ps)*coeff;
    set(patch,Orientation=q,Position=position); 
    drawnow
end
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Show Poses with Meshes

Plot orientations and positions in meshes using the poseplot function. First, plot a ground vehicle at
the origin with zero rotation.

poseplot(ones("quaternion"),[0 0 0],MeshFileName="groundvehicle.stl",ScaleFactor=0.3);
xlabel("North-x (m)")
ylabel("East-y (m)")
zlabel("Down-z (m)")
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Second, plot a rotor at the position [20 20 -20] with zero rotation.

hold on
poseplot(ones("quaternion"),[20 20 -20],MeshFileName="multirotor.stl",ScaleFactor=0.2);
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Lastly, plot a fixed-wing aircraft at the position [5 5 -40] with zero rotation.

poseplot(ones("quaternion"),[5 5 -40],MeshFileName="fixedwing.stl",ScaleFactor=0.4);
view([-37.8 28.4])
hold off
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Input Arguments
quat — Quaternion
quaternion object

Quaternion, specified as a quaternion object.

R — Rotation matrix
3-by-3 orthonormal matrix

Rotation matrix, specified as a 3-by-3 orthonormal matrix.
Example: eye(3)

position — Position of pose plot
three-element real-valued vector

Position of the pose plot, specified as a three-element real-valued vector.
Example: [1 3 4]

frame — Navigation frame of pose plot
"NED" (default) | "ENU"

Navigation frame of the pose plot, specified as "NED" for the north-east-down frame or "ENU" for the
east-north-up frame.
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When the parent axes status is hold off, specifying the NED navigation frame reverses the y- and z-
axes in the figure by setting the YDir and ZDir properties of the parent axes.

ax — Parent axes of pose plot
Axes object

Parent axes of the pose plot, specified as an Axes object. If you do not specify the axes, the
poseplot function uses the current axes.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

The PosePatch properties listed here are only a subset. For a complete list, see PosePatch
Properties.
Example: poseplot(PatchFaceAlpha=0.1)

Orientation — Orientation of pose plot
quaternion object (default) | rotation matrix

Orientation of the pose plot, specified as a quaternion object or a rotation matrix.

Position — Position of pose plot
[0 0 0] (default) | three-element real-valued vector

Position of the pose plot, specified as a three-element real-valued vector.

MeshFileName — Name of STL mesh file
string scalar | character vector

Name of Standard Triangle Language (STL) mesh file, specified as a string scalar or a character
vector containing the name of the mesh file. When you specify this argument, the poseplot function
plots the mesh instead of the orientation box.

ScaleFactor — Scale factor of pose plot
1 (default) | nonnegative scalar

Scale factor of the pose plot, specified as a nonnegative scalar. The scale factor controls the size of
the orientation box. When you specify the MeshFileName argument, the scale factor also changes
the scale of the mesh.

PatchFaceColor — Patch face color
[0 0 0] (default) | RGB triplet | hexadecimal color code | "r" | "g" | "b" | ...

Patch face color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for
example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are equivalent.
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Here is a list of commonly used colors and their corresponding values.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

PatchFaceAlpha — Patch face transparency
0.1 (default) | scalar in range [0, 1]

Patch face transparency, specified as a scalar in range [0, 1]. A value of 1 is fully opaque and 0 is
completely transparent.

Output Arguments
p — Pose patch object
PosePatch object

Pose patch object, returned as a PosePatch object. You can use the returned object to query and
modify properties of the plotted pose. For a list of properties, see PosePatch Properties.

Version History
Introduced in R2021b

See Also
PosePatch Properties
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PosePatch Properties
Pose plot appearance and behavior

Description
PosePatch properties control the appearance and behavior of a PosePatch object. By changing
property values, you can modify certain aspects of the pose plot. Use dot notation to query and set
properties. To create a PosePatch object, use the poseplot function.

p = poseplot;
c = p.PatchFaceColor;
p.PatchFaceColor = "red";

Properties
Position and Orientation

Orientation — Orientation of pose plot
quaternion object (default) | rotation matrix

Orientation of the pose plot, specified as a quaternion object or a rotation matrix.

Position — Position of pose plot
[0 0 0] (default) | three-element real-valued vector

Position of the pose plot, specified as a three-element real-valued vector.

Color and Styling

ScaleFactor — Scale factor of pose plot
1 (default) | nonnegative scalar

Scale factor of the pose plot, specified as a nonnegative scalar. The scale factor controls the size of
the orientation box. When you specify the MeshFileName argument, the scale factor also changes
the scale of the mesh.

PatchFaceColor — Patch face color
[0 0 0] (default) | RGB triplet | hexadecimal color code | "r" | "g" | "b" | ...

Patch face color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for
example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are equivalent.

Here is a list of commonly used colors and their corresponding values.
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

MeshFileName — Name of STL mesh file
string scalar | character vector

Name of Standard Triangle Language (STL) mesh file, specified as a string scalar or a character
vector containing the name of the mesh file. When you specify this argument, the poseplot function
plots the mesh instead of the orientation box.

PatchFaceAlpha — Patch face transparency
0.1 (default) | scalar in range [0, 1]

Patch face transparency, specified as a scalar in range [0, 1]. A value of 1 is fully opaque and 0 is
completely transparent.

Parent/Children

Parent — Parent axes
Axes object

Parent axes, specified as an Axes object.

Children — Children
empty GraphicsPlaceholder array | DataTip object array

Children, returned as an empty GraphicsPlaceholder array or a DataTip object array. Currently,
this property is not used and is reserved for future use.

Interactivity

Visible — Pose plot visibility
"on" (default) | "off" | on/off logical value

Pose plot visibility, specified as "on" or "off", or as numeric or logical 1 (true) or 0 (false). A
value of "on" is equivalent to true, and "off" is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• "on" — Display the object.
• "off" — Hide the object without deleting it. You still can access the properties of an invisible

object.
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HandleVisibility — Visibility of pose patch object handle
"on" (default) | "off" | "callback"

Visibility of the pose patch object handle in the Children property of the parent, specified as one of
these values:

• "on" — Object handle is always visible.
• "off" — Object handle is invisible at all times. This option is useful for preventing unintended

changes by another function. Set HandleVisibility to "off" to temporarily hide the handle
during the execution of that function. Hidden object handles are still valid.

• "callback" — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but permits callback functions to access it.

Standard Chart Properties

DisplayName — Pose plot name to display in legend
string scalar | character vector

Pose plot name to display in the legend, specified as a string scalar or character vector. The legend
does not display until you call the legend command. If you do not specify the display name, then
legend sets the label using the format "dataN", where N is the order of pose plots shown in the
axes. You can also directly specify the legend. For example: legend("Pose1","Pose2").

Type — Type of pose plot object
'PosePatch' (default)

This property is read-only.

Type of pose plot object, returned as 'PosePatch'. Use this property to find all objects of a given
type within a plotting hierarchy, for example, searching for the type using the findobj function.

Annotation — Control for including or excluding object from legend
Annotation object

This property is read-only.

Control for including or excluding the object from a legend, returned as an Annotation object. Set
the underlying IconDisplayStyle property to one of these values:

• "on" — Include the object in the legend (default).
• "off" — Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend, set the IconDisplayStyle property
to "off".

go.Annotation.LegendInformation.IconDisplayStyle = "off";

Alternatively, you can control the items in a legend using the legend function.

SeriesIndex — Pose plot series index
1 (default) | nonnegative integer

Pose plot series index, specified as a nonnegative integer. Use this property to reassign the marker
colors of several PosePatch objects so that they match each other. By default, the SeriesIndex
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property of a PosePatch object is a number that corresponds to the order of creation of the object,
starting at 0.

MATLAB uses the number to calculate indices for assigning colors when you call plotting functions if
you do not specify the color directly. The indices refer to the rows of the arrays stored in the
ColorOrder property of the axes.

Version History
Introduced in R2021b

See Also
poseplot
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pseudoranges
Pseudoranges between GNSS receiver and satellites

Syntax
p = pseudoranges(recPos,satPos)
[p,pdot] = pseudoranges( ___ ,recVel,satVel)
[p,pdot] = pseudoranges( ___ ,Name,Value)

Description
p = pseudoranges(recPos,satPos) returns the pseudoranges between the receiver at position
recPos and the satellites at positions satPos.

[p,pdot] = pseudoranges( ___ ,recVel,satVel) returns the pseudorange rates pdot between
the receiver and satellites. Use this syntax with the input arguments in the previous syntax.

[p,pdot] = pseudoranges( ___ ,Name,Value) specifies the measurement noise for the ranges
and range rates using name-value arguments. For example, [p,pdot] =
pseudoranges(__,'RangeAccuracy',2) sets the measurement noise in pseudoranges, specified
as a scalar standard deviation in meters.

Examples

Get Satellite Pseudoranges for Receiver Position and Velocity

Use the pseudoranges function to get the pseudorange and pseudorange rate for given satellite and
receiver positions and velocities. Get the satellite positions and velocities using the
gnssconstellation function.

Specify a receiver position in geodetic coordinates (latitude, longitude, altitude) and receiver velocity
in the local navigation frame.

recPos = [42 -71 50];
recVel = [1 2 3];

Get the satellite positions for the current time.

t = datetime('now');
[gpsSatPos,gpsSatVel] = gnssconstellation(t);

Get the pseudoranges and pseudorange rates between the receiver and satellites.

[p,pdot] = pseudoranges(recPos,gpsSatPos,recVel,gpsSatVel);

Input Arguments
recPos — Receiver position
three-element vector of the form [latitude longitude altitude]
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Receiver position in geodetic coordinates, specified as a three-element vector of the form [latitude
longitude altitude].
Data Types: single | double

satPos — Satellite positions
N-by-3 matrix of scalars

Satellite positions in the Earth-centered Earth-fixed (ECEF) coordinate system in meters, specified as
an N-by-3 matrix of scalars. N is the number of satellites in the constellation.
Data Types: single | double

recVel — Receiver velocity
three-element vector of the form [vx vy vz]

Receiver velocity in the local navigation frame using north-east-down (NED) coordinates, specified as
a three-element vector of the form [vx vy vz].
Data Types: single | double

satVel — Satellite velocities
N-by-3 matrix of scalars

Satellite velocities in the Earth-centered Earth-fixed (ECEF) coordinate system in meters per second,
specified as an N-by-3 matrix of scalars. N is the number of satellites in the constellation.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RangeAccuracy',0.5 sets the measurement noise of the pseudoranges to 0.5 meters.

RangeAccuracy — Measurement noise in pseudoranges
1 (default) | scalar

Measurement noise in pseudoranges, specified as a scalar standard deviation in meters.
Data Types: single | double

RangeRateAccuracy — Measurement noise in pseudorange rates
0.02 (default) | scalar

Measurement noise in pseudorange rates, specified as a scalar standard deviation in meters per
second.
Data Types: single | double

Output Arguments
p — Pseudoranges between satellites and receiver
n-element vector
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Pseudoranges between the satellites and receiver, returned as an n-element vector in meters.
Data Types: single | double

pdot — Pseudorange rates between satellites and receiver
zeros(n,1) (default) | n-element vector

Pseudorange rates between the satellites and receiver, returned as an n-element vector in meters per
second. If you do not provide velocity inputs, this output is zero.
Data Types: single | double

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
gnssSensor | gpsSensor | imuSensor

Functions
skyplot | gnssconstellation | lookangles | receiverposition
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quat2axang
Convert quaternion to axis-angle rotation

Syntax
axang = quat2axang(quat)

Description
axang = quat2axang(quat) converts a quaternion, quat, to the equivalent axis-angle rotation,
axang.

Examples

Convert Quaternion to Axis-Angle Rotation

quat = [0.7071 0.7071 0 0]; 
axang = quat2axang(quat)

axang = 1×4

    1.0000         0         0    1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2quat | quaternion
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quat2eul
Convert quaternion to Euler angles

Syntax
eul = quat2eul(quat)
eul = quat2eul(quat,sequence)
[eul,eulAlt] = quat2eul( ___ )

Description
eul = quat2eul(quat) converts a quaternion rotation, quat, to the corresponding Euler angles,
eul. The default order for Euler angle rotations is "ZYX".

eul = quat2eul(quat,sequence) converts a quaternion into Euler angles. The Euler angles are
specified in the axis rotation sequence, sequence. The default order for Euler angle rotations is
"ZYX".

[eul,eulAlt] = quat2eul( ___ ) also returns an alternate set of Euler angles that represents the
same rotation eulAlt.

Examples

Convert Quaternion to Euler Angles
quat = [0.7071 0.7071 0 0];
eulZYX = quat2eul(quat)

eulZYX = 1×3

         0         0    1.5708

Convert Quaternion to Euler Angles Using ZYZ Axis Order
quat = [0.7071 0.7071 0 0];
eulZYZ = quat2eul(quat,'ZYZ')

eulZYZ = 1×3

    1.5708   -1.5708   -1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

 quat2eul

1-193



Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.
Example: [0.7071 0.7071 0 0]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

eulAlt — Alternate Euler rotation angle solution
n-by-3 matrix

Alternate Euler rotation angle solution in radians, returned as an n-by-3 array of Euler rotation
angles. Each row represents one Euler angle set.
Example: [0 0 1.5708]

Version History
Introduced in R2015a

R2020a: Alternate Euler angle output

quat2eul now optionally outputs an alternate set of Euler angles that also represent the same
rotation as the original output Euler angles.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2quat | quaternion
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quat2rotm
Convert quaternion to rotation matrix

Syntax
rotm = quat2rotm(quat)

Description
rotm = quat2rotm(quat) converts a quaternion quat to an orthonormal rotation matrix, rotm.
When using the rotation matrix, premultiply it with the coordinates to be rotated (as opposed to
postmultiplying).

Examples

Convert Quaternion to Rotation Matrix

quat = [0.7071 0.7071 0 0];
rotm = quat2rotm(quat)

rotm = 3×3

    1.0000         0         0
         0   -0.0000   -1.0000
         0    1.0000   -0.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of objects containing n
quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with w
as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2quat | quaternion | so2 | so3
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quat2tform
Convert quaternion to homogeneous transformation

Syntax
tform = quat2tform(quat)

Description
tform = quat2tform(quat) converts a quaternion, quat, to a homogeneous transformation
matrix, tform. When using the transformation matrix, premultiply it with the coordinates to be
transformed (as opposed to postmultiplying).

Examples

Convert Quaternion to Homogeneous Transformation
quat = [0.7071 0.7071 0 0];
tform = quat2tform(quat)

tform = 4×4

    1.0000         0         0         0
         0   -0.0000   -1.0000         0
         0    1.0000   -0.0000         0
         0         0         0    1.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2quat | quaternion | se2 | se3
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read
Read data from GPS receiver

Syntax
[tt,overrun] = read(gps)
[lla,groundSpeed,course,dops,gpsReceiverTime,timestamp,overrun] = read(gps)

Description
[tt,overrun] = read(gps) returns the GPS readings in timetable format. This is a non
blocking read which returns N data points in timetable format, where N is specified by
SamplesPerRead property and timetable is specified using OutputFormat property of gpsdev
object.

[lla,groundSpeed,course,dops,gpsReceiverTime,timestamp,overrun] = read(gps)
returns matrices of measurements from the GPS. This is a non blocking read which returns N data
points in matrix format, where N is specified by SamplesPerRead property and matrix is specified
using OutputFormat property of the gpsdev object.

Examples

Read Data from GPS Receiver as Timetable

Read data from the GPS receiver connected to the host computer on a specific serial port.

Required Hardware

To run this example, you need:

• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires
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Hardware Connection

Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Create a gpsdev object for the GPS receiver connected to a specific port. Specify the output format
of the data as a timetable.

gps = gpsdev('COM4','OutputFormat',"timetable")

gps = 
  gpsdev with properties:

                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)

                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Read the GPS data

Read the GPS data and return them as a timetable.
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[tt,overruns] = read(gps)

tt=1×5 timetable
              Time                         LLA               GroundSpeed    Course            DOPs                GPSReceiverTime     
    ________________________    _________________________    ___________    ______    ____________________    ________________________

    22-Mar-2021 15:31:15.190    17.47    78.343     449.6      0.25619       NaN      9.31    1.48    9.19    22-Mar-2021 10:01:14.000

overruns = 0

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 1

gps.SamplesAvailable

ans = 0

Release the GPS object to configure the non tunable properties. The release function also clears the
buffer and resets the SamplesRead and SamplesAvailable properties.

release(gps)

Specify the number of samples per read to 2. Read the GPS data.

gps.SamplesPerRead = 2;
read(gps)

ans=2×5 timetable
              Time                         LLA               GroundSpeed    Course            DOPs                GPSReceiverTime     
    ________________________    _________________________    ___________    ______    ____________________    ________________________

    22-Mar-2021 15:31:17.178    17.47    78.343       450     0.063791       NaN      9.32    1.48     9.2    22-Mar-2021 10:01:16.000
    22-Mar-2021 15:31:17.178    17.47    78.343       450     0.063791       NaN      9.32    1.48     9.2    22-Mar-2021 10:01:16.000

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 1

gps.SamplesAvailable

ans = 0

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;

Read Data from GPS Receiver as Matrix

Read data from the GPS receiver connected to the host computer using serialport object.
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Required Hardware

To run this example, you need:

• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires

Hardware Connection

Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Connect to the GPS receiver using serialport object. Specify the port name and the baud rate.
Specify the output format of the data as matrix.

s = serialport('COM4',9600);
gps = gpsdev(s,'OutputFormat',"matrix")

gps = 
  gpsdev with properties:
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                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)

                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Read the GPS data

Read the GPS data and return them as matrices.

[lla,speed,course,dops,gpsReceiverTime,timestamp,overruns] = read(gps)

lla = 1×3

   NaN   NaN   NaN

speed = NaN

course = NaN

dops = 1×3

   NaN   NaN   NaN

gpsReceiverTime = datetime
   NaT

timestamp = datetime
   22-Mar-2021 03:41:00.274

overruns = 1

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 1

gps.SamplesAvailable

ans = 0

Flush all GPS data accumulated in the buffers and reset the SamplesRead and SamplesAvailable
properties.

flush(gps)

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 0

gps.SamplesAvailable
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ans = 0

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;
clear s;

Input Arguments
gps — GPS sensor
gpsdev object

The GPS sensor, specified as a gpsdev object.

Output Arguments
tt — GPS data
timetable

GPS data, returned as a timetable. The timetable returned has the following fields:

• LLA (Latitude, Longitude, Altitude)
• Ground Speed
• Course over ground
• Dilution of Precisions(DOPs), VDOP,HDOP,PDOP
• GPS Receiver Time
• Time — System time when the data is read, in datetime or duration format

Data Types: timetable

lla — Position in LLA coordinate system
N-by-3 matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA), returned as a real
finite N-by-3 array. Latitude and longitude are in degrees with North and East being positive. Altitude
is in meters.
Data Types: double

groundSpeed — Speed in m/s
N-by-1 vector

Speed over ground, returned as a real finite N-by-1 vector.
Data Types: double

course — Course over ground
N-by-1 vector

Course over ground relative to true north, returned as a real finite N-by-1 vector of values between 0
and 2pi radians.
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Data Types: double

dops — Dilution of precisions
N-by-3 matrix

Dilution of precisions, returned as a real finite N-by-3 matrix of the form [PDOP,HDOP,VDOP].
Data Types: double

gpsReceiverTime — UTC time
N-by-1 vector

UTC time, returned as a N-by-1 vector.
Data Types: datetime

timestamp — Time at which GPS data is read
N-by-1 vector

Time at which GPS data is read, returned as a real finite N-by-1 vector. This is the system time. If the
TimeFormat is datetime, the timestamp will be datetime. If the TimeFormat is a duration, the
timestamp will be duration

• datetime — Displays the date and time at which the data is read.
• duration — Displays the time elapsed in seconds after the first call of the read function or the

last execution of the release function.

Note If the SamplesPerRead is greater than 1, an extrapolation is done on the time value. Hence it
might not be precise.

Data Types: datetime | duration

overrun — Overrun
scalar

The number of samples lost between consecutive calls to read. The overrun is zero when ReadMode
is set to oldest.
Data Types: double

More About
read Output

The gpsdev object expects GPRMC, GPGGA, and GPGSA sentences as outputs from the GPS receiver
to get the required values. The read function errors out if these sentences are not available.

The read function outputs NaN and NaT in the following situations:

• If the GPS module does not receive valid data because there is no satellite lock or when GPS does
not give a particular value.

• If there is a checksum failure, corresponding data points will be NaN for numeric outputs (lla,
speed, course, dops) and NaT for gpsRecieverTime. lla is taken from GPGGA sentence,
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speed,course, and gpsRecieverTime is taken GPRMC sentence and dops are taken from
GPGSA sentence.

Because read function is non blocking, the following is expected:

• If no new data is available, the output of read is the previous data. For example, if the delay
between subsequent reads is less than the UpdateRate of the GPS receiver.

Because GPS data is validated in the first read operation, it might take more time compared to the
subsequent read operations.

Version History
Introduced in R2020b

See Also
Objects
gpsdev

Functions
flush | release | info | writeBytes
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readBinaryOccupancyGrid
Read binary occupancy grid

Syntax
map = readBinaryOccupancyGrid(msg)
map = readBinaryOccupancyGrid(msg,thresh)
map = readBinaryOccupancyGrid(msg,thresh,val)

Description
map = readBinaryOccupancyGrid(msg) returns a binaryOccupancyMap object by reading the
data inside a ROS message, msg, which must be a 'nav_msgs/OccupancyGrid' message. All
message data values greater than or equal to the occupancy threshold are set to occupied, 1, in the
map. All other values, including unknown values (-1) are set to unoccupied, 0, in the map.

Note The msg input is an 'nav_msgs/OccupancyGrid' ROS message. For more info, see
OccupancyGrid.

map = readBinaryOccupancyGrid(msg,thresh) specifies a threshold, thresh, for occupied
values. All values greater than or equal to the threshold are set to occupied, 1. All other values are
set to unoccupied, 0.

map = readBinaryOccupancyGrid(msg,thresh,val) specifies a value to set for unknown
values (-1 ). By default, all unknown values are set to unoccupied, 0.

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object handle.

thresh — Threshold for occupied values
50 (default) | scalar

Threshold for occupied values, specified as a scalar. Any value greater than or equal to the threshold
is set to occupied, 1. All other values are set to unoccupied, 0.
Data Types: double

val — Value to replace unknown values
0 (default) | 1

Value to replace unknown values, specified as either 0 or 1. Unknown message values (-1) are set to
the given value.
Data Types: double | logical

 readBinaryOccupancyGrid

1-207



Output Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

Binary occupancy grid, returned as a binaryOccupancyMap object handle. map is converted from a
'nav_msgs/OccupancyGrid' message on the ROS network. The object is a grid of binary values,
where 1 indicates an occupied location and 0 indications an unoccupied location.

Version History
Introduced in R2015a

See Also
Objects
OccupancyGrid | occupancyMap | binaryOccupancyMap

Functions
rosReadOccupancyGrid | rosWriteBinaryOccupancyGrid | rosWriteOccupancyGrid
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readOccupancyGrid
Read occupancy grid message

Syntax
map = readOccupancyGrid(msg)

Description
map = readOccupancyGrid(msg) returns an occupancyMap object by reading the data inside a
ROS message, msg, which must be a 'nav_msgs/OccupancyGrid' message. All message data
values are converted to probabilities from 0 to 1. The unknown values (-1) in the message are set as
0.5 in the map.

Note The msg input is an 'nav_msgs/OccupancyGrid' ROS message. For more info, see
OccupancyGrid.

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as an OccupancyGrid ROS message object
handle.

Output Arguments
map — Occupancy map
occupancyMap object handle

Occupancy map, returned as an occupancyMap object handle.

Version History
Introduced in R2016b

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosWriteBinaryOccupancyGrid
| rosWriteOccupancyGrid
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readOccupancyMap3D
Read 3-D map from Octomap ROS message

Syntax
map = readOccupancyMap3D(msg)

Description
map = readOccupancyMap3D(msg) reads the data inside a ROS 'octomap_msgs/Octomap'
message to return an occupancyMap3D object. All message data values are converted to
probabilities from 0 to 1.

Input Arguments
msg — Octomap ROS message
structure

Octomap ROS message, specified as a structure of message type 'octomap_msgs/Octomap'. Get
this message by subscribing to an 'octomap_msgs/Octomap' topic using rossubscriber on a live
ROS network or by creating your own message using rosmessage.

Output Arguments
map — 3-D occupancy map
occupancyMap3D object handle

3-D occupancy map, returned as an occupancyMap3D object handle.

Version History
Introduced in R2021a

See Also
occupancyMap3D | rosmessage | rossubscriber
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receiverposition
Estimate GNSS receiver position and velocity

Syntax
recPos = receiverposition(p,satPos)
[recPos,recVel] = receiverposition( ___ ,pdot,satVel)
[recPos,recVel,hdop,vdop] = receiverposition( ___ )
[recPos,recVel,hdop,vdop,info] = receiverposition( ___ )

Description
recPos = receiverposition(p,satPos) returns the receiver position estimated from the
pseudoranges and satellite positions.

[recPos,recVel] = receiverposition( ___ ,pdot,satVel) also returns the receiver velocity
estimated from the pseudorange rates pdot and satellite velocities satVel.

[recPos,recVel,hdop,vdop] = receiverposition( ___ ) also returns the horizontal dilution
of precision hdop and vertical dilution of precision vdop associated with the position estimate.

[recPos,recVel,hdop,vdop,info] = receiverposition( ___ ) returns information about
the clock bias, clock drift, and time dilution of precision.

Examples

Estimate Receiver Position from Pseudoranges and Satellite Positions

Use the receiverposition function to estimate a GNSS receiver position. Get the satellte
positiions and velocities using the gnssconstellation function. Generate pseudoranges from these
positions using the pseudoranges function.

Specify a receiver position in geodetic coordinates (latitude, longitude, altitude) and a receiver
velocity in the local navigation frame.

recPos = [42 -71 50];
recVel = [1 2 3];

Get the satellite positions for the current time.

t = datetime('now');
[gpsSatPos,gpsSatVel] = gnssconstellation(t);

Get the pseudoranges and pseudorange rates between the GNSS receiver and the satellites.

[p,pdot] = pseudoranges(recPos,gpsSatPos,recVel,gpsSatVel);

Use the pseudoranges to estimate the receiver position and velocity. The values close to your original
receiver position and velocity used to generate the satellite position and pseudoranges.

[lla,gnssVel] = receiverposition(p,gpsSatPos,pdot,gpsSatVel)
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lla = 1×3

   42.0000  -71.0000   50.2591

gnssVel = 1×3

    1.0035    2.0126    3.0031

Input Arguments
p — Pseudoranges between satellites and receiver
n-element vector

Pseudoranges between the satellites and receiver, specified as an n-element vector in meters.
Data Types: single | double

satPos — Satellite positions
N-by-3 matrix of scalars

Satellite positions in the Earth-centered Earth-fixed (ECEF) coordinate system in meters, specified as
an N-by-3 matrix of scalars. N is the number of satellites in the constellation.
Data Types: single | double

pdot — Pseudorange rates between satellites and receiver
n-element vector

Pseudorange rates between the satellites and receiver, specified as an n-element vector in meters per
second.
Data Types: single | double

satVel — Velocity readings in local navigation coordinate system (m/s)
N-by-3 matrix of scalar

Velocity readings of the GNSS receiver in the local navigation coordinate system in meters per
second, specified as an N-by-3 matrix of scalars. N is the number of satellites in the constellation.
Data Types: single | double

Output Arguments
recPos — Receiver position
three-element vector of the form [lat lon alt]

Receiver position in geodetic coordinates, returned as a three-element vector of the form [latitude
longitude altitude]
Data Types: single | double

recVel — Receiver velocity
three-element vector of the form [vx vy vz]
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Receiver velocity in the local navigation frame using north-east-down (NED) coordinates, returned as
a three-element vector of the form [vx vy vz].
Data Types: single | double

hdop — Horizontal dilution of precision
scalar

Horizontal dilution of precision, returned as a scalar.
Data Types: double

vdop — Vertical dilution of precision
scalar

Vertical dilution of precision, returned as a scalar.
Data Types: double

info — Information about clock bias, clock drift, and TDOP
structure

Information about clock bias, clock drift, and time dilution of precision (TDOP), returned as a
structure containing these fields:

• ClockBias — Estimated bias error in receiver clock, in seconds.
• ClockDrift — Estimated drift error in receiver clock, in seconds per second.
• TDOP — Time dilution of precision.

Version History
Introduced in R2021a

References
[1] Groves, Paul D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 2nd

ed. GNSS Technology and Application Series. Boston: Artech House, 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
gnssSensor | gpsSensor | imuSensor

Functions
skyplot | gnssconstellation | lookangles | pseudoranges
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release
Release the GPS object

Syntax
release(gps)

Description
release(gps) release the system objects, allows configuration of non tunable properties, clear the
buffers, and resets the values of SamplesRead and SamplesAvailable properties.

Examples

Read Data from GPS Receiver as Timetable

Read data from the GPS receiver connected to the host computer on a specific serial port.

Required Hardware

To run this example, you need:

• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires

Hardware Connection
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Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Create a gpsdev object for the GPS receiver connected to a specific port. Specify the output format
of the data as a timetable.

gps = gpsdev('COM4','OutputFormat',"timetable")

gps = 
  gpsdev with properties:

                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)

                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Read the GPS data

Read the GPS data and return them as a timetable.

[tt,overruns] = read(gps)

tt=1×5 timetable
              Time                         LLA               GroundSpeed    Course            DOPs                GPSReceiverTime     
    ________________________    _________________________    ___________    ______    ____________________    ________________________

    22-Mar-2021 15:31:15.190    17.47    78.343     449.6      0.25619       NaN      9.31    1.48    9.19    22-Mar-2021 10:01:14.000

overruns = 0

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 1

gps.SamplesAvailable

ans = 0
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Release the GPS object to configure the non tunable properties. The release function also clears the
buffer and resets the SamplesRead and SamplesAvailable properties.

release(gps)

Specify the number of samples per read to 2. Read the GPS data.

gps.SamplesPerRead = 2;
read(gps)

ans=2×5 timetable
              Time                         LLA               GroundSpeed    Course            DOPs                GPSReceiverTime     
    ________________________    _________________________    ___________    ______    ____________________    ________________________

    22-Mar-2021 15:31:17.178    17.47    78.343       450     0.063791       NaN      9.32    1.48     9.2    22-Mar-2021 10:01:16.000
    22-Mar-2021 15:31:17.178    17.47    78.343       450     0.063791       NaN      9.32    1.48     9.2    22-Mar-2021 10:01:16.000

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 1

gps.SamplesAvailable

ans = 0

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;

Input Arguments
gps — GPS sensor
gpsdev object

The GPS sensor, specified as a gpsdev object.

Version History
Introduced in R2020b

See Also
Objects
gpsdev

Functions
flush | writeBytes | read | info
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removeInvalidData
Remove invalid range and angle data

Syntax
validScan = removeInvalidData(scan)
validScan = removeInvalidData(scan,Name,Value)

Description
validScan = removeInvalidData(scan)returns a new lidarScan object with all Inf and NaN
values from the input scan removed. The corresponding angle readings are also removed.

validScan = removeInvalidData(scan,Name,Value)provides additional options specified by
one or more Name,Value pairs.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)
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Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')
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Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ["RangeLimits",[0.05 2]

RangeLimits — Range reading limits
two-element vector

Range reading limits, specified as a two-element vector, [minRange maxRange], in meters. All
range readings and corresponding angles outside these range limits are removed
Data Types: single | double
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AngleLimits — Angle limits
two-element vector

Angle limits, specified as a two-element vector, [minAngle maxAngle] in radians. All angles and
corresponding range readings outside these angle limits are removed.

Angles are measured counter-clockwise around the positivez-axis.
Data Types: single | double

Output Arguments
validScan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object. All invalid lidar scan readings are removed.

Version History
Introduced in R2019b

See Also
lidarScan | transformScan | matchScans
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rinexinfo
Get information about RINEX file

Syntax
fileinfo = rinexinfo(filename)

Description
fileinfo = rinexinfo(filename) gets information about the specified RINEX version 3 file
filename, and returns it as a structure, fileinfo. The contents of fileinfo depend on the RINEX
file type and the satellite system in the file.

Examples

Query Navigation And Observation Messages From RINEX File

GPS Navigation Message Info

filename = "GODS00USA_R_20211750000_01D_GN.rnx"; 
info = rinexinfo(filename)

info = struct with fields:
             FileVersion: 3.0400
     FileSatelliteSystem: 'G'
                FileType: 'N'
                Comments: [3x1 string]
    LeapSecondParameters: [1x1 struct]
                     PGM: "JPS2RIN v.2.0.191"
                   RunBy: "JAVAD GNSS"
            CreationDate: 25-Jun-2021 00:06:25
                FileName: "GODS00USA_R_20211750000_01D_GN.rnx"
                FileSize: 109092

Galileo Navigation Message Info

filename = "GODS00USA_R_20211750000_01D_EN.rnx"; 
info = rinexinfo(filename)

info = struct with fields:
               FileVersion: 3.0400
       FileSatelliteSystem: 'E'
                  FileType: 'N'
                  Comments: [3x1 string]
    IonosphericCorrections: [1x1 struct]
      LeapSecondParameters: [1x1 struct]
                       PGM: "JPS2RIN v.2.0.191"
                     RunBy: "JAVAD GNSS"
              CreationDate: 25-Jun-2021 00:06:25
                  FileName: "GODS00USA_R_20211750000_01D_EN.rnx"
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                  FileSize: 1063207

GLONASS Navigation Message Info

filename = "GODS00USA_R_20211750000_01D_RN.rnx";
info = rinexinfo(filename)

info = struct with fields:
             FileVersion: 3.0400
     FileSatelliteSystem: 'R'
                FileType: 'N'
                Comments: [3x1 string]
    LeapSecondParameters: [1x1 struct]
                     PGM: "JPS2RIN v.2.0.191"
                   RunBy: "JAVAD GNSS"
            CreationDate: 25-Jun-2021 00:06:25
                FileName: "GODS00USA_R_20211750000_01D_RN.rnx"
                FileSize: 141452

BeiDou Navigation Message Info

filename = "GODS00USA_R_20211750000_01D_CN.rnx";
info = rinexinfo(filename)

info = struct with fields:
              FileVersion: 3.0400
      FileSatelliteSystem: 'C'
                 FileType: 'N'
                 Comments: [3x1 string]
     LeapSecondParameters: [1x1 struct]
                      PGM: "JPS2RIN v.2.0.191"
                    RunBy: "JAVAD GNSS"
             CreationDate: 25-Jun-2021 00:06:26
    TimeSystemCorrections: [1x1 struct]
                 FileName: "GODS00USA_R_20211750000_01D_CN.rnx"
                 FileSize: 155431

NavIC/IRNSS Navigation Message Info

filename = "ARHT00ATA_R_20211750000_01D_IN.rnx";
info = rinexinfo(filename)

info = struct with fields:
             FileVersion: 3.0400
     FileSatelliteSystem: 'I'
                FileType: 'N'
                Comments: [3x1 string]
    LeapSecondParameters: [1x1 struct]
                     PGM: "JPS2RIN v.2.0.191"
                   RunBy: "JAVAD GNSS"
            CreationDate: 25-Jun-2021 00:03:18
                FileName: "ARHT00ATA_R_20211750000_01D_IN.rnx"
                FileSize: 74322
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QZSS Navigation Message Info

filename = "ARHT00ATA_R_20211750000_01D_JN.rnx";
info = rinexinfo(filename)

info = struct with fields:
             FileVersion: 3.0400
     FileSatelliteSystem: 'J'
                FileType: 'N'
                Comments: [3x1 string]
    LeapSecondParameters: [1x1 struct]
                     PGM: "JPS2RIN v.2.0.191"
                   RunBy: "JAVAD GNSS"
            CreationDate: 25-Jun-2021 00:03:18
                FileName: "ARHT00ATA_R_20211750000_01D_JN.rnx"
                FileSize: 22970

SBAS Navigation Message Info

filename = "GOP600CZE_R_20211750000_01D_SN.rnx";
info = rinexinfo(filename)

info = struct with fields:
            FileVersion: 3.0400
    FileSatelliteSystem: 'S'
               FileType: 'N'
               Comments: "SBAS NAVIGATION DATA FROM STATION GOP6 (RIGTC, GO PECNY)    "
                    PGM: "sbf2rin-13.4.5"
                  RunBy: "RIGTC, GO PECNY"
           CreationDate: 25-Jun-2021 00:26:37
               FileName: "GOP600CZE_R_20211750000_01D_SN.rnx"
               FileSize: 1083132

Mixed Observation Info

filename = "GODS00USA_R_20211750000_01H_30S_MO.rnx";
info = rinexinfo(filename)

info = struct with fields:
                FileVersion: 3.0400
        FileSatelliteSystem: 'M'
                   FileType: 'O'
           ObservationTypes: [4x1 struct]
              NumSatellites: 44
              AntennaNumber: "02083"
                AntennaType: "JAVRINGANT_DM   SCIS"
            AntennaDeltaHEN: [0.0083 0 0]
             ApproxPosition: [1.1308e+06 -4.8313e+06 3.9941e+06]
    GLONASSFrequencyNumbers: [1x1 struct]
                   Interval: 30
       LeapSecondParameters: [1x1 struct]
                 MarkerName: "GODS"
               MarkerNumber: "40451M128"
                   Observer: "GGN"
                     Agency: "NASA GODDARD SPACE FLIGHT CENTER"
                        PGM: "JPS2RIN v.2.0.191"
                      RunBy: "JAVAD GNSS"
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               CreationDate: 24-Jun-2021 01:05:22
          TotalObservations: [44x1 struct]
             ReceiverNumber: "02704"
               ReceiverType: "JAVAD TRE_3 DELTA"
            ReceiverVersion: "4.0.02"
                 PhaseShift: [22x1 struct]
               FirstObsTime: 23-Jun-2021 23:59:42
                LastObsTime: 24-Jun-2021 00:59:12
                   FileName: "GODS00USA_R_20211750000_01H_30S_MO.rnx"
                   FileSize: 1240462

Input Arguments
filename — Name of RINEX version 3 file
string scalar | character vector

Name of the RINEX version 3 file to read data from, specified as a string scalar or character vector.
Example: "GODS00USA_R_20211750000_01D_GN.rnx"
Data Types: string | char

Output Arguments
fileinfo — RINEX file contents
structure

RINEX file contents, returned as a structure. The structure has different fields depending on the type
of RINEX file and the header entries in the file. See the “Output for Navigation Message Files” on
page 1-224 and “Output for Observation Message Files” on page 1-227 sections for more information
about the output structure.

More About
Output for Navigation Message Files

If the specified RINEX file is a navigation message file, the fileinfo output is a structure with these
fields:

Field Type Description
FileName string Name of file
FileSize double File size in bytes
SatelliteSyste
m

string "GPS", "Galileo", "GLONASS", "BeiDou", "NavIC",
"QZSS", "SBAS", or "Mixed"

Version double Format Version
FileType char File type, specified as either 'N' for navigation message

files and 'O' for observation data files.
PGM string Name of the program that created the file
RunBy string Name of the agency that created the file

1 Functions

1-224



Field Type Description
CreationDate string Date and time of file creation
Comments
(Optional)

string Comment lines from file header

IonosphericCor
rections
(Optional)

structure array An array of structures with a number of elements equal to
the number of IONOSPHERIC CORR header lines in the file.
Each structure has the CorrectionType, Parameters,
TimeMark, and SVID fields.

TimeMark and SVID are optional for all satellite systems
except BeiDou.

Correction type:

• GAL — Galileo ai0 to ai2
• GPSA — GPS alpha0 to alpha3
• GPSB — GPS beta0 to beta3
• QZSA — QZS alpha0 to alpha3
• QZSB — QZS beta0 to beta3
• BDSA — BDS alpha0 to alpha3
• BDSB — BDS beta0 to beta3
• IRNA — NavIC/IRNSS alpha0 to alpha3
• IRNB — NavIC/IRNSS beta0 to beta3

Parameters:

• GAL — ai0, ai1, ai2, Blank
• GPS — alpha0 to alpha3 or beta0 to beta3
• QZS — alpha0 to alpha3 or beta0 to beta3
• BDS — alpha0 to alpha3 or beta0 to beta3
• IRN — alpha0 to alpha3 or beta0 to beta3
• Time mark, Transmission Time (seconds of week)

converted to hours of day and then to A—X. A is 00h—
01h, B is 01h—02h, …, X is 23—24h satellite system
time.

• SV ID, identify which satellite provided the ionospheric
parameters
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Field Type Description
TimeSystemCorr
ections

structure An array of structures with a number of elements equal to
the number of TIME SYSTEM CORR header lines in the file.
Each structure has the CorrectionType, Parameters,
ReferenceTime, ReferenceWeekNumber, SVID, and
UTCID fields.

Correction type:

• GPUT = GPS - UTC (a0, a1)
• GLUT = GLO - UTC (a0 = -TauC, a1 = zero)
• GAUT = GAL - UTC ( a0, a1)
• BDUT = BDS - UTC (a0 = A0UTC, a1 = A1UTC )
• QZUT = QZS - UTC (a0, a1)
• IRUT = IRN - UTC (a0 = A0UTC, a1 = A1UTC )
• SBUT = SBAS - UTC (a0, a1)
• GLGP = GLO - GPS (a0 = -TauGPS, a1 = zero)
• GAGP = GAL - GPS (a0 = A0G, a1 = A1G for GAL INAV/

FNAV; a0 = –A0GGTO, a1 = –A1 GGTO for GPS CNAV)
• QZGP = QZS - GPS (a0, a1)
• IRGP = IRN - GPS (a0 = A0, a1 = A1 )

Parameters:

• a0, a1 coefficients of linear polynomial Δt = a0 + a1 · (t -
tref) for fractional part (excluding leap seconds) of time
system difference (a0; sec, a1; sec/sec)

• Reference time (T) for polynomial (Seconds into
GPS/GAL/BDS/QZS/IRN/SBAS week)

• Reference week number (W)
• GPS/GAL/QZS/IRN/SBAS week aligned to GPS,

continuous number from 6-Jan-1980
• GLONASS T and W zero.
• BDS week, continuous from: 1-Jan-2006
• SV ID, System identifier and PRN/slot number ‘snn’ of

the GNSS satellite broadcasting the time system
difference or SBAS satellite broadcasting the MT12. Use
EGNOS, WAAS, or MSAS for SBAS time differences from
MT17.

• UTC Identifier
• 0 if unknown
• 1 = UTC(NIST)
• 2 = UTC(USNO)
• 3 = UTC(SU)
• 4 = UTC(BIPM)

1 Functions

1-226



Field Type Description
• 5 = UTC(Europe Lab)
• 6 = UTC(CRL)
• 7 = UTC(NTSC) (BDS)
• >7 = not assigned yet.

LeapSecondPara
meters (Optional)

structure Leap second parameters in a structure with fields
LeapSeconds, DeltaTimeLeapSeconds, WeekNumber,
DayNumber, and TimeSystemID .

• LeapSeconds — Current number of leap seconds.
• DeltaTimeLeapSeconds — Future or past leap

seconds. For example, it is future leap seconds if the
week and day numbers are in the future.

• WeekNumber — For GPS, GAL, QZS, and IRN, number of
weeks since January 6, 1980. For BDS, it is number of
weeks since January 1, 2006.

• DayNumber — The day number is the GPS or BeiDou
day before the leap second. For GPS, this number is in
the range [1, 7]. For Beidou, this number is in the range
[0, 6].

• TimeSystemID — Only "GPS" and "BDT" are valid
values. If blank the field defaults to "GPS".

Note that optional fields are not present in the structure unless specified in the RINEX file.

Output for Observation Message Files

If the specified RINEX file is an observation message file, the output is a structure with these fields:

Field Type Entry
FileName string Name of file
FileSize double File size in bytes
SatelliteSyste
m

string "GPS", "Galileo", "GLONASS", "BeiDou", "NavIC",
"QZSS", "SBAS", or "Mixed"

Version double Format Version
FileType char File type, specified as either 'N' for navigation message

files and 'O' for observation data files.
PGM string Name of the program that created the file
RunBy string Name of the agency that created the file
CreationDate string Date and time of file creation
Comments
(Optional)

string Comment lines from file header

MarkerName string Name of antenna marker
MarkerNumber
(Optional)

string Number of antenna marker
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Field Type Entry
MarkerType
(Optional for
GEODETIC and
NON_GEODETIC
marker types)

string Type of marker

Observer string Name of observer
Agency string Name of agency
ReceiverNumber string Receiver number
ReceiverType string Receiver type
ReceiverVersio
n

string Receiver version

AntennaNumber string Antenna number
AntennaType string Antenna type
ApproxPosition double Approximate marker position in meters.
AntennaDeltaHE
N

double Height of the antenna reference point (ARP) above marker,
and horizontal eccentricity of ARP relative to marker (East/
North) in meters.

AntennaDeltaXY
Z

double Position of antenna reference point for antenna on vehicle
in meters.

AntennaPhaseCe
nter
(Optional)

structure array A structure array with number of elements equal to the
number of ANTENNA: PHASECENTER header lines in the
file. Each structure has SatelliteSystem,
ObservationCode, and PhaseCenterfields. Where:

SatelliteSystem — The specified satellite system.

ObservationCode — The observation code. See the
“Observation Type Descriptors” on page 1-231 section for
more information.

PhaseCenter — The average phase center position with
respect to the antenna reference point, in meters, North/
East/Up for fixed station, XYZbody-fixed system for a
vehicle.

AntennaBSightX
YZ

double Direction of the vertical antenna axis toward the GNSS
satellites. If the antenna is on a vehicle, the direction is a
unit vector in a body-fixed coordinate system. If the antenna
is a tilted antenna on fixed station, the direction is a unit
vector in East-North-Up (ENU) left-handed system.

AntennaZeroDir
XYZ (Optional)

double Zero direction of the antenna. If the antenna is on a vehicle,
the zero direction is unit vector is in a body-fixed coordinate
system. If the tilted antenna is on a fixed station, the zero
direction is a unit vector in East-North-Up (ENU) left-
handed system.
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Field Type Entry
CenterOfMassXY
Z

double Current center of mass of the vehicle in a body-fixed
coordinate system, in meters.

ObservationTyp
es

structure array A structure array with number of elements equal to the
number of satellite systems in the file. Each structure has
SatelliteSystem and Descriptors fields. Where:

SatelliteSystem — String specifying the satellite
system.

Descriptors — String array of 3-element observation
descriptors. The first element is the Type, the second is the
Band, and the third is the Attribute. See the “Observation
Type Descriptors” on page 1-231 section for more
information.

SignalStrength
Unit (Optional)

string Unit of the carrier to noise ratio observables SNN (if
present) DBHZ: S/N given in dbHz.

Interval
(Optional)

double Observation interval in seconds.

FirstObsTime
(Optional, unless
RINEX file is a
mixed GNSS file)

datetime Time of first observation record. Time systems are:

• GPS — GPS time system
• GLO — UTC time system
• GAL — Galileo time system
• QZS — QZSS time system
• BDT — BDS time system
• IRN — NavIC/IRNSS time system

HasReceiverClo
ckOffset
(Optional, unless,
the epoch lines of
the data section
reports clock
offsets)

logical Epoch, code, and phase are corrected by applying the real-
time-derived receiver clock offset.

DCBS (Optional) structure array An array with number of elements equal to number of
satellite systems in the file. Each structure has
SatelliteSystem, Program, and Source fields. Where:

SatelliteSystem — String specifying satellite system

Program — String specifying the program used to apply
differential code bias corrections (DCBS)

Source — String URL of source of corrections
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Field Type Entry
PCVS (Optional) structure array An array with number of elements equal to number of

satellite systems in the file. Each structure has
SatelliteSystem, Program, and Source fields. Where:

SatelliteSystem — String specifying satellite system

Program — String specifying the program used to apply
phase center variation corrections (PCVS)

Source — String URL of source of corrections
ScaleFactor structure array An array with number of elements equal to number of

“SYS / SCALE FACTOR” header lines in the file. Each
structure has SatelliteSystem, Factor, and
ObservationTypes fields. Where:

SatelliteSystem — String specifying satellite system

Factor — is a factor to divide stored observations with
before use

ObservationTypes — is a list of observation types
PhaseShift
(Optional)

structure array An array with number of elements equal to number of
“SYS / PHASE SHIFT” header lines in the file. Each
structure has SatelliteSystem, ObservationType,
Correction, SatelliteIDs fields. Where:

SatelliteSystem — String specifying the satellite
system.

ObservationType — String specifying carrier phase
observation code.

Correction — Value of correction applied (cycles).

SatelliteIDs — String array of satellites where
correction is applied.

GLONASSFrequen
cyNumbers
(Optional unless
using files with
GLONASS
satellites)

structure A structure with fields Slot and FrequencyNumber.
Where:

Slot — String array of satellite numbers (system code (R),
slot)

FrequencyNumber — Vector of integer doubles.
GLONASSCodePha
seBias

structure A structure with fields ObservationTypes and Bias.
Where:

ObservationTypes — String array of observation types.
Valid values are “C1C”, “C1P”, “C2C”, or “C2P”.

Bias — Vector of code phase bias corrections in meters.
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Field Type Entry
LeapSecondPara
meters (Optional)

structure Leap second parameters in a structure with fields
LeapSeconds, DeltaTimeLeapSeconds, WeekNumber,
DayNumber, and TimeSystemID .

• LeapSeconds — Current number of leap seconds.
• DeltaTimeLeapSeconds — Future or past leap

seconds. For example, it is future leap seconds if the
week and day numbers are in the future.

• WeekNumber — For GPS, GAL, QZS, and IRN, number of
weeks since January 6, 1980. For BDS, it is number of
weeks since January 1, 2006.

• DayNumber — The day number is the GPS or BeiDou
day before the leap second. For GPS, this number is in
the range [1, 7]. For Beidou, this number is in the range
[0, 6].

• TimeSystemID — Only "GPS" and "BDT" are valid
values. If blank the field defaults to "GPS".

NumSatellites
(Optional)

double Number of satellites, for which observations are stored in
the file.

TotalObservati
ons (Optional)

structure array An array of structure with the number of elements equal to
the number of PRN / # OF OBS header lines in the file.
Each structure has a SatelliteID and
NumObservations field.

Note that optional fields are not present in the structure unless specified in the RINEX file.

Observation Type Descriptors

Observation type descriptors is a string comprised of three parts. The first part is the observation
type, the second is the frequency band, and the third is the attribute which indicates the tracking
mode or channel.

The observation type can be one of five types.

Type

• C — Code or pseudorange, is the distance, in meters, between the receiver antenna and the
satellite antenna including delays and other biases.

• L — Phase is the carrier phase range from the antenna to the satellite, measured in whole cycles.
• D — Doppler shift indicating the approach of satellites, where a positive value indicates an

approaching satellite.
• S — Raw signal strength (carrier to noise ratio) as an integer in the range [1, 9].
• X — Receiver channel numbers.

You can identify the frequency band code number given a frequency band and a satellite system.
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Frequency Band vs Satellite System

Frequency
Band Code
Number

GPS QZSS SBAS BDS GLO GAL NavIC/
IRNSS

1 L1 L1 L1 L1 G1 E1 —
2 L2 L2 — B1 G2 — —
3 — — — — G3 — —
4 — — — — G1a — —
5 L5 L5 L5 B2a — E5a L5
6 — L6 — B3 or B3A G2a E6 —
7 — — — B2 or B2b — E5b —
8 — — — B2a and

B2b
— E5a and

E5b
—

9 — — — — — — S

You can identify the attribute letter given a channel or code and a satellite system.
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Attribute vs Satellite System

Attribute
Letter

GPS QZSS SBAS BDS GLO GAL NavIC/
IRNSS

A — — — — A channel A channel A channel
B — — — — A channel A channel A channel
C C code-

based
C code-
based

C code-
based

— C code-
based

C channel C channel

D Semi-
codeless

Semi-
codeless

— Data
channel

— — —

E — E channel — — — — —
I I channel I channel — I channel — I channel —
L L channel

(L2C GPS)

P channel

L channel

P channel

— — — — —

M M-based
code

— — — — — —

N Codeless — — — — — —
P P code-

based
— — Pilot

channel
P code-
based

— —

Q Q channel Q channel — Q channel — Q channel —
S D channel

M channel
(L2C GPS)

D channel

M channel

— — — — —

W Based on Z-
tracking

— — — — — —

X I and Q
channels

M and L
channels

D and P
channels

I and Q
channels

M and L
channels

D and P
channels

— I and Q
channels

D and P
channels

— B and C
channels

I and Q
channels

B and C
channels

Y Y code-
based

— — — — — —

Z — I and Q
channels

D and E
channels

— D and P
channels

— A, B, and C
channels

—

These are examples of codes:

• C1M — L1 pseudorange derived from the M channel for a GPS satellite.
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• L5X — E5a carrier phase derived from the B and C channels for a Galileo satellite.
• S3I — G3 signal strength derived from the I channels for a GLONASS satellite.

Version History
Introduced in R2022a
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rinexread
Read data from RINEX file

Syntax
data = rinexread(filename)

Description
data = rinexread(filename) reads data from the RINEX version 3 file filename and returns a
structure, data. The content of data depends on the RINEX file type and the satellite system in the
file.

Examples

Read Navigation and Observation Data from RINEX File

Read navigation data from a RINEX file that contains GPS navigation message data.

filename = "GODS00USA_R_20211750000_01D_GN.rnx"; 
data = rinexread(filename)

data = struct with fields:
    GPS: [178x32 timetable]

View the GPS data read from the RINEX file.

data.GPS(1:4,:)

ans=4×32 timetable
            Time            SatelliteID    SVClockBias    SVClockDrift    SVClockDriftRate    IODE      Crs       Delta_n        M0          Cuc        Eccentricity        Cus        sqrtA        Toe            Cic        OMEGA0         Cis          i0        Crc       omega       OMEGA_DOT        IDOT       L2ChannelCodes    GPSWeek    L2PDataFlag    SVAccuracy    SVHealth        TGD        IODC    TransmissionTime    FitInterval    BRDCOrbit7Spare3    BRDCOrbit7Spare4
    ____________________    ___________    ___________    ____________    ________________    ____    _______    __________    ______    ___________    ____________    ___________    ______    __________    ___________    _______    ___________    _______    ______    ________    ___________    __________    ______________    _______    ___________    __________    ________    ___________    ____    ________________    ___________    ________________    ________________

    24-Jun-2021 01:59:44        27         -0.00015208    -6.1391e-12            0             15      72.312    4.3363e-09    2.0809     3.5968e-06      0.009451      -1.4156e-07    5153.7    3.5278e+05    -1.6764e-07     1.2866    -1.8626e-08    0.97551    389.44     0.63488    -8.3371e-09    1.8715e-10          1            2163           0             2            0         1.8626e-09     15        3.5214e+05            4               NaN                 NaN       
    24-Jun-2021 01:59:44        32          1.7294e-05    -1.5916e-12            0              4      13.344     5.122e-09    2.8368     6.4075e-07     0.0050207        5.506e-06    5153.7    3.5278e+05    -4.4703e-08    -1.8617     -9.872e-08    0.95692    270.06     -2.3609    -8.0468e-09    2.6001e-10          1            2163           0             2            0         4.6566e-10      4        3.4779e+05            4               NaN                 NaN       
    24-Jun-2021 02:00:00         5         -4.5857e-05    -1.1369e-12            0             85     -72.969    4.4023e-09    2.5741    -3.7141e-06     0.0061384       1.2752e-05    5153.9     3.528e+05    -4.2841e-08    -2.9385    -6.5193e-08    0.95703    132.41     0.91319    -7.6064e-09    6.7574e-10          1            2163           0             2            0        -1.1176e-08     85        3.4566e+05            4               NaN                 NaN       
    24-Jun-2021 02:00:00         8         -2.6249e-05    -1.4779e-12            0            118      68.562     4.488e-09    2.1771     3.4925e-06      0.006354      -3.8743e-07    5153.6     3.528e+05    -2.9802e-08     1.2691     1.1362e-07    0.96693    390.12    0.060807    -8.4093e-09    1.4572e-10          1            2163           0             2            0         5.1223e-09    118        3.4944e+05            4               NaN                 NaN       

Read navigation data from a RINEX file that contains Galileo navigation message data.

filename = "GODS00USA_R_20211750000_01D_EN.rnx"; 
data = rinexread(filename)

data = struct with fields:
    Galileo: [1798x32 timetable]

View the Galileo data read from the RINEX file.

data.Galileo(1:4,:)
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ans=4×32 timetable
            Time            SatelliteID    SVClockBias    SVClockDrift    SVClockDriftRate    IODnav      Crs       Delta_n        M0           Cuc        Eccentricity        Cus        sqrtA       Toe          Cic        OMEGA0       Cis          i0        Crc      omega      OMEGA_DOT        IDOT        DataSources    GALWeek    BRDCOrbit5Spare4    SISAccuracy    SVHealth     BGDE5aE1       BGDE5bE1      TransmissionTime    BRDCOrbit7Spare2    BRDCOrbit7Spare3    BRDCOrbit7Spare4
    ____________________    ___________    ___________    ____________    ________________    ______    _______    __________    _______    ___________    ____________    ___________    ______    ________    __________    ______    __________    _______    ______    ______    ___________    ___________    ___________    _______    ________________    ___________    ________    ___________    ___________    ________________    ________________    ________________    ________________

    23-Jun-2021 23:50:00        12          0.0051451     -1.8929e-11            0              63      -228.06    2.6619e-09     1.8119    -1.0498e-05     0.00038668      1.3597e-07    5440.6    3.45e+05    6.8918e-08    2.1427    7.2643e-08    0.99195    352.22     0.556    -5.7577e-09    -2.7715e-10        258         2163             0               3.12            0       -1.0477e-08              0       3.4575e+05             NaN                 NaN                 NaN       
    23-Jun-2021 23:50:00        12          0.0051451     -1.8929e-11            0              63      -228.06    2.6619e-09     1.8119    -1.0498e-05     0.00038668      1.3597e-07    5440.6    3.45e+05    6.8918e-08    2.1427    7.2643e-08    0.99195    352.22     0.556    -5.7577e-09    -2.7715e-10        517         2163             0               3.12            0       -1.0477e-08    -1.0245e-08       3.4566e+05             NaN                 NaN                 NaN       
    23-Jun-2021 23:50:00        18         -0.0016176     -1.4765e-11            0              63       136.78    2.5805e-09    0.92409     4.1239e-06         0.1655     -6.6608e-06    5289.4    3.45e+05     2.278e-06    1.3648    2.8983e-06    0.88068    426.12    1.9467     -3.808e-09    -1.4354e-09        258         2163             0               3.12           16        -1.397e-09              0        3.457e+05             NaN                 NaN                 NaN       
    23-Jun-2021 23:50:00        18         -0.0016176     -1.4765e-11            0              63       136.78    2.5805e-09    0.92409     4.1239e-06         0.1655     -6.6608e-06    5289.4    3.45e+05     2.278e-06    1.3648    2.8983e-06    0.88068    426.12    1.9467     -3.808e-09    -1.4354e-09        517         2163             0               3.12          130        -1.397e-09    -1.6298e-09       3.4566e+05             NaN                 NaN                 NaN       

Read navigation data from a RINEX file that contains GLONASS navigation message data.

filename = "GODS00USA_R_20211750000_01D_RN.rnx";
data = rinexread(filename)

data = struct with fields:
    GLONASS: [435x20 timetable]

View the GLONASS data read from the RINEX file.

data.GLONASS(1:4,:)

ans=4×20 timetable
            Time            SatelliteID    SVClockBias    SVFrequencyBias    MessageFrameTime    PositionX    VelocityX    AccelerationX    Health    PositionY    VelocityY    AccelerationY    FrequencyNumber    PositionZ    VelocityZ    AccelerationZ    AgeOperationInfo    StatusFlags    GroupDelay    URAI    HealthFlags
    ____________________    ___________    ___________    _______________    ________________    _________    _________    _____________    ______    _________    _________    _____________    _______________    _________    _________    _____________    ________________    ___________    __________    ____    ___________

    24-Jun-2021 00:15:00         1          8.1313e-05           0              3.4563e+05         -18086      0.52098       -2.794e-09       0         -17098      0.57028        2.794e-09            1            5553.6        3.4569       1.8626e-09            0                NaN           NaN        NaN         NaN    
    24-Jun-2021 00:15:00         6          0.00020024           0              3.4563e+05          19638       1.7307       9.3132e-10       0         5632.6       1.1765      -1.8626e-09           -4             15254       -2.6633      -3.7253e-09            0                NaN           NaN        NaN         NaN    
    24-Jun-2021 00:15:00         7         -4.2243e-05           0              3.4563e+05         8398.3       2.4628      -9.3132e-10       0        -7287.2       1.9438       9.3132e-10            5             22996      -0.28783       -2.794e-09            0                NaN           NaN        NaN         NaN    
    24-Jun-2021 00:15:00         8         -5.9644e-05           0              3.4563e+05        -6761.7       1.8872       -2.794e-09       0         -16497       1.6322        2.794e-09            6             18310        2.1726                0            0                NaN           NaN        NaN         NaN    

Read navigation data from a RINEX file that contains BeiDou navigation message data.

filename = "GODS00USA_R_20211750000_01D_CN.rnx";
data = rinexread(filename)

data = struct with fields:
    BeiDou: [262x32 timetable]

View the BeiDou data read from the RINEX file.

data.BeiDou(1:4,:)

ans=4×32 timetable
       Time        SatelliteID    SVClockBias    SVClockDrift    SVClockDriftRate    AODE      Crs       Delta_n        M0          Cuc        Eccentricity        Cus        sqrtA        Toe          Cic         OMEGA0         Cis          i0        Crc       omega       OMEGA_DOT        IDOT       BRDCOrbit5Spare2    BDTWeek    BRDCOrbit5Spare4    SVAccuracy    SatH1      TGD1        TGD2      TransmissionTime    AODC    BRDCOrbit7Spare3    BRDCOrbit7Spare4
    ___________    ___________    ___________    ____________    ________________    ____    _______    __________    ______    ___________    ____________    ___________    ______    _________    __________    ________    ___________    _______    ______    ________    ___________    __________    ________________    _______    ________________    __________    _____    ________    ________    ________________    ____    ________________    ________________

    24-Jun-2021        19          0.00088369      1.405e-11            0             1      -12.578    3.8541e-09     1.796    -5.4762e-07     0.00095635      9.9069e-06    5282.6    3.456e+05    3.3528e-08     -2.5257    -7.6368e-08    0.96639    162.91     -1.0777    -6.5117e-09    6.9074e-10           0              807            NaN               2           0      1.22e-08    1.22e-08        3.456e+05        0            NaN                 NaN       
    24-Jun-2021        22         -0.00094916     1.0036e-12            0             1      -1.5156    3.8177e-09     0.176     -1.397e-09     0.00067941       9.778e-06    5282.6    3.456e+05    8.3819e-09     -2.5235     -5.262e-08    0.96568    167.77    -0.24907    -6.5153e-09    7.4932e-10           0              807            NaN               2           0      1.66e-08    1.66e-08       3.4719e+05        0            NaN                 NaN       
    24-Jun-2021        23         -0.00094575    -1.3407e-11            0             1       65.797    3.6816e-09    2.7857     3.1893e-06     0.00031504      1.2204e-05    5282.6    3.456e+05    1.3504e-08    -0.41938    -1.8161e-08    0.94965    108.03     -1.7934    -6.5028e-09    -7.461e-10           0              807            NaN               2           0       2.5e-08     2.5e-08        3.456e+05        0            NaN                 NaN       
    24-Jun-2021        29          0.00041021     5.2065e-12            0             1      -37.406    3.9784e-09    1.2963    -1.8175e-06     0.00035773     -2.7698e-06    5282.6    3.456e+05    3.0734e-08      1.6456     7.5903e-08    0.96504    418.03      1.5071    -7.3746e-09    6.4288e-12           0              807            NaN               2           0        -2e-10      -2e-10        3.456e+05        0            NaN                 NaN       

Read navigation data from a RINEX file that contains NavIC/IRNSS navigation message data.

filename = "ARHT00ATA_R_20211750000_01D_IN.rnx";
data = rinexread(filename)
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data = struct with fields:
    NavIC: [121x32 timetable]

View the NavIC data read from the RINEX file.

data.NavIC(1:4,:)

ans=4×32 timetable
            Time            SatelliteID    SVClockBias    SVClockDrift    SVClockDriftRate    IODEC      Crs       Delta_n        M0          Cuc        Eccentricity       Cus        sqrtA        Toe            Cic        OMEGA0         Cis          i0         Crc      omega      OMEGA_DOT        IDOT       BRDCOrbit5Spare2    IRNWeek    BRDCOrbit5Spare4    UserRangeAccuracy    HealthFlags        TGD        BRDCOrbit6Spare4    TransmissionTime    BRDCOrbit7Spare2    BRDCOrbit7Spare3    BRDCOrbit7Spare4


    24-Jun-2021 00:05:36         5         0.00066972       2.874e-10            0             161     -106.31    2.8415e-09    2.0263    -3.6173e-06     0.0017897      2.7739e-05    6493.3    3.4594e+05    -1.5274e-07    -3.1089    -5.5879e-08    0.50996    -764.38    3.1265     -2.333e-09    9.8683e-10           0             2163             0                    2                 0         -4.6566e-10          161              3.4633e+05              0                  NaN                 NaN       
    24-Jun-2021 00:20:48         5         0.00066998      2.8831e-10            0             162      -107.5     2.843e-09    2.0942    -3.6769e-06      0.001791      2.7809e-05    6493.3    3.4685e+05    -1.4529e-07    -3.1089    -5.9605e-08    0.50996    -766.44    3.1251    -2.3358e-09    9.8397e-10           0             2163             0                    2                 0         -4.6566e-10          162               3.471e+05              0                  NaN                 NaN       
    24-Jun-2021 00:36:00         5         0.00067025      2.9002e-10            0             163        -111    2.8401e-09    2.1597     -3.811e-06       0.00179      2.7917e-05    6493.3    3.4776e+05    -1.4156e-07    -3.1089     -6.333e-08    0.50996    -769.81    3.1261    -2.3372e-09    9.8254e-10           0             2163             0                    2                 0         -4.6566e-10          163              3.4796e+05              0                  NaN                 NaN       
    24-Jun-2021 00:50:24         5          0.0006705      2.9024e-10            0             164     -116.94     2.833e-09    2.2222    -4.0196e-06     0.0017894      2.8033e-05    6493.3    3.4862e+05    -1.4156e-07    -3.1089    -6.7055e-08    0.50996    -773.75    3.1267    -2.3358e-09    9.8218e-10           0             2163             0                    2                 0         -4.6566e-10          164              3.4883e+05              0                  NaN                 NaN       

Read navigation data from a RINEX file that contains QZSS navigation message data.

filename = "ARHT00ATA_R_20211750000_01D_JN.rnx";
data = rinexread(filename)

data = struct with fields:
    QZSS: [38x32 timetable]

View the GPS data read from the RINEX file.

data.QZSS(1:4,:)

ans=4×32 timetable
            Time            SatelliteID    SVClockBias    SVClockDrift    SVClockDriftRate    IODE      Crs       Delta_n         M0            Cuc        Eccentricity        Cus        sqrtA        Toe           Cic         OMEGA0         Cis            i0          Crc       omega      OMEGA_DOT        IDOT        L2ChannelCodes    GPSWeek    L2PDataFlag    SVAccuracy    SVHealth        TGD        IODC    TransmissionTime    FitIntervalFlag    BRDCOrbit7Spare3    BRDCOrbit7Spare4
    ____________________    ___________    ___________    ____________    ________________    ____    _______    __________    _________    ___________    ____________    ___________    ______    _________    ___________    ________    ___________    __________    _______    _______    ___________    ___________    ______________    _______    ___________    __________    ________    ___________    ____    ________________    _______________    ________________    ________________

    24-Jun-2021 03:00:00         2         -3.9348e-07    -2.2737e-13            0            169      652.31    4.2109e-10      -1.4146     2.0172e-05       0.075455      1.8919e-05    6493.2    3.564e+05     1.0133e-06    0.015284     5.1968e-07       0.74021    -333.44    -1.5839    -1.2576e-09    -7.2396e-10          2            2163           1             2            0         9.3132e-10    937        3.5568e+05             NaN                NaN                 NaN       
    24-Jun-2021 03:00:00         7         -3.4459e-08              0            0            169     -219.34             0     -0.28401    -7.2382e-06     0.00024876     -2.3516e-05    6493.5    3.564e+05    -6.2976e-06     -1.4553     3.7774e-06    0.00038452      711.5    -1.4708     9.5397e-10              0          2            2163           1             2            0        -6.0536e-09    937        3.5445e+05             NaN                NaN                 NaN       
    24-Jun-2021 04:00:00         2         -3.9442e-07    -2.2737e-13            0            173      646.09    3.6216e-10      -1.1521     1.9951e-05       0.075455      1.9219e-05    6493.2      3.6e+05     8.8662e-07     0.01528     1.4231e-06       0.74021       -342    -1.5839    -1.1636e-09    -8.7111e-10          2            2163           1             2            0         9.3132e-10    941        3.5769e+05             NaN                NaN                 NaN       
    24-Jun-2021 04:00:00         7         -3.3993e-08              0            0            173     -180.16             0    -0.022477    -5.9437e-06     0.00024672     -2.4542e-05    6493.5      3.6e+05    -6.9886e-06     -1.4823    -1.9073e-06    0.00038389     743.97    -1.4428     9.8754e-10              0          2            2163           1             2            0        -6.0536e-09    941        3.5643e+05             NaN                NaN                 NaN       

Read navigation data from a RINEX file that contains SBAS navigation message data.

filename = "GOP600CZE_R_20211750000_01D_SN.rnx";
data = rinexread(filename)

data = struct with fields:
    SBAS: [3342x16 timetable]

View the SBAS data read from the RINEX file.

data.SBAS(1:4,:)

ans=4×16 timetable
            Time            SatelliteID    SVClockBias    SVFrequencyBias    TransmissionTime    PositionX     VelocityX     AccelerationX    Health    PositionY    VelocityY     AccelerationY    AccuracyCode    PositionZ    VelocityZ    AccelerationZ    IODN
    ____________________    ___________    ___________    _______________    ________________    _________    ___________    _____________    ______    _________    __________    _____________    ____________    _________    _________    _____________    ____

    23-Jun-2021 23:57:36        48                   0           0              3.4548e+05         41388      -8.9375e-05              0        31       -8100.7     -0.0013175              0             2         -1.928      0.001952                0       0 
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    23-Jun-2021 23:59:44        48                   0           0               3.456e+05         41388      -9.5625e-05              0        31       -8100.9     -0.0013194              0             2         -1.678      0.001952                0       0 
    24-Jun-2021 00:00:16        36                   0           0              3.4562e+05         42004                0              0        63        3674.8              0              0         32767              0             0                0     214 
    24-Jun-2021 00:00:00        44         -4.0373e-07           0              3.4563e+05        7326.2        0.0032113      -2.25e-07        63         41530     -0.0033694     -1.625e-07         32767         463.05       0.12662      -1.1875e-06      60 

Mixed Observation Data

Read mixed observation data from a RINEX file that contains GPS, GLONASS, Galileo, and BeiDou
observation message data.

filename = "GODS00USA_R_20211750000_01H_30S_MO.rnx";
data = rinexread(filename)

data = struct with fields:
        GPS: [1245x45 timetable]
    GLONASS: [1102x38 timetable]
    Galileo: [859x38 timetable]
     BeiDou: [1303x45 timetable]

View the GPS, GLONASS, Galileo, and BeiDou data read from the RINEX file.

data.GPS(1:4,:)

ans=4×45 timetable
       Time        SatelliteID    EpochFlag    ReceiverClockOffset       C1C        C1C_SSI       L1C        L1C_LLI    L1C_SSI     S1C     S1C_SSI       C1W        C1W_SSI       L1W        L1W_LLI    L1W_SSI     S1W     S1W_SSI       C2X        C2X_SSI       L2X        L2X_LLI    L2X_SSI    S2X     S2X_SSI       C2W        C2W_SSI       L2W        L2W_LLI    L2W_SSI     S2W     S2W_SSI       C5X        C5X_SSI       L5X        L5X_LLI    L5X_SSI    S5X    S5X_SSI    C1X    C1X_SSI    L1X    L1X_LLI    L1X_SSI    S1X    S1X_SSI


    24-Jun-2021         5             0            -0.00047787         2.266e+07      NaN      1.1908e+08      NaN         7          45      NaN       2.266e+07      NaN      1.1908e+08      NaN         7          43      NaN       2.266e+07      NaN      9.2788e+07      NaN          7      42.5      NaN       2.266e+07      NaN      9.2788e+07      NaN         7          43      NaN             NaN      NaN             NaN      NaN        NaN      NaN      NaN      NaN      NaN      NaN      NaN        NaN      NaN      NaN  
    24-Jun-2021        10             0            -0.00047787        2.4266e+07      NaN      1.2752e+08      NaN         6       37.25      NaN      2.4266e+07      NaN      1.2752e+08      NaN         4       25.25      NaN      2.4266e+07      NaN      9.9367e+07      NaN          7      42.5      NaN      2.4266e+07      NaN      9.9367e+07      NaN         4       25.25      NaN      2.4266e+07      NaN      9.5226e+07      NaN          7       47      NaN      NaN      NaN      NaN      NaN        NaN      NaN      NaN  
    24-Jun-2021        13             0            -0.00047787        2.1788e+07      NaN       1.145e+08      NaN         7       47.25      NaN      2.1788e+07      NaN       1.145e+08      NaN         6       36.25      NaN             NaN      NaN             NaN      NaN        NaN       NaN      NaN      2.1788e+07      NaN      8.9217e+07      NaN         6       36.25      NaN             NaN      NaN             NaN      NaN        NaN      NaN      NaN      NaN      NaN      NaN      NaN        NaN      NaN      NaN  
    24-Jun-2021        15             0            -0.00047787             2e+07      NaN       1.051e+08      NaN         8          50      NaN           2e+07      NaN       1.051e+08      NaN         7          46      NaN           2e+07      NaN      8.1898e+07      NaN          8      51.5      NaN           2e+07      NaN      8.1898e+07      NaN         7          46      NaN             NaN      NaN             NaN      NaN        NaN      NaN      NaN      NaN      NaN      NaN      NaN        NaN      NaN      NaN  

data.GLONASS(1:4,:)

ans=4×38 timetable
       Time        SatelliteID    EpochFlag    ReceiverClockOffset       C1C        C1C_SSI       L1C        L1C_LLI    L1C_SSI     S1C     S1C_SSI       C1P        C1P_SSI       L1P        L1P_LLI    L1P_SSI     S1P     S1P_SSI       C2C        C2C_SSI       L2C        L2C_LLI    L2C_SSI     S2C     S2C_SSI       C2P        C2P_SSI       L2P        L2P_LLI    L2P_SSI    S2P     S2P_SSI    C3X    C3X_SSI    L3X    L3X_LLI    L3X_SSI    S3X    S3X_SSI
    ___________    ___________    _________    ___________________    __________    _______    __________    _______    _______    _____    _______    __________    _______    __________    _______    _______    _____    _______    __________    _______    __________    _______    _______    _____    _______    __________    _______    __________    _______    _______    ____    _______    ___    _______    ___    _______    _______    ___    _______

    24-Jun-2021         1             0            -0.00047787        2.3169e+07      NaN      1.2385e+08      NaN         6       38.25      NaN      2.3169e+07      NaN      1.2385e+08      NaN         6       37.25      NaN      2.3169e+07      NaN      9.6328e+07      NaN          5         35      NaN      2.3169e+07      NaN      9.6328e+07      NaN          5      33.5      NaN      NaN      NaN      NaN      NaN        NaN      NaN      NaN  
    24-Jun-2021         6             0            -0.00047787        2.3301e+07      NaN      1.2434e+08      NaN         5          35      NaN      2.3301e+07      NaN      1.2434e+08      NaN         5       34.75      NaN             NaN      NaN             NaN      NaN        NaN        NaN      NaN             NaN      NaN             NaN      NaN        NaN       NaN      NaN      NaN      NaN      NaN      NaN        NaN      NaN      NaN  
    24-Jun-2021         7             0            -0.00047787        2.0036e+07      NaN      1.0726e+08      NaN         8        48.5      NaN      2.0036e+07      NaN      1.0726e+08      NaN         8       48.75      NaN      2.0036e+07      NaN      8.3422e+07      NaN          8      50.75      NaN      2.0036e+07      NaN      8.3422e+07      NaN          8        50      NaN      NaN      NaN      NaN      NaN        NaN      NaN      NaN  
    24-Jun-2021         8             0            -0.00047787        2.0118e+07      NaN      1.0773e+08      NaN         8        47.5      NaN      2.0118e+07      NaN      1.0773e+08      NaN         8        47.5      NaN      2.0118e+07      NaN       8.379e+07      NaN          8      50.75      NaN      2.0118e+07      NaN       8.379e+07      NaN          8      49.5      NaN      NaN      NaN      NaN      NaN        NaN      NaN      NaN  

data.Galileo(1:4,:)

ans=4×38 timetable
       Time        SatelliteID    EpochFlag    ReceiverClockOffset       C1X        C1X_SSI       L1X        L1X_LLI    L1X_SSI     S1X     S1X_SSI       C8X        C8X_SSI       L8X        L8X_LLI    L8X_SSI     S8X     S8X_SSI       C6X        C6X_SSI       L6X        L6X_LLI    L6X_SSI     S6X     S6X_SSI       C7X        C7X_SSI       L7X        L7X_LLI    L7X_SSI     S7X     S7X_SSI       C5X        C5X_SSI       L5X        L5X_LLI    L5X_SSI     S5X     S5X_SSI
    ___________    ___________    _________    ___________________    __________    _______    __________    _______    _______    _____    _______    __________    _______    __________    _______    _______    _____    _______    __________    _______    __________    _______    _______    _____    _______    __________    _______    __________    _______    _______    _____    _______    __________    _______    __________    _______    _______    _____    _______

    24-Jun-2021         4             0            -0.00047787        2.4922e+07      NaN      1.3097e+08      NaN         8          48      NaN      2.4922e+07      NaN      9.9075e+07      NaN         9        55.5      NaN      2.4922e+07      NaN       1.063e+08      NaN         8          50      NaN      2.4922e+07      NaN      1.0035e+08      NaN         9        53.5      NaN      2.4922e+07      NaN        9.78e+07      NaN         8          53      NaN  
    24-Jun-2021        11             0            -0.00047787         2.375e+07      NaN      1.2481e+08      NaN         7          43      NaN       2.375e+07      NaN      9.4417e+07      NaN         8       49.75      NaN       2.375e+07      NaN      1.0131e+08      NaN         7       44.75      NaN       2.375e+07      NaN      9.5633e+07      NaN         7       47.25      NaN       2.375e+07      NaN      9.3202e+07      NaN         7          47      NaN  
    24-Jun-2021        12             0            -0.00047787        2.1663e+07      NaN      1.1384e+08      NaN         8       47.75      NaN      2.1663e+07      NaN      8.6118e+07      NaN         9        56.5      NaN      2.1663e+07      NaN      9.2401e+07      NaN         8          52      NaN      2.1663e+07      NaN      8.7227e+07      NaN         9          55      NaN      2.1663e+07      NaN      8.5009e+07      NaN         9       53.75      NaN  
    24-Jun-2021        18             0            -0.00047787        2.2857e+07      NaN      1.2012e+08      NaN         7          46      NaN      2.2857e+07      NaN      9.0867e+07      NaN         8          53      NaN      2.2857e+07      NaN      9.7497e+07      NaN         7        46.5      NaN      2.2857e+07      NaN      9.2037e+07      NaN         8        50.5      NaN      2.2857e+07      NaN      8.9697e+07      NaN         8        50.5      NaN  

data.BeiDou(1:4,:)
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ans=4×45 timetable
       Time        SatelliteID    EpochFlag    ReceiverClockOffset       C2I        C2I_SSI       L2I        L2I_LLI    L2I_SSI     S2I     S2I_SSI       C8X        C8X_SSI       L8X        L8X_LLI    L8X_SSI     S8X     S8X_SSI       C6I        C6I_SSI       L6I        L6I_LLI    L6I_SSI     S6I     S6I_SSI       C7Z        C7Z_SSI       L7Z        L7Z_LLI    L7Z_SSI     S7Z     S7Z_SSI       C5X        C5X_SSI       L5X        L5X_LLI    L5X_SSI     S5X     S5X_SSI       C1X        C1X_SSI       L1X        L1X_LLI    L1X_SSI     S1X     S1X_SSI


    24-Jun-2021        19             0            -0.00047787        2.2728e+07      NaN      1.1835e+08      NaN         8        47.5      NaN      2.2728e+07      NaN      9.0353e+07      NaN         9          55      NaN      2.2728e+07      NaN       9.617e+07      NaN         8       51.25      NaN      2.2728e+07      NaN      9.1516e+07      NaN         8       52.75      NaN      2.2728e+07      NaN       8.919e+07      NaN         8          53      NaN      2.2728e+07      NaN      1.1944e+08      NaN         7          47      NaN  
    24-Jun-2021        20             0            -0.00047787        2.2033e+07      NaN      1.1473e+08      NaN         8          51      NaN      2.2033e+07      NaN       8.759e+07      NaN         9       57.25      NaN      2.2033e+07      NaN      9.3228e+07      NaN         9        53.5      NaN      2.2033e+07      NaN      8.8717e+07      NaN         9        55.5      NaN      2.2033e+07      NaN      8.6462e+07      NaN         9        55.5      NaN      2.2033e+07      NaN      1.1578e+08      NaN         8       50.25      NaN  
    24-Jun-2021        23             0            -0.00047787        2.6024e+07      NaN      1.3551e+08      NaN         6        38.5      NaN      2.6024e+07      NaN      1.0345e+08      NaN         8          48      NaN      2.6024e+07      NaN      1.1011e+08      NaN         6          40      NaN      2.6024e+07      NaN      1.0479e+08      NaN         7       45.25      NaN      2.6024e+07      NaN      1.0212e+08      NaN         7       45.75      NaN      2.6024e+07      NaN      1.3676e+08      NaN         6       37.25      NaN  
    24-Jun-2021        29             0            -0.00047787         2.243e+07      NaN       1.168e+08      NaN         8       49.25      NaN       2.243e+07      NaN       8.917e+07      NaN         9        55.5      NaN       2.243e+07      NaN       9.491e+07      NaN         8        51.5      NaN       2.243e+07      NaN      9.0318e+07      NaN         8       53.25      NaN       2.243e+07      NaN      8.8022e+07      NaN         9        53.5      NaN       2.243e+07      NaN      1.1787e+08      NaN         8       47.75      NaN  

Input Arguments
filename — Name of RINEX version 3 file
string scalar | character vector

Name of the RINEX version 3 file to read data from, specified as a string scalar or character vector.
Example: "GODS00USA_R_20211750000_01D_GN.rnx"
Data Types: string | char

Output Arguments
data — Satellite system data from RINEX version 3 file
structure

Satellite system data from the RINEX version 3 file, returned as a structure. The structure has a
timetable containing different fields depending on the type of RINEX file and the header entries in
the file. For more details on the fields in each navigation and observation files type, see the
corresponding “More About” on page 1-239 section:

• “GPS Navigation Message” on page 1-239
• “Galileo Navigation Message” on page 1-241
• “GLONASS Navigation Message” on page 1-243
• “BeiDou Navigation Message” on page 1-244
• “NavIC/IRNSS Navigation Message” on page 1-245
• “QZSS Navigation Message” on page 1-247
• “SBAS Navigation Message” on page 1-248
• “Mixed Observation Data” on page 1-249

Data Types: struct

More About
GPS Navigation Message

Field Data Type Description
Time datetime GPS clock time
SatelliteID double Satellite system (G) number (PRN)
SVClockBias double SV clock bias in seconds
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Field Data Type Description
SVClockDrift double SV clock drift in seconds per second
SVClockDriftRa
te

double SV clock drift rate in seconds per second squared

IODE double Issue number of the satellite ephemeris data set, Issue of
Data, Ephemeris (IODE)

Crs double Amplitude of the sine harmonic correction term to the orbit
radius, in meters

Delta_n double Mean motion difference from the computed value at
reference time, in radians per second.

M0 double Mean anomaly at the reference time, in radians
Cuc double Amplitude of the cosine harmonic correction term to the

argument of latitude, in radians
Eccentricity double Eccentricity
Cus double Amplitude of the sine harmonic correction term to the

argument of latitude, in radians
sqrtA double Square root of the semimajor axis (sqrt(m))
Toe double Time of ephemeris (seconds of respective satellite week)
Cic double Amplitude of the cosine harmonic correction term to the

angle of inclination, in radians
OMEGA0 double Longitude of ascending node of orbit plane at weekly epoch,

in radians.
Cis double Amplitude of the sine harmonic correction term to the angle

of inclination, in radians.
i0 double Inclination angle at reference time, in radians
Crc double Amplitude of the cosine harmonic correction term to the

orbit radius, in meters
omega double Argument of perigee, in radians
OMEGA_DOT double Reference rate of right ascension, in radians per second
IDOT double Rate of inclination angle, in radians per second
L2ChannelCodes double Codes on L2 channel
GPSWeek double GPS week number, with time of ephemeris. This is a

continuous number, not mod(1024)
L2PDataFlag double L2P data flag
SVAccuracy double SV accuracy in meters
SVHealth double SV health indicated by bits 17-22 (See GPS ICD Section

20.3.3.3.1.4)
TGD double Timing group delay in seconds
IODC double Issue number of the satellite clock data set, Issue of Data,

Clock (IODC). (See GPS ICD Section 20.3.3.3.1.5)
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Field Data Type Description
TransmissionTi
me

double Transmission time of the message

FitInterval double Fit interval in hours. Bit 17 w 10 sf 2 + IODC and Table 20-
XII of the GPS ICD.

BRDCOrbit7Spar
e3

double Spare entry. May be used in a future version.

BRDCOrbit7Spar
e4

double Spare entry. May be used in a future version.

Galileo Navigation Message

Field Data Type Description
Time datetime Galileo (GAL) clock time
SatelliteID double Satellite system (E) number
SVClockBias double SV clock bias in seconds
SVClockDrift double SV clock drift in seconds per second
SVClockDriftRa
te

double SV clock drift rate in seconds per second squared

IODnav double Issue of data of the navigation batch
Crs double Amplitude of the sine harmonic correction term to the orbit

radius, in meters
Delta_n double Mean motion difference from the computed value at

reference time, in radians per second.
M0 double Mean anomaly at the reference time, in radians
Cuc double Amplitude of the cosine harmonic correction term to the

argument of latitude, in radians
Eccentricity double Eccentricity
Cus double Amplitude of the sine harmonic correction term to the

argument of latitude, in radians
sqrtA double Square root of the semimajor axis (sqrt(m))
Toe double Time of ephemeris (seconds of respective satellite week)
Cic double Amplitude of the cosine harmonic correction term to the

angle of inclination, in radians
OMEGA0 double Longitude of ascending node of orbit plane at weekly epoch,

in radians.
Cis double Amplitude of the sine harmonic correction term to the angle

of inclination, in radians.
i0 double Inclination angle at reference time, in radians
Crc double Amplitude of the cosine harmonic correction term to the

orbit radius, in meters
omega double Argument of perigee, in radians
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Field Data Type Description
OMEGA_DOT double Reference rate of right ascension, in radians per second
IDOT double Rate of inclination angle, in radians per second
DataSources double Data sources

• Bit 0 set: I/NAV E1-B
• Bit 1 set: F/NAV E5a-I
• Bit 2 set: I/NAV E5b-I
• Bits 0 and 2 : Both can be set if the navigation messages

were merged, however, bits 0-2 cannot all be set, as the
I/NAV and F/NAV messages contain different
information.

• Bit 3 reserved for Galileo internal use
• Bit 4 reserved for Galileo internal use
• Bit 8 set: af0-af2, Toc, SISA are for E5a,E1
• Bit 9 set: af0-af2, Toc, SISA are for E5b,E1
• Bits 8-9 : exclusive (only one bit can be set)

GALWeek double GAL week number, with Toe. Continuous number, not
mod(1024).

BRDCOrbit5Spar
e4

double Spare entry. May be used in a future version.

SISAccuracy double Signal in space accuracy in meters (-1.0 – no accuracy
prediction available (NAPA) or unknown)

SVHealth double SV health (See Galileo ICD Section 5.1.9.3)

• Bit 0: E1B DVS
• Bits 1-2: E1B HS
• Bit 3: E5a DVS
• Bits 4-5 :E5a HS
• Bit 6: E5b DVS
• Bits 7-8: E5b HS

BGDE5aE1 double BGD E5a/E1 in seconds
BGDE5bE1 double BGD E5b/E1 in seconds
TransmissionTi
me

double Transmission time of the message

BRDCOrbit7Spar
e2

double Spare entry. May be used in a future version.

BRDCOrbit7Spar
e3

double Spare entry. May be used in a future version.

BRDCOrbit7Spar
e4

double Spare entry. May be used in a future version.
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GLONASS Navigation Message

Field Data Type Description
Time datetime UTC clock time
SatelliteID double Satellite system (R) number
SVClockBias double SV clock bias in seconds
SVFrequencyBia
s

double SV relative frequency bias in hertz

MessageFrameTi
me

double Message frame time in seconds of the UTC week

PositionX double Satellite position X in kilometers
VelocityX double Satellite velocity X dot in kilometers per second
AccelerationX double Satellite acceleration X in kilometers per second squared
Health double Satellite health (0 = healthy, 1 = unhealthy)
PositionY double Satellite position Y in kilometers
VelocityY double Satellite velocity Y dot in kilometers per second
AccelerationY double Satellite acceleration Y in kilometers per second squared
FrequencyNumbe
r

double Frequency number (ICD 5.1)

PositionZ double Satellite position Z in kilometers
VelocityZ double Satellite velocity Z dot in kilometers per second
AccelerationZ double Satellite acceleration Z in kilometers per second squared
AgeOperationIn
fo

double Age of operation information in days

StatusFlags double Status flags, 9-bit binary number:

• M ; bit 7-8, GLO type indicator (00=GLO, 01=GLO-M/K)
• P4 ; bit 6, GLO-M/K only, 1=data updated, 0=data not

updated
• P3 ; bit 5, num of satellites in current frame almanac (0

= 4 sats, 1 = 5 sats)
• P2 ; bit 4, indicate even (0) or odd (1) of time interval
• P1 ; bit 2-3, update and validity interval (00 = 0 min, 01

= 30 min, 10=45 min, 11=60 min)
• P ; bit 0-1, GLO-M/K only, time offset parameters tc,

tGPS source (00 =ground, 01 = tc ground, tGPS
onboard, 10 = tc on-board, tGPS ground, 11 = on-board)

GroupDelay double L1/L2 group delay difference in seconds
URAI double Raw accuracy index
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Field Data Type Description
HealthFlags double Health flags, 3-bit binary number

• l(3) ; bit 2, GLO-M/K only, health bit of string 3
• AC ; bit 1, 1 = almanac health reported in ephemerides

record, 0 = not reported
• C ; bit 0, almanac health bit (1 = healthy, 0 = not

healthy)

BeiDou Navigation Message

Field Data Type Description
Time datetime BeiDou (BDT) time. This is a combination of entries from

the record (Time of clock year, month, day, hour, minute,
second).

SatelliteID double Satellite system (C) number
SVClockBias double SV clock bias in seconds
SVClockDrift double SV clock drift in seconds per second
SVClockDriftRa
te

double SV clock drift rate in seconds per second squared

AODE double Age of satellite ephemeris data, Age of Data, Ephemeris
(AODE). See BeiDou ICD Table Section 5.2.4.11 Table 5-8)
and field range is: 0-31.

Crs double Amplitude of the sine harmonic correction term to the orbit
radius, in meters

Delta_n double Mean motion difference from the computed value at
reference time, in radians per second.

M0 double Mean anomaly at the reference time, in radians
Cuc double Amplitude of the cosine harmonic correction term to the

argument of latitude, in radians
Eccentricity double Eccentricity
Cus double Amplitude of the sine harmonic correction term to the

argument of latitude, in radians
sqrtA double Square root of the semimajor axis (sqrt(m))
Toe double Time of ephemeris (seconds of respective satellite week)
Cic double Amplitude of the cosine harmonic correction term to the

angle of inclination, in radians
OMEGA0 double Longitude of ascending node of orbit plane at weekly epoch,

in radians.
Cis double Amplitude of the sine harmonic correction term to the angle

of inclination, in radians.
i0 double Inclination angle at reference time, in radians
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Field Data Type Description
Crc double Amplitude of the cosine harmonic correction term to the

orbit radius, in meters
omega double Argument of perigee, in radians
OMEGA_DOT double Reference rate of right ascension, in radians per second
IDOT double Rate of inclination angle, in radians per second
BRDCOrbit5Spar
e2

double Spare entry. May be used in a future version.

BDTWeek double BDT week number
BRDCOrbit5Spar
e4

double Spare entry. May be used in a future version.

SVAccuracy double SV accuracy in meters (See BDS ICD Section 5.2.4)
SatH1 double SatH1
TGD1 double TGD1 B1/B3 in seconds
TGD2 double TGD2 B2/B3 in seconds
TransmissionTi
me

double Transmission time of the message

AODC double Age of satellite clock data, Age of Data, Clock (AODC). See
BeiDou ICD Table Section 5.2.4.9 Table 5-6) and field range
is: 0-31.

BRDCOrbit7Spar
e3

double Spare entry. May be used in a future version.

BRDCOrbit7Spar
e4

double Spare entry. May be used in a future version.

NavIC/IRNSS Navigation Message

Field Data Type Description
Time datetime NavIC/IRNSS clock time (same as GPS time)
SatelliteID double Satellite system (I) number (PRN)
SVClockBias double SV clock bias in seconds
SVClockDrift double SV clock drift in seconds per second
SVClockDriftRa
te

double SV clock drift rate in seconds per second squared

IODEC double Issue number of the satellite ephemeris and clock data sets,
Issue of Data, Ephemeris and Clock (IODEC)

Crs double Amplitude of the sine harmonic correction term to the orbit
radius, in meters

Delta_n double Mean motion difference from the computed value at
reference time, in radians per second.

M0 double Mean anomaly at the reference time, in radians
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Field Data Type Description
Cuc double Amplitude of the cosine harmonic correction term to the

argument of latitude, in radians
Eccentricity double Eccentricity
Cus double Amplitude of the sine harmonic correction term to the

argument of latitude, in radians
sqrtA double Square root of the semimajor axis (sqrt(m))
Toe double Time of ephemeris (seconds of respective satellite week)
Cic double Amplitude of the cosine harmonic correction term to the

angle of inclination, in radians
OMEGA0 double Longitude of ascending node of orbit plane at weekly epoch,

in radians.
Cis double Amplitude of the sine harmonic correction term to the angle

of inclination, in radians.
i0 double Inclination angle at reference time, in radians
Crc double Amplitude of the cosine harmonic correction term to the

orbit radius, in meters
omega double Argument of perigee, in radians
OMEGA_DOT double Reference rate of right ascension, in radians per second
IDOT double Rate of inclination angle, in radians per second
BRDCOrbit5Spar
e2

double Spare entry. May be used in a future version.

IRNWeek double IRN week number, with Toe. Continuous number, not
mod(1024), counted from 1980 (same as GPS)

BRDCOrbit5Spar
e4

double Spare entry. May be used in a future version.

UserRangeAccur
acy

double User range accuracy in meters. See NavIC/IRNSS ICD
Section 6.2.1.4

HealthFlags double Health (Sub frame 1, bits 155(most significant) and
156(least significant)), where 0 = L5 and S healthy, 1 = L5
healthy and S unhealthy, 2= L5 unhealthy and S healthy, 3=
both L5 and S unhealthy

TGD double Timing group delay in seconds
BRDCOrbit6Spar
e4

double Spare entry. May be used in a future version.

TransmissionTi
me

double Transmission time of the message

BRDCOrbit7Spar
e2

double Spare entry. May be used in a future version.

BRDCOrbit7Spar
e3

double Spare entry. May be used in a future version.
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Field Data Type Description
BRDCOrbit7Spar
e4

double Spare entry. May be used in a future version.

QZSS Navigation Message

Field Data Type Description
Time datetime QZSS clock time
SatelliteID double Satellite system (J) Satellite PRN-192
SVClockBias double SV clock bias in seconds
SVClockDrift double SV clock drift in seconds per second
SVClockDriftRa
te

double SV clock drift rate in seconds per second squared

IODE double Issue number of the satellite ephemeris data set, Issue of
Data, Ephemeris (IODE)

Crs double Amplitude of the sine harmonic correction term to the orbit
radius, in meters

Delta_n double Mean motion difference from the computed value at
reference time, in radians per second.

M0 double Mean anomaly at the reference time, in radians
Cuc double Amplitude of the cosine harmonic correction term to the

argument of latitude, in radians
Eccentricity double Eccentricity
Cus double Amplitude of the sine harmonic correction term to the

argument of latitude, in radians
sqrtA double Square root of the semimajor axis (sqrt(m))
Toe double Time of ephemeris (seconds of respective satellite week)
Cic double Amplitude of the cosine harmonic correction term to the

angle of inclination, in radians
OMEGA0 double Longitude of ascending node of orbit plane at weekly epoch,

in radians.
Cis double Amplitude of the sine harmonic correction term to the angle

of inclination, in radians.
i0 double Inclination angle at reference time, in radians
Crc double Amplitude of the cosine harmonic correction term to the

orbit radius, in meters
omega double Argument of perigee, in radians
OMEGA_DOT double Reference rate of right ascension, in radians per second
IDOT double Rate of inclination angle, in radians per second
L2ChannelCodes double Codes on L2 channel (fixed to 2, see IS-QZSS-PNT 4.1.2.7)
GPSWeek double GPS week number, with Toe. Continuous number, not

mod(1024).
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Field Data Type Description
L2PDataFlag double L2 P data flag set to 1 since QZSS does not track L2P
SVAccuracy double SV accuracy (m) (See IS-QZSS-PNT Section 5.4.3.1)
SVHealth double SV health (bits 17-22 w 3 sf 1) (See IS-QZSS-PNT 5.4.1)
TGD double Timing group delay (s) (The QZSS ICD specifies a do not

use bit pattern “10000000”, this condition is represented by
a blank field.)

IODC double Issue number of the satellite clock data set, Issue of Data,
Clock (IODC)

TransmissionTi
me

double Transmission time of the message

FitIntervalFla
g

double Fit interval flag (0/1) (See IS-QZSS-PNT, 4.1.2.4(3) 0 – two
hours), 1 – more than 2 hours.

BRDCOrbit7Spar
e3

double Spare entry. May be used in a future version.

BRDCOrbit7Spar
e4

double Spare entry. May be used in a future version.

SBAS Navigation Message

Field Data Type Description
Time datetime SBAS clock time
SatelliteID double Satellite system (S) number
SVClockBias double SV clock bias in seconds
SVFrequencyBia
s

double SV relative frequency bias in hertz

TransmissionTi
me

double Transmission time of the message

PositionX double Satellite position X in kilometers
VelocityX double Satellite velocity X dot in kilometers per second
AccelerationX double Satellite acceleration X in kilometers per second squared
Health double Health: SBAS: See RINEX 3.05 Standard section 5.4.4 for:

health, health availability and User Range Accuracy.
PositionY double Satellite position Y in kilometers
VelocityY double Satellite velocity Y dot in kilometers per second
AccelerationY double Satellite acceleration Y in kilometers per second squared
AccuracyCode double Accuracy code (URA, m)
PositionZ double Satellite position Z in kilometers
VelocityZ double Satellite velocity Z dot in kilometers per second
AccelerationZ double Satellite acceleration Z in kilometers per second squared
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Field Data Type Description
IODN double Issue number of the satellite navigation data set, Issue of

Data, Navigation (IODN). See reference RTCA DO-229, 8
first bits after Message Type if MT9

Mixed Observation Data

Mixed observation data may have multiple timetables in the output structure. Unlike the navigation
messages, the most of the fields of the mixed observation files change depending on the observation
types in the observation data. However, all observation data contains the same first fields.

Main Observation Data Fields

Field Data Type Description
Time datetime Satellite clock time.
SatelliteID double Satellite system number.
EpochFlag nonnegative

integer
Epoch flag indicating the status of the satellite system.

• 0 — OK.
• 1 — Power failure between previous epoch and current

epoch.
• >1 — Special event. See RINEX Version 3.05 File

Section 5.3.2 for more information.
ReceiverClockO
ffset

double Receiver clock offset in seconds

The rest of the headers are observation codes comprised of three digits that represent type, band,
and attribute. See “Observation Type Descriptors” on page 1-249 for more information about the
possible types, bands, and attributes.

Each descriptor code has corresponding field for signal strength indicator (SSI) and, if the
observation type is phase (L), a field for loss-of-lock indicator (LLI). For example, type L, band 1, and
attribute X has the field L1X and has two additional fields, L1X_SSI and L1X_LLI.

The SSI fields are ratios specified as an integer in the range [1, 9]. A ratio of 1 is considered
unreliable, above 5 is considered good, and 9 is the maximum possible signal strength.

The LLI fields are three-bit codes that are specified as an integer in the range [0, 7]. A value of 0
indicates no loss of lock or unknown. The least significant bit indicates a lost lock between the
previous and current observations, the second bit indicates half-cycle ambiguity or slip is possible,
and the most significant bit indicates binary offset carrier (BOC) tracking of a multiplexed BOC
(MBOC) modulated signal.

Observation Type Descriptors

Observation type descriptors is a string comprised of three parts. The first part is the observation
type, the second is the frequency band, and the third is the attribute which indicates the tracking
mode or channel.

The observation type can be one of five types.
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Type

• C — Code or pseudorange, is the distance, in meters, between the receiver antenna and the
satellite antenna including delays and other biases.

• L — Phase is the carrier phase range from the antenna to the satellite, measured in whole cycles.
• D — Doppler shift indicating the approach of satellites, where a positive value indicates an

approaching satellite.
• S — Raw signal strength (carrier to noise ratio) as an integer in the range [1, 9].
• X — Receiver channel numbers.

You can identify the frequency band code number given a frequency band and a satellite system.

Frequency Band vs Satellite System

Frequency
Band Code
Number

GPS QZSS SBAS BDS GLO GAL NavIC/
IRNSS

1 L1 L1 L1 L1 G1 E1 —
2 L2 L2 — B1 G2 — —
3 — — — — G3 — —
4 — — — — G1a — —
5 L5 L5 L5 B2a — E5a L5
6 — L6 — B3 or B3A G2a E6 —
7 — — — B2 or B2b — E5b —
8 — — — B2a and

B2b
— E5a and

E5b
—

9 — — — — — — S

You can identify the attribute letter given a channel or code and a satellite system.
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Attribute vs Satellite System

Attribute
Letter

GPS QZSS SBAS BDS GLO GAL NavIC/
IRNSS

A — — — — A channel A channel A channel
B — — — — A channel A channel A channel
C C code-

based
C code-
based

C code-
based

— C code-
based

C channel C channel

D Semi-
codeless

Semi-
codeless

— Data
channel

— — —

E — E channel — — — — —
I I channel I channel — I channel — I channel —
L L channel

(L2C GPS)

P channel

L channel

P channel

— — — — —

M M-based
code

— — — — — —

N Codeless — — — — — —
P P code-

based
— — Pilot

channel
P code-
based

— —

Q Q channel Q channel — Q channel — Q channel —
S D channel

M channel
(L2C GPS)

D channel

M channel

— — — — —

W Based on Z-
tracking

— — — — — —

X I and Q
channels

M and L
channels

D and P
channels

I and Q
channels

M and L
channels

D and P
channels

— I and Q
channels

D and P
channels

— B and C
channels

I and Q
channels

B and C
channels

Y Y code-
based

— — — — — —

Z — I and Q
channels

D and E
channels

— D and P
channels

— A, B, and C
channels

—

These are examples of codes:

• C1M — L1 pseudorange derived from the M channel for a GPS satellite.
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• L5X — E5a carrier phase derived from the B and C channels for a Galileo satellite.
• S3I — G3 signal strength derived from the I channels for a GLONASS satellite.

Version History
Introduced in R2022a
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rotm2axang
Convert rotation matrix to axis-angle rotation

Syntax
axang = rotm2axang(rotm)

Description
axang = rotm2axang(rotm) converts a rotation given as an orthonormal rotation matrix, rotm, to
the corresponding axis-angle representation, axang. The input rotation matrix must be in the
premultiply form for rotations.

Examples

Convert Rotation Matrix to Axis-Angle Rotation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
axang = rotm2axang(rotm)

axang = 1×4

    1.0000         0         0    3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and must be orthonormal. The input rotation matrix must be in the premultiply
form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix
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Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2rotm | so3
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rotm2eul
Convert rotation matrix to Euler angles

Syntax
eul = rotm2eul(rotm)
eul = rotm2eul(rotm,sequence)
[eul,eulAlt] = rotm2eul( ___ )

Description
eul = rotm2eul(rotm) converts a rotation matrix, rotm, to the corresponding Euler angles, eul.
The input rotation matrix must be in the premultiply form for rotations. The default order for Euler
angle rotations is "ZYX".

eul = rotm2eul(rotm,sequence) converts a rotation matrix to Euler angles. The Euler angles
are specified in the axis rotation sequence, sequence. The default order for Euler angle rotations is
"ZYX".

[eul,eulAlt] = rotm2eul( ___ ) also returns an alternate set of Euler angles that represents the
same rotation eulAlt.

Examples

Convert Rotation Matrix to Euler Angles

rotm = [0 0 1; 0 1 0; -1 0 0];
eulZYX = rotm2eul(rotm)

eulZYX = 1×3

         0    1.5708         0

Convert Rotation Matrix to Euler Angles Using ZYZ Axis Order

rotm = [0 0 1; 0 1 0; -1 0 0];
eulZYZ = rotm2eul(rotm,'ZYZ')

eulZYZ = 1×3

   -3.1416   -1.5708   -3.1416
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Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. The input rotation matrix must be in the premultiply form for
rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

sequence — Axis-rotation sequence
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Axis-rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Each character indicates the corresponding axis. For example, if the sequence is "ZYX", then the
three specified Euler angles are interpreted in order as a rotation around the z-axis, a rotation around
the y-axis, and a rotation around the x-axis. When applying this rotation to a point, it will apply the
axis rotations in the order x, then y, then z.
Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]
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eulAlt — Alternate Euler rotation angle solution
n-by-3 matrix

Alternate Euler rotation angle solution in radians, returned as an n-by-3 array of Euler rotation
angles. Each row represents one Euler angle set.
Example: [0 0 1.5708]

Version History
Introduced in R2015a

R2020a: Alternate Euler angle output

rotm2eul now optionally outputs an alternate set of Euler angles eulAlt that also represent the
same rotation as the original output Euler angles eul. So if you use eul or eulAlt to rotate a point,
the resulting point is the same.

R2023a: Additional Euler sequence support

rotm2eul supports additional Euler sequences for the sequences argument. These are all the
supported Euler sequences:

• "ZYX"
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2rotm | so2 | so3
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rotm2quat
Convert rotation matrix to quaternion

Syntax
quat = rotm2quat(rotm)

Description
quat = rotm2quat(rotm) converts a rotation matrix, rotm, to the corresponding unit quaternion
representation, quat. The input rotation matrix must be in the premultiply form for rotations.

Examples

Convert Rotation Matrix to Quaternion

rotm = [0 0 1; 0 1 0; -1 0 0];
quat = rotm2quat(rotm)

quat = 1×4

    0.7071         0    0.7071         0

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. The input rotation matrix must be in the premultiply form for
rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
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Example: [0.7071 0.7071 0 0]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2rotm | so3 | quaternion
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rotm2tform
Convert rotation matrix to homogeneous transformation

Syntax
tform = rotm2tform(rotm)

Description
tform = rotm2tform(rotm) converts the rotation matrix rotm into a homogeneous
transformation matrix tform. The input rotation matrix must be in the premultiply form for rotations.
When using the transformation matrix, premultiply it by the coordinates to be transformed (as
opposed to postmultiplying).

Examples

Convert Rotation Matrix to Homogeneous Transformation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
tform = rotm2tform(rotm)

tform = 4×4

     1     0     0     0
     0    -1     0     0
     0     0    -1     0
     0     0     0     1

Input Arguments
rotm — Rotation matrix
2-by-2-by-n array | 3-by-3-by-n array

Rotation matrix, specified as a 2-by-2-by-n or a 3-by-3-by-n array containing n rotation matrices. Each
rotation matrix is either 2-by-2 or 3-by-3 and is orthonormal. The input rotation matrix must be in the
premultiplied form for rotations.

Note Rotation matrices that are not orthonormal can be normalized with the normalize function.

2-D rotation matrices are of this form:

3-D rotation matrices are of this form:

Example: [0 0 1; 0 1 0; -1 0 0]
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Output Arguments
tform — Homogeneous transformation
3-by-3-by-n array | 4-by-4-by-n array

Homogeneous transformation, returned as a 3-by-3-by-n array or 4-by-4-by-n array. n is the number of
homogeneous transformations. When using the transformation matrix, premultiply it by the
coordinates to be transformed (as opposed to postmultiplying).

2-D homogeneous transformation matrices are of this form:

T =
r11 r12 t1
r21 r22 t2
0 0 1

3-D homogeneous transformation matrices are of this form:

T =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

More About
2-D Homogeneous Transformation Matrix

2-D homogeneous transformation matrices consist of both an SO(2) rotation and an xy-translation.

To read more about SO(2) rotations, see the “2-D Orthonormal Rotation Matrix” on page 2-1512
section of the so2 object.

The translation is along the x-, y-, and z-axes as a three-element column vector:

t =
x
y

The SO(2) rotation matrix R is applied to the translation vector t to create the homogeneous
translation matrix T. The rotation matrix is present in the upper-left of the transformation matrix as
2-by-2 submatrix, and the translation vector is present as a two-element vector in the last column.

T =
R t

01 × 2 1 =
I2 t

01 × 2 1
·

R 0
01 × 2 1

3-D Homogeneous Transformation Matrix

3-D homogeneous transformation matrices consist of both an SO(3) rotation and an xyz-translation.

To read more about SO(3) rotations, see the “3-D Orthonormal Rotation Matrix” on page 2-1508
section of the so3 object.

The translation is along the x-, y-, and z-axes as a three-element column vector:
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t =
x
y
z

The SO(3) rotation matrix R is applied to the translation vector t to create the homogeneous
translation matrix T. The rotation matrix is present in the upper-left of the transformation matrix as
3-by-3 submatrix, and the translation vector is present as a three-element vector in the last column.

T =
R t

01x3 1 =
I3 t

01x3 1
·

R 0
01x3 1

Version History
Introduced in R2015a

R2023a: rotm2tform Supports 2-D Rotation Matrices

The rotm argument now accepts 2-D rotation matrices as a 2-by-2-by-n array and rotm2tform
outputs 2-D transformation matrices as a 3-by-3-by-n array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2rotm | se2 | se3 | so2 | so3
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semread
Read data from SEM almanac file

Syntax
[data,title] = semread(filename)
[data,title] = semread(filename,GPSWeekEpoch=refdate)

Description
[data,title] = semread(filename) reads data from the SEM (System Effectiveness Model)
almanac file for the date specified by filename, and returns the parameters of each associated
satellite as a timetable, as well as the almanac title.

[data,title] = semread(filename,GPSWeekEpoch=refdate) specifies the reference date
from which the SEM almanac file counts the GPS (Global Positioning System) week number.

Examples

Read GPS Navigation Message Data from SEM Almanac File

Download the SEM almanac file from NAVCEN website and parse it. Specify the date for which the
file is to be downloaded.

d = datetime("today") - 2;

Create the URL.

baseURL = "https://www.navcen.uscg.gov/sites/default/files/gps/almanac/";
almanacType = "/sem/";
almanacExtension = ".al3";
url = baseURL + d.Year + almanacType + day(d,"dayofyear") + ...
      almanacExtension;

Specify the file name.

filename = "semalmanac" + "_" + d.Year + "-" + ...
           d.Month + "-" + d.Day + ".al3";

Save the file.

websave(filename,url);

Get the orbital parameters from the downloaded SEM almanac file.

[data,title] = semread(filename)

data=31×16 timetable
            Time            GPSWeekNumber    GPSTimeOfApplicability    PRNNumber    SVN    AverageURANumber        Eccentricity         InclinationOffset      RateOfRightAscension     SqrtOfSemiMajorAxis    GeographicLongitudeOfOrbitalPlane    ArgumentOfPerigee        MeanAnomaly        ZerothOrderClockCorrection    FirstOrderClockCorrection    SatelliteHealth    SatelliteConfiguration
    ____________________    _____________    ______________________    _________    ___    ________________    ____________________    ____________________    _____________________    ___________________    _________________________________    __________________    __________________    __________________________    _________________________    _______________    ______________________

 semread
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    17-Jul-2022 17:03:42        2219                 61440                 1        63            0              0.0120391845703125      0.0144615173339844    -2.48837750405073e-09     5153.61865234375               0.51555073261261             0.297461271286011     0.881654858589172       0.000319480895996094         -7.27595761418343e-12             0                     11          
    17-Jul-2022 17:03:42        2219                 61440                 2        61            1              0.0199451446533203       0.007476806640625    -2.53567122854292e-09     5154.81982421875              0.486109972000122            -0.446799159049988     0.925528883934021      -0.000651359558105469                             0             0                      9          
    17-Jul-2022 17:03:42        2219                 61440                 3        69            0             0.00439071655273438      0.0102882385253906    -2.56841303780675e-09     5153.53857421875              0.844612836837769             0.320030331611633     0.529847264289856      -0.000309944152832031         -1.09139364212751e-11             0                     11          
    17-Jul-2022 17:03:42        2219                 61440                 4        74            0             0.00190067291259766     0.00612449645996094    -2.46654963120818e-09     5153.54736328125             -0.811291694641113            -0.953091979026794    -0.536049604415894       -0.00014495849609375          3.63797880709171e-12             0                     12          
    17-Jul-2022 17:03:42        2219                 61440                 5        50            0             0.00610446929931641     0.00614738464355469    -2.61570676229894e-09     5153.70166015625              0.831113338470459             0.338927388191223    -0.287315726280212      -8.96453857421875e-05                             0             0                     10          
    17-Jul-2022 17:03:42        2219                 61440                 6        67            0             0.00243806838989258      0.0142459869384766    -2.48473952524364e-09           5153.71875              0.512914299964905            -0.275499105453491     0.955711841583252        0.00038909912109375          1.45519152283669e-11             0                     11          
    17-Jul-2022 17:03:42        2219                 61440                 7        48            0              0.0163321495056152     0.00248146057128906    -2.53567122854292e-09           5153.59375             -0.487354755401611            -0.716959476470947     0.676499962806702       0.000318527221679688                             0             0                     10          
    17-Jul-2022 17:03:42        2219                 61440                 8        72            0                0.00738525390625     0.00658035278320312    -2.48110154643655e-09          5153.515625              0.170664310455322            0.0531282424926758    -0.420778274536133         -7.62939453125e-05                             0             0                     11          
    17-Jul-2022 17:03:42        2219                 61440                 9        68            0             0.00224971771240234     0.00393486022949219    -2.49565346166492e-09     5153.74755859375             -0.828534364700317             0.607595086097717     -0.25430428981781      -0.000318527221679688          3.63797880709171e-12             0                     11          
    17-Jul-2022 17:03:42        2219                 61440                10        73            0             0.00771760940551758      0.0102214813232422    -2.56841303780675e-09     5153.63232421875              0.843742370605469            -0.797283291816711      0.24565315246582      -0.000494956970214844         -1.45519152283669e-11             0                     11          
    17-Jul-2022 17:03:42        2219                 61440                11        78            0            0.000565528869628906      0.0065765380859375    -2.57205101661384e-09      5153.5556640625              0.528360724449158             0.913978695869446    -0.423171401023865      -1.04904174804688e-05                             0             0                     12          
    17-Jul-2022 17:03:42        2219                 61440                12        58            0             0.00853252410888672     0.00836372375488281    -2.53567122854292e-09      5153.7099609375             -0.132869362831116             0.417471408843994     0.468230128288269      -0.000247955322265625         -7.27595761418343e-12             0                     10          
    17-Jul-2022 17:03:42        2219                 61440                13        43            0             0.00612878799438477     0.00843238830566406    -2.43380782194436e-09     5153.63427734375             -0.779114127159119             0.291950225830078    -0.548626184463501       0.000349998474121094          7.27595761418343e-12             0                      9          
    17-Jul-2022 17:03:42        2219                 61440                14        77            0             0.00212907791137695      0.0030670166015625    -2.58660293184221e-09      5153.5986328125             -0.143590927124023            -0.983529925346375      0.45069146156311      -0.000111579895019531                             0             0                     12          
    17-Jul-2022 17:03:42        2219                 61440                15        55            0              0.0142536163330078    -0.00369071960449219    -2.57205101661384e-09     5153.53564453125             -0.863561153411865             0.352016925811768    -0.718587875366211      -4.48226928710938e-05          3.63797880709171e-12             0                     10          
    17-Jul-2022 17:03:42        2219                 61440                16        56            0              0.0127029418945312     0.00832366943359375    -2.53567122854292e-09      5153.6240234375             -0.126978635787964             0.232561111450195    -0.108456969261169      -0.000515937805175781         -3.63797880709171e-12             0                      9          
      ⋮

title = 
'CURRENT.ALM'

View Satellite Positions from SEM Almanac File for Receiver Position

Read GPS navigation message data from a SEM almanac file.

gpsData = semread("semalmanac_2022-4-10.al3");

Get the satellite positions, velocities, and IDs at the first time step.

t = gpsData.Time(1);
[satPos,satVel,satID] = gnssconstellation(t,gpsData,GNSSFileType="SEM");

Specify a GNSS receiver position in geodetic coordinates (latitude, longitude, and altitude).

recPos = [42 -71 50]; % Natick, MA

Get the azimuth and elevation look angles of the satellite positions for the specified receiver position.
The isVis output indicates which satellites are visible. Find the total number of visible satellites by
using nnz.

[az,el,isVis] = lookangles(recPos,satPos);
fprintf('%d satellites visible at %s.\n',nnz(isVis),t);

9 satellites visible at 12-Apr-2022 16:50:54.

Visualize all the visible satellites.

skyplot(az(isVis),el(isVis),satID(isVis))
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Plot Trajectories of Satellites Over Time from SEM Almanac File

Read GPS navigation message data from a SEM almanac file.

gpsData = semread("semalmanac_2022-4-10.al3");

Specify the relevant time-stepping information.

startTime = gpsData.Time(1);
numHours = 12;
secondsPerHour = 3600;
dt = 60;
timeElapsed = 0:dt:(numHours*secondsPerHour);
t = startTime + seconds(timeElapsed);

Specify a GNSS receiver position in geodetic coordinates (latitude, longitude, and altitude).

recPos = [42 -71 50]; % Natick, MA

Get the azimuth and elevation look angles for the all the positions of the satellites for the specified
receiver position.

numSats = numel(gpsData.PRNNumber); % Number of satellites
[allAz,allEl] = deal(NaN(numel(t),numSats));
for i = 1:numel(t)

 semread
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    [satPos,~,satID] = gnssconstellation(t(i),gpsData,GNSSFileType="SEM");
    [az,el,vis] = lookangles(recPos,satPos);
    allAz(i,:) = az;
    allEl(i,:) = el;
end

Mark all satellites below the horizon as NaN for no visibility.

allEl(allEl < 0) = NaN;

Visualize the trajectories of the satellites.

figure
skyplot(allAz,allEl,satID)

Animate the trajectories of the satellites.

figure
sp = skyplot(allAz(1,:),allEl(1,:),satID);
for i = 1:size(allAz, 1)
    set(sp,AzimuthData=allAz(1:i,:),ElevationData=allEl(1:i,:));
    drawnow
end
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Input Arguments
filename — SEM almanac file name
string scalar | character vector

SEM almanac file name, specified as a string scalar or character vector. The file name can include an
absolute path, relative path, or no path. The file name can also include the file extensions.
Example: "semalmanac_2022-1-18.al3"
Example: "mydir/semalmanac_2022-1-18.al3"
Example: "C:/mydir/semalmanac_2022-1-18.al3"
Data Types: char | string

refdate — Reference date
"06-Jan-1980" | "21-Aug-1999" | "06-Apr-2019"

Reference date, specified as one of these valid datetime strings that coincide with the GPS week
number rollover dates:

• "06-Jan-1980"
• "21-Aug-1999"
• "06-Apr-2019"

 semread

1-267



These dates occur every 1024 weeks, starting from January 6, 1980 at 00:00 (UTC). The default value
is a datetime string that coincides with the most recent GPS week number rollover date before the
current day.
Example: GPSWeekEpoch="21-Aug-1999"
Data Types: char | string

Output Arguments
data — Parameters of each satellite
timetable

Parameters of each satellite, returned as a timetable with a row for each record and a column for
each parameter in that record. Find more information on the SEM almanac parameters definition, see
the Table 40-II in ICD-GPS-240D [2].

Parameters Data Type Description
Time datetime GPS clock time, calculated using

GPSWeekNumber and
GPSTimeOfApplicability.

GPSWeekNumber double GPS week number, continuous,
not mod(1024).

GPSTimeOfApplicability double Number of seconds since the
beginning of the GPS week
number.

PRNNumber double Satellite pseudorandom noise
number.

SVN double Space vehicle reference number
of the satellite.

AverageURANumber double Average URA number of the
satellite.

Eccentricity double Eccentricity of the satellite.
InclinationOffset double Inclination angle offset from 54

degrees, in semicircles.
RateOfRightAscension double Rate of change in the

measurement of the angle of
right ascension, in semicircles
per second.

SqrtOfSemiMajorAxis double Square root of the semimajor
axis, in meters1/2.

GeographicLongitudeOfOrb
italPlane

double Geographic longitude of the
orbital plane at the weekly
epoch, in semicircles.

ArgumentOfPerigee double Angle from the equator to
perigee, in semicircles.
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Parameters Data Type Description
MeanAnomaly double Angle of the position of the

satellite in its orbit relative to
perigee, in semicircles.

ZerothOrderClockCorrecti
on

double Satellite almanac zeroth-order
clock correction term, in
seconds.

FirstOrderClockCorrectio
n

double Satellite almanac first-order
clock correction term, in
seconds per second.

SatelliteHealth double Satellite vehicle health data
code.

SatelliteConfiguration double Satellite vehicle configuration
code.

title — Almanac title
character vector

Almanac title, returned as a character vector.

Tips
• To download SEM almanac files from the NAVCEN website for the current date, you must specify

a date 2 days before the current date because the GPS time of applicability is approximately 70
hours later than the transmission time of the almanac data set. See the “Read GPS Navigation
Message Data from SEM Almanac File” on page 1-263 example for more details.

Version History
Introduced in R2022b

References
[1] Science Applications International Corporation. NAVSTAR GPS Space Segment/Navigation User

Interfaces. IS-GPS-200M. Los Angeles, CA: United States Space Force Space Systems
Command, approved May 21, 2021. https://www.navcen.uscg.gov/sites/default/files/pdf/gps/
IS_GPS_200M.pdf.

[2] Science Applications International Corporation. NAVSTAR GPS Space Segment/Navigation User
Interfaces. ICD-GPS-240D. Los Angeles, CA: United States Space Force Space Systems
Command, approved May 21, 2021. https://www.navcen.uscg.gov/sites/default/files/pdf/gps/
ICD_GPS_240D.pdf.

[3] United States Coast Guard. "GPS Almanacs, NANUs, and OPS Advisories Archives." US Coast
Guard Navigation Center. Accessed May 6, 2022. https://www.navcen.uscg.gov/archives.

See Also
rinexread | yumaread | gnssconstellation | skyplot | lookangles | websave
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show
Visualize path segment

Syntax
show(pathSeg)
show(pathSeg,Name,Value)

Description
show(pathSeg) plots the path segment with start and goal positions and their headings.

show(pathSeg,Name,Value) also specifies Name,Value pairs to control display settings.

Examples

Connect Poses Using Dubins Connection Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Modify Connection Types for Reeds-Shepp Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path. Notice the direction of the turns.

show(pathSegObj{1})
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pathSegObj{1}.MotionTypes

ans = 1x5 cell
    {'L'}    {'R'}    {'L'}    {'N'}    {'N'}

pathSegObj{1}.MotionDirections

ans = 1×5

     1    -1     1     1     1

Disable this specific motion sequence in a new connection object. Reduce the MinTurningRadius if
the robot is more maneuverable. Increase the reverse cost to reduce the likelihood of reverse
directions being used. Connect the poses again to get a different path.

reedsConnObj = reedsSheppConnection('DisabledPathTypes',{'LpRnLp'});
reedsConnObj.MinTurningRadius = 0.5;
reedsConnObj.ReverseCost = 5;

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);
pathSegObj{1}.MotionTypes

ans = 1x5 cell
    {'L'}    {'S'}    {'L'}    {'N'}    {'N'}
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show(pathSegObj{1})
xlim([0 1.5])
ylim([0 1.5])

Interpolate Poses For Dubins Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Interpolate poses along the path. Get a pose every 0.2 meters, including the transitions between
turns.

length = pathSegObj{1}.Length;
poses = interpolate(pathSegObj{1},0:0.2:length)

poses = 32×3

         0         0         0
    0.1987   -0.0199    6.0832
    0.3894   -0.0789    5.8832
    0.5646   -0.1747    5.6832
    0.7174   -0.3033    5.4832
    0.8309   -0.4436    5.3024
    0.8418   -0.4595    5.3216
    0.9718   -0.6110    5.5216
    1.1293   -0.7337    5.7216
    1.3081   -0.8226    5.9216
      ⋮

Use the quiver function to plot these poses.

quiver(poses(:,1),poses(:,2),cos(poses(:,3)),sin(poses(:,3)),0.5)
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Input Arguments
pathSeg — Path segment
dubinsPathSegment object | reedsSheppPathSegment object

Path segment, specified as a dubinsPathSegment or reedsSheppPathSegment object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Headings',{'transitions'}

Parent — Axes to plot path onto
Axes handle

Axes to plot path onto, specified as an Axes handle.

Headings — Heading angles to display
cell array of character vector or string scalars

 show
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Heading angles to display, specified as a cell array of character vector or string scalars. Options are
any combination of 'start','goal', and 'transitions'. To disable all heading displays, specify
{''}.

Positions — Positions to display
'both' (default) | 'start' | 'goal' | 'none'

Positions to display, specified as 'both', 'start', 'goal', or 'none'. The start position is marked
with green, and the goal position is marked with red.

HeadingLength — Length of heading
positive numeric scalar

Length of heading, specified as positive numeric scalar. By default the value is calculated according
to the x- and y-axis limits of the plot.
Data Types: double

Version History
Introduced in R2019b

See Also
Functions
interpolate | connect

Objects
dubinsConnection | dubinsPathSegment | reedsSheppConnection |
reedsSheppPathSegment
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skyplot
Plot satellite azimuth and elevation data

Syntax
skyplot(azdata,eldata)
skyplot(azdata,eldata,labeldata)
skyplot(status)
skyplot( ___ ,Name,Value)

skyplot(parent, ___ )
h = skyplot( ___ )

Description
skyplot(azdata,eldata) creates a sky plot using the azimuth and elevation data specified as
matrices in degrees. Azimuth angles are measured in degrees, clockwise-positive from the North
direction. Elevation angles are measured from the horizon line with 90 degrees being directly up. For
details about the sky plot figure elements, see “Main Sky Plot Elements” on page 1-284.

skyplot(azdata,eldata,labeldata) specifies data labels as a string array with elements
corresponding to each data point in the azdata and eldata inputs.

skyplot(status) specifies the azimuth and elevation data in a structure with fields
SatelliteAzimuth and SatelliteElevation.

skyplot( ___ ,Name,Value) specifies options using one or more name-value arguments in addition
to the input arguments in previous syntaxes. The name-value arguments are properties of the
SkyPlotChart object. For a list of properties, see SkyPlotChart Properties.

skyplot(parent, ___ ) creates the sky plot in the figure, panel, or tab specified by parent.

h = skyplot( ___ ) returns the sky plot as a SkyPlotChart object, h. Use h to modify the
properties of the chart after creating it. For a list of properties, see SkyPlotChart Properties.

Examples

View Satellite Positions from GNSS Sensor

Create a GNSS sensor model as a gnssSensor System object™.

gnss = gnssSensor; 

Specify the position and velocity of the sensor. Simulate the sensor readings and get status from
visible satellites. Store the azimuth and elevation angles as vectors.

pos = [0 0 0]; 
vel = [0 0 0]; 
[~, ~, status] = gnss(pos, vel); 
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satAz = status.SatelliteAzimuth; 
satEl = status.SatelliteElevation; 

Create random local elevation masks, with a maximum elevation of 30 degrees, to act as the local
environment.

rng(8)
terrainMaskElevations = 30*rand(1,12); % elevations (degrees)
terrainMaskEdges = [0 24 48 100 132 180 204 240 276 288 300 312 360]; % azimuth edges (degrees)

Plot the satellite positions with the elevation masks.

skyplot(satAz,satEl,MaskElevation=terrainMaskElevations,MaskAzimuthEdges=terrainMaskEdges); 

Plot Series of Satellite Positions Over Time

Animate the trajectory of satellite positions over time from a GNSS sensor.

Initialize the sky plot figure. Specify the relevant time-stepping information.

skyplotHandle = skyplot(0,0); 
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numHours = 12; 
dt = 100; 
numSeconds = numHours * 60 * 60; 
numSimSteps = numSeconds/dt;

Create a GNSS sensor model as a gnssSensor System Object™.

gnss = gnssSensor('SampleRate', 1/dt); 

Iterate through the time steps and do the following:

• Simulate the sensor readings. Specify the zero postion and velocity for the stationary sensor.
• Store the azimuth and elevation angles as vectors.
• Set the AzimuthData and ElevationData properties of the SkyPlotChart handle directly.

for i = 1:numSimSteps 

    [~, ~, status] = gnss([0 0 0],[0 0 0]); 

    satAz = status.SatelliteAzimuth; 
    satEl = status.SatelliteElevation; 

    set(skyplotHandle,'AzimuthData',satAz,'ElevationData',satEl);
    
    drawnow 
end 

 skyplot
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View Satellite Positions For Different Groups

Load the azimuth and elevation data from a logfile generated by an Adafruit® GPS satellite sensor.
The data provided in this example contains the azimuth and elevation of each satellite and the
pseudorandom noise (PRN) codes. Store these values as vectors.

load('gpsHWInfo','hwInfo') 
satAz = hwInfo.SatelliteAzimuths; 
satEl = hwInfo.SatelliteElevations; 
prn = hwInfo.SatellitePRNs; 

Separate the satellites based on the PRN codes. To correlate each position with a group, create a
categorical array. For this set of satellites, only the ones with PRNs less than 32 are used in the
positioning solution.

isUnused = (prn > 32);
group = categorical(isUnused,[false true],["Used in Positioning Solution" "Unused"]);

Visualize the satellites and specify the categorical groups in the GroupData name-value argument.
Specify the PRN as the label for each point. Show the legend.

skyplot(satAz,satEl,prn,GroupData=group) 
legend('Used','Unused')
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Visualize Satellite Trajectories in Skyplot

Specify the receiver position, RINEX navigation file, mask angle, time step size, and number of hours
of data to sample from the RINEX file.

recPos = [42 -71 50];
navfile = "GODS00USA_R_20211750000_01D_GN.rnx";
maskAngle = 25;
dt = 60; % seconds
numHours = 4;

Read the navigation file, and get the GPS data of all satellites captured in the file.

data = rinexread(navfile);
[~,satIdx] = unique(data.GPS.SatelliteID);
navmsg = data.GPS(satIdx,:);

Set the starting time to the initial time of the navigation message. Then, create the time vector t.

startTime = navmsg.Time(1);
secondsPerHour = 3600;
timeElapsed = 0:dt:(secondsPerHour*numHours);
t = startTime + seconds(timeElapsed);
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Initialize vectors for azimuth and elevation. Then, collect azimuth and elevation data at times t for all
satellites.

numSats = numel(navmsg.SatelliteID);
allAz = NaN(numel(t),numSats);
allEl = allAz;
for idx = 1:numel(t)
    [satPos,~,satID] = gnssconstellation(t(idx),RINEXData=navmsg);
    [az,el,vis] = lookangles(recPos,satPos,maskAngle);
    allAz(idx,:) = az;
    allEl(idx,:) = el;
end

Mark all satellites below the horizon with an elevation less than 0 as missing.

allEl(allEl < 0) = missing;

Display the satellite trajectories as an animation by creating a skyplot and updating the
AzimuthData and ElevationData properties.

figure
sp = skyplot(allAz(1,:),allEl(1,:),satID,MaskElevation=maskAngle);
for idx = 1:size(allAz, 1)
    set(sp,AzimuthData=allAz(1:idx,:),ElevationData=allEl(1:idx,:));
    drawnow limitrate
end
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Input Arguments
azdata — Azimuth angles for visible satellite positions
n-element vector of angles | t-by-n matrix of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles or t-by-n
matrix of angles. n is the number of visible satellite positions in the plot, and t is the number of time
steps of the satellites. Azimuth angles are measured in degrees, clockwise-positive from the north
direction.
Example: [25 45 182 356] specifies the azimuth angles for four satellites at one time step.
Data Types: double

eldata — Elevation angles for visible satellite positions
n-element vector of angles | t-by-n matrix of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles or t-by-n
matrix of angles. n is the number of visible satellite positions in the plot, and t is the number of time
steps of the satellites. Elevation angles are measured from the horizon line with 90 degrees being
directly up.
Example: [45 90 27 74] specifies the elevation angles for four satellites at one time step.
Data Types: double

labeldata — Labels for visible satellite positions
n-element string array

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.
Example: ["G1" "G11" "G7" "G3"]
Data Types: string

status — Satellite status
structure array

Satellite status, specified as a structure array with fields SatelliteAzimuth and
SatelliteElevation. Typically, this status structure comes from a gnssSensor object, which
simulates satellite positions and velocities.
Example: gnss = gnssSensor; [~,~,status] = gnss(position,velocity)
Data Types: struct

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Output Arguments
h — Sky plot chart
SkyPlotChart object
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Sky plot chart, returned as a SkyPlotChart object, which is a standalone visualization on page 1-
284. Use h to set properties on the sky plot chart. For more information, see SkyPlotChart Properties.

More About
Main Sky Plot Elements

The main elements of the figure are:

• Azimuth axes — Specified by the azdata input argument, azimuth angle positions are measured
clockwise-positive from the North direction.

• Elevation axes —Specified by the eldata input argument, elevation angle positions are measured
from the horizon line with 90 degrees being directly up.

• Labels — Specified by the labeldata input argument as a string array with an element for each
point in the azdata and eldata vectors.

• Groups — Specified by the GroupData property, a categorical array defines the group for each
satellite position.

Standalone Visualization

A standalone visualization is a chart designed for a special purpose that works independently from
other charts. Unlike other charts such as plot and surf, a standalone visualization has a
preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:
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• It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.

• The gca function can return the chart object as the current axes.
• You can pass the chart object to many MATLAB functions that accept an axes object as an input

argument. For example, you can pass the chart object to the title function.

Version History
Introduced in R2021a

R2022b: skyplot supports azimuth and elevation trajectories and elevation masks

• The azdata and eldata arguments now accept matrices, enabling you to represent trajectories
by adding azimuth and elevation data for satellites at multiple time steps.

• Elevation angle masks are now supported using these new SkyPlotChart properties:

• MaskElevation
• MaskAlpha
• MaskColor
• MaskAzimuthEdges
• MaskAzimuthEdgesMode

See Also
Functions
polarscatter

Properties
SkyPlotChart Properties

Objects
gnssSensor | nmeaParser
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tform2axang
Convert homogeneous transformation to axis-angle rotation

Syntax
axang = tform2axang(tform)

Description
axang = tform2axang(tform) converts the rotational component of a homogeneous
transformation, tform, to an axis-angle rotation, axang. The translational components of tform are
ignored. The input homogeneous transformation must be in the premultiply form for transformations.

Examples

Convert Homogeneous Transformation to Axis-Angle Rotation

tform = [1 0 0 0; 0 0 -1 0; 0 1 0 0; 0 0 0 1];
axang = tform2axang(tform)

axang = 1×4

    1.0000         0         0    1.5708

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axes, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2tform | se3
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tform2eul
Extract Euler angles from homogeneous transformation

Syntax
eul = tform2eul(tform)
eul = tform2eul(tform, sequence)
[eul,eulAlt] = tform2eul( ___ )

Description
eul = tform2eul(tform) extracts the rotational component from a homogeneous transformation,
tform, and returns it as Euler angles, eul. The translational components of tform are ignored. The
input homogeneous transformation must be in the premultiply form for transformations. The default
order for Euler angle rotations is "ZYX".

eul = tform2eul(tform, sequence) extracts the Euler angles, eul, from a homogeneous
transformation, tform, using the specified rotation sequence, sequence. The default order for Euler
angle rotations is "ZYX".

[eul,eulAlt] = tform2eul( ___ ) also returns an alternate set of Euler angles that represents
the same rotation eulAlt.

Examples

Extract Euler Angles from Homogeneous Transformation Matrix

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYX = tform2eul(tform)

eulZYX = 1×3

         0         0    3.1416

Extract Euler Angles from Homogeneous Transformation Matrix Using ZYZ Rotation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYZ = tform2eul(tform,'ZYZ')

eulZYZ = 1×3

         0   -3.1416    3.1416
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Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

sequence — Axis-rotation sequence
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Axis-rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Each character indicates the corresponding axis. For example, if the sequence is "ZYX", then the
three specified Euler angles are interpreted in order as a rotation around the z-axis, a rotation around
the y-axis, and a rotation around the x-axis. When applying this rotation to a point, it will apply the
axis rotations in the order x, then y, then z.
Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

eulAlt — Alternate Euler rotation angle solution
n-by-3 matrix

Alternate Euler rotation angle solution in radians, returned as an n-by-3 array of Euler rotation
angles. Each row represents one Euler angle set.
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Example: [0 0 1.5708]

Version History
Introduced in R2015a

R2020a: Alternate Euler angle output

tform2eul now optionally outputs an alternate set of Euler angles eulAlt that also represent the
same rotation as the original output Euler angles eul. So if you use eul or eulAlt to rotate a point,
the resulting point is the same.

R2023a: Additional Euler sequence support

tform2eul supports additional Euler sequences for the sequences argument. These are all the
supported Euler sequences:

• "ZYX"
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2tform | se2 | se3
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tform2quat
Extract quaternion from homogeneous transformation

Syntax
quat = tform2quat(tform)

Description
quat = tform2quat(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as a quaternion, quat. The translational components of tform
are ignored. The input homogeneous transformation must be in the premultiply form for
transformations.

Examples

Extract Quaternion from Homogeneous Transformation

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
quat = tform2quat(tform)

quat = 1×4

     0     1     0     0

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2tform | se3 | quaternion
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tform2rotm
Extract rotation matrix from homogeneous transformation

Syntax
rotm = tform2rotm(tform)

Description
rotm = tform2rotm(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as an orthonormal rotation matrix, rotm. The translational
components of tform are ignored. The input homogeneous transformation must be in the pre-
multiply form for transformations. When using the rotation matrix, premultiply it with the coordinates
to be rotated (as opposed to postmultiplying).

Examples

Convert Homogeneous Transformation to Rotation Matrix

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
rotm = tform2rotm(tform)

rotm = 3×3

     1     0     0
     0    -1     0
     0     0    -1

Input Arguments
tform — Homogeneous transformation
3-by-3-by-n array | 4-by-4-by-n array

Homogeneous transformation, specified as a 3-by-3-by-n array or 4-by-4-by-n array. n is the number of
homogeneous transformations. The input homogeneous transformation must be in the premultiplied
form for transformations.

2-D homogeneous transformation matrices are of the form:

T =
r11 r12 t1
r21 r22 t2
0 0 1

3-D homogeneous transformation matrices are of the form:
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T =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
rotm — Rotation matrix
2-by-2-by-n array | 3-by-3-by-n array

Rotation matrix, returned as a 2-by-2-n array or 3-by-3-by-n array containing n rotation matrices.
Each rotation matrix in the array has either a size of 2-by-2 or 3-by-3 and is orthonormal. When using
the rotation matrix, premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

2-D rotation matrices are of the form:

rotation =
r11 r12
r21 r22

3-D rotation matrices are of the form:

rotation =
r11 r12 r13
r11 r22 r23
r31 r32 r33

Example: [0 0 1; 0 1 0; -1 0 0]

More About
Homogeneous Transformation Matrices

Homogeneous transformation matrices consist of both an orthogonal rotation and a translation.

2-D Transformations

2-D transformations have a rotation θ about the z-axis:

Rz(θ) =
cosθ −sinθ
sinθ cosθ

, and a translation along the x and y axis:

t =
x
y

, resulting in the 2-D transformation matrix of the form:

T =
R t

01 × 2 1 =
I2 t

01 × 2 1
·

R 0
01 × 2 1
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3-D Transformations

3-D transformations contain information about three rotations about the x-, y-, and z-axes:

Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

, Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

, Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

and after multiplying become the rotation about the xyz-axes:

Rxyz = Rx(ϕ)Ry(ψ)Rz(θ) =
cosϕcosψcosθ− sinϕsinθ −cosϕcosψsinθ− sinϕcosθ cosϕsinψ
sinϕcosψcosθ + cosϕsinθ −sinϕcosψsinθ + cosϕcosθ sinϕsinψ

−sinψcosθ sinψsinθ cosψ

and a translation along the x-, y-, and z-axis:

t =
x
y
z

, resulting in the 3-D transformation matrix of the form:

T =
R t

01x3 1 =
I3 t

01x3 1
·

R 0
01x3 1

Version History
Introduced in R2015a

R2023a: tform2rotm Supports 2-D Homogeneous Transformation Matrices

The tform argument now accepts 2-D homogeneous transformation matrices as a 3-by-3-by-n array
and tform2rotm outputs 2-D rotation matrices 2-by-2-by-n array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2tform | se2 | se3 | so2 | so3
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tform2trvec
Extract translation vector from homogeneous transformation

Syntax
trvec = tform2trvec(tform)

Description
trvec = tform2trvec(tform) extracts the Cartesian representation of the translation vector
trvec from the homogeneous transformation tform. The rotational components of tform are
ignored. The input homogeneous transformation must be in the premultiplied form for
transformations.

Examples

Extract Translation Vector from Homogeneous Transformation
tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
trvec = tform2trvec(tform)

trvec = 1×3

    0.5000    5.0000   -1.2000

Input Arguments
tform — Homogeneous transformation
3-by-3-by-n array | 4-by-4-by-n array

Homogeneous transformation, specified as a 3-by-3-by-n array or 4-by-4-by-n array. n is the number of
homogeneous transformations. The input homogeneous transformation must be in the premultiplied
form for transformations.

2-D homogeneous transformation matrices are of the form:

T =
r11 r12 t1
r21 r22 t2
0 0 1

3-D homogeneous transformation matrices are of the form:

T =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1
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Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
trvec — Cartesian representation of translation vector
n-by-2 matrix | n-by-3 matrix

Cartesian representation of a translation vector, returned as an n-by-2 matrix if tform is a 3-by-3-by-
n array and an n-by-3 matrix if tform is a 4-by-4-by-n array. n is the number of translation vectors.
Each vector is of the form [x y] or [x y z].
Example: [0.5 6 100]

More About
Homogeneous Transformation Matrices

Homogeneous transformation matrices consist of both an orthogonal rotation and a translation.

2-D Transformations

2-D transformations have a rotation θ about the z-axis:

Rz(θ) =
cosθ −sinθ
sinθ cosθ

, and a translation along the x and y axis:

t =
x
y

, resulting in the 2-D transformation matrix of the form:

T =
R t

01 × 2 1 =
I2 t

01 × 2 1
·

R 0
01 × 2 1

3-D Transformations

3-D transformations contain information about three rotations about the x-, y-, and z-axes:

Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

, Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

, Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

and after multiplying become the rotation about the xyz-axes:

Rxyz = Rx(ϕ)Ry(ψ)Rz(θ) =
cosϕcosψcosθ− sinϕsinθ −cosϕcosψsinθ− sinϕcosθ cosϕsinψ
sinϕcosψcosθ + cosϕsinθ −sinϕcosψsinθ + cosϕcosθ sinϕsinψ

−sinψcosθ sinψsinθ cosψ

and a translation along the x-, y-, and z-axis:
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t =
x
y
z

, resulting in the 3-D transformation matrix of the form:

T =
R t

01x3 1 =
I3 t

01x3 1
·

R 0
01x3 1

Version History
Introduced in R2015a

R2023a: tform2trvec Supports 2-D Homogeneous Transformation Matrices

The tform argument now accepts 2-D homogeneous transformation matrices as a 3-by-3-by-n array
and tform2trvec outputs a n-by-2 matrix of 2-D translation vectors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trvec2tform | se2 | se3
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transformMotion
Compute motion quantities between two relatively fixed frames

Syntax
[posS,orientS,velS,accS,angvelS] = transformMotion(posSFromP,orientSFromP,
posP)
[ ___ ] = transformMotion(posSFromP,orientSFromP,posP,orientP)
[ ___ ] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP)
[ ___ ] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP,accP)
[ ___ ] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP,accP,
angvelP)

Description
[posS,orientS,velS,accS,angvelS] = transformMotion(posSFromP,orientSFromP,
posP) computes motion quantities of the sensor frame relative to the navigation frame (posS,
orientS, velS, accS, and angvelS) using the position of sensor frame relative to the platform
frame, posSFromP, the orientation of the sensor frame relative to the platform frame,
orientSFromP, and the position of the platform frame relative to the navigation frame, posP. Note
that the position and orientation between the sensor frame and the platform frame are assumed to be
fixed. Also, the unspecified quantities between the navigation frame and the platform frame (such as
orientation, velocity, and acceleration) are assumed to be zero.

[ ___ ] = transformMotion(posSFromP,orientSFromP,posP,orientP) additionally specifies
the orientation of the platform frame relative to the navigation frame, orientP. The output
arguments are the same as those of the previous syntax.

[ ___ ] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP) additionally
specifies the velocity of the platform frame relative to the navigation frame, velP. The output
arguments are the same as those of the previous syntax.

[ ___ ] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP,accP)
additionally specifies the acceleration of the platform frame relative to the navigation frame, accP.
The output arguments are the same as those of the previous syntax.

[ ___ ] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP,accP,
angvelP) additionally specifies the angular velocity of the platform frame relative to the navigation
frame, angvelP. The output arguments are the same as those of the previous syntax.

Examples

Transform State to Sensor Frame

Define the pose, velocity, and acceleration of the platform frame relative to the navigation frame.

posPlat = [20 -1 0];
orientPlat = quaternion(1, 0, 0, 0);
velPlat = [0 0 0];
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accPlat = [0 0 0];
angvelPlat = [0 0 1];

Define the position and orientation offset of IMU sensor frame relative to the platform frame.

posPlat2IMU = [1 2 3];
orientPlat2IMU = quaternion([45 0 0], 'eulerd', 'ZYX', 'frame');

Calculate the motion quantities of the sensor frame relative to the navigation frame and print the
results.

[posIMU, orientIMU, velIMU, accIMU, angvelIMU] ...
    = transformMotion(posPlat2IMU, orientPlat2IMU, ...
    posPlat, orientPlat, velPlat, accPlat, angvelPlat);

fprintf('IMU position is:\n');

IMU position is:

fprintf('%.2f %.2f %.2f\n', posIMU);

21.00 1.00 3.00

orientIMU

orientIMU = quaternion
     0.92388 +       0i +       0j + 0.38268k

velIMU

velIMU = 1×3

    -2     1     0

accPlat

accPlat = 1×3

     0     0     0

Input Arguments
posSFromP — Position of sensor frame relative to platform frame
1-by-3 vector of real scalars

Position of the sensor frame relative to the platform frame, specified as a 1-by-3 vector of real scalars.
Example: [1 2 3]

orientSFromP — Orientation of sensor frame relative to platform frame
quaternion | 3-by-3 rotation matrix

Orientation of the sensor frame relative to the platform frame, specified as a quaternion or a 3-by-3
rotation matrix.
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Example: quaternion(1,0,0,0)

posP — Position of platform frame relative to navigation frame
N-by-3 matrix of real scalars

Position of platform frame relative to navigation frame, specified as an N-by-3 matrix of real scalars.
N is the number of position quantities.
Example: [1 2 3]

orientP — Orientation of platform frame relative to navigation frame
N-by-1 array of quaternion | 3-by-3-by-N array of scalars

Orientation of platform frame relative to navigation frame, specified as an N-by-1 array of
quaternions, or a 3-by-3-by-N array of scalars. Each 3-by-3 matrix must be a rotation matrix. N is the
number of orientation quantities.
Example: quaternion(1,0,0,0)

velP — Velocity of platform frame relative to navigation frame
N-by-3 matrix of real scalars

Velocity of platform frame relative to navigation frame, specified as an N-by-3 matrix of real scalars.
N is the number of velocity quantities.
Example: [ 4 8 6]

accP — Acceleration of platform frame relative to navigation frame
N-by-3 matrix of real scalars

Acceleration of platform frame relative to navigation frame, specified as an N-by-3 matrix of real
scalars. N is the number of acceleration quantities.
Example: [4 8 6]

angvelP — Angular velocity of platform frame relative to navigation frame
N-by-3 matrix of real scalars

Angular velocity of platform frame relative to navigation frame, specified as an N-by-3 matrix of real
scalars. N is the number of angular velocity quantities.
Example: [4 2 3]

Output Arguments
posS — Position of sensor frame relative to navigation frame
N-by-3 matrix of real scalars

Position of sensor frame relative to navigation frame, returned as an N-by-3 matrix of real scalars. N
is the number of position quantities specified by the posP input.

orientS — Orientation of sensor frame relative to navigation frame
N-by-1 array of quaternion | 3-by-3-by-N array of scalars

Orientation of sensor frame relative to navigation frame, returned as an N-by-1 array of quaternions,
or a 3-by-3-by-N array of scalars. N is the number of orientation quantities specified by the orientP
input. The returned orientation quantity type is same with the orientP input.
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velS — Velocity of sensor frame relative to navigation frame
N-by-3 matrix of real scalars

Velocity of sensor frame relative to navigation frame, returned as an N-by-3 matrix of real scalars. N
is the number of position quantities specified by the velP input.

accS — Acceleration of sensor frame relative to navigation frame
N-by-3 matrix of real scalars

Acceleration of sensor frame relative to navigation frame, returned as an N-by-3 matrix of real
scalars. N is the number of position quantities specified by the accP input.

angvelS — Angular velocity of sensor frame relative to navigation frame
N-by-3 matrix of real scalars

Angular velocity of sensor frame relative to navigation frame, returned as an N-by-3 matrix of real
scalars. N is the number of position quantities specified by the angvelP input.

More About
Motion Quantities Used in transformMotion

The transformMotion function calculates the motion quantities of the sensor frame (S), which is
fixed on a rigid platform, relative to the navigation frame (N) using the mounting information of the
sensor on the platform and the motion information of the platform frame (P).

As shown in the figure, the position and orientation of the platform frame and the sensor frame are
fixed on the platform. The position of the sensor frame relative to the platform frame is pSP, and the
orientation of the sensor frame relative to the platform frame is rSP. Since the two frames are both
fixed, pSP and rSP are constant.

To compute the motion quantities of the sensor frame relative to the navigation frame, the quantities
describing the motion of the platform frame relative to the navigation frame are required. These
quantities include: the platform position (pPN), orientation (rPN), velocity, acceleration, angular
velocity, and angular acceleration relative to the navigation frame. You can specify these quantities
through the function input arguments except the angular acceleration, which is always assumed to be
zero in the function. The unspecified quantities are also assumed to be zero.

Version History
Introduced in R2020a

See Also
quaternion | rotvec
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transformScan
Transform laser scan based on relative pose

Syntax
transScan = transformScan(scan,relPose)

[transRanges,transAngles] = transformScan(ranges,angles,relPose)

Description
transScan = transformScan(scan,relPose) transforms the laser scan specified in scan by
using the specified relative pose, relPose.

[transRanges,transAngles] = transformScan(ranges,angles,relPose) transforms the
laser scan specified in ranges and angles by using the specified relative pose, relPose.

Examples

Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transformedScan = transformScan(refScan,[0.5 0.2 0]);

Rotate the laser scan by 20 degrees.

rotateScan = transformScan(refScan,[0,0,deg2rad(20)]);

Use Scan Matching to Transform Scans

Use the matchScans function to find the relative transformation between two lidar scans. Then,
transform the second scan into the coordinate frame of the first scan.

Load a pair of lidar scans as a pair of lidarScan objects. They are two scans of the same scene with
a change in relative pose.

load tb3_scanPair.mat
plot(s1)
hold on
plot(s2)
hold off
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The relative pose is estimated from an odometry sensor and provided as a variable, initGuess, as
[x y theta].

disp(initGuess)

   -0.7000    0.1500   -0.3254

Use scan matching to find the relative pose between the two laser scans and specify the initial guess
for the pose.

pose = matchScans(s2,s1,"InitialPose",initGuess);
disp(pose)

   -0.7213    0.1160   -0.2854

Transform the second scan to the coordinate frame of the first scan. Plot the two scans to see that
they now overlap.

s2Transformed = transformScan(s2,pose);
plot(s1)
hold on
plot(s2Transformed)
hold off
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Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are distances from a
sensor at specified angles. The vector must be the same length as the corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the specific
angles of the specified ranges. The vector must be the same length as the corresponding ranges
vector.

relPose — Relative pose of current scan
[x y theta]

Relative pose of current scan, specified as [x y theta], where [x y] is the translation in meters
and theta is the rotation in radians.
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Output Arguments
transScan — Transformed lidar scan readings
lidarScan object

Transformed lidar scan readings, specified as a lidarScan object.

transRanges — Range values of transformed scan
vector

Range values of transformed scan, returned as a vector in meters. These range values are distances
from a sensor at specified transAngles. The vector is the same length as the corresponding
transAngles vector.

transAngles — Angle values from scan data
vector

Angle values of transformed scan, returned as a vector in radians. These angle values are the specific
angles of the specified transRanges. The vector is the same length as the corresponding ranges
vector.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matchScans | controllerVFH | monteCarloLocalization

Topics
“Estimate Robot Pose with Scan Matching”
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trimLoopClosures
Optimize pose graph and remove bad loop closures

Syntax
poseGraphUpdated = trimLoopClosures(poseGraphObj,trimParams,solverOptions)
[poseGraphUpdated,trimInfo] = trimLoopClosures(poseGraphObj,trimParams,
solverOptions)

Description
poseGraphUpdated = trimLoopClosures(poseGraphObj,trimParams,solverOptions)
optimizes the pose graph to best satisfy the edge constrains and removes any bad loop closure edges
based on the residual error parameters specified in trimParams. Create the solverOptions input
using the poseGraphSolverOptions function.

The function implements the graduated non-convexity (GNC) method with truncated least squares
(TLS) robust cost in combination with the non-minimal pose graph solver [1] on page 1-314.

[poseGraphUpdated,trimInfo] = trimLoopClosures(poseGraphObj,trimParams,
solverOptions) returns additional information related to the trimming process.

Examples

Optimize and Trim Loop Closures For 2-D Pose Graphs

Optimize a pose graph based on the nodes and edge constraints. Trim loop closed based on their
edge residual errors.

Load the data set that contains a 2-D pose graph. Inspect the poseGraph object to view the number
of nodes and loop closures.

load grid-2d-posegraph.mat pg
disp(pg)

  poseGraph with properties:

               NumNodes: 120
               NumEdges: 193
    NumLoopClosureEdges: 74
     LoopClosureEdgeIDs: [120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 ... ]
        LandmarkNodeIDs: [1x0 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset. The poses
in the graph should follow a grid pattern, but show evidence of drift over time.

show(pg,'IDs','off');
title('Original Pose Graph')
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Optimize the pose graph using the optimizePoseGraph function. By default, this function uses the
"builtin-trust-region" solver. Because the pose graph contains some bad loop closures, the
resulting pose graph is actual not desirable.

pgOptim = optimizePoseGraph(pg);
figure;
show(pgOptim);
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Look at the edge residual errors for the original pose graph. Large outlier error values at the end
indicate bad loop closures.

resErrorVec = edgeResidualErrors(pg);
plot(resErrorVec);
title('Edge Residual Errors by Edge ID')
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Certain loop closures should be trimmed from the pose graph based on their residual error. Use the
trimLoopClosures function to trim these bad loop closures. Set the maximum and truncation
threshold for the trimmer parameters. This threshold is set based on the measurement accuracy and
should be tuned for your system.

trimParams.MaxIterations = 100;
trimParams.TruncationThreshold = 25;

solverOptions = poseGraphSolverOptions; 

Use the trimLoopClosures function with the trimmer parameters and solver options.

[pgNew, trimInfo, debugInfo] = trimLoopClosures(pg,trimParams,solverOptions);

From the trimInfo output, plot the loop closures removed from the optimized pose graph. By
plotting with the residual errors plot before, you can see the large error loop closures were removed.

removedLCs = trimInfo.LoopClosuresToRemove;

hold on
plot(removedLCs,zeros(length(removedLCs)),'or')
title('Edge Residual Errors and Removed Loop Closures')
legend('Residual Errors', 'Removed Loop Closures')
xlabel('Edge IDs')
ylabel('Edge Residual Error')
hold off
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Show the new pose graph with the bad loop closures trimmed.

show(pgNew,"IDs","off");
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Input Arguments
poseGraphObj — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

trimParams — Residual error parameters for trimming
structure

Residual error parameters for trimming loop closures, specified as a structure with fields:

• MaxIterations — Maximum number of iterations allowed for loop closure trimming, specified as
a positive integer. In one trimming iteration, the pose graph is optimized based on the solver
options and any edges outside the TruncationThreshold are trimmed.

• TruncationThreshold — Maximum allowed residual error for an edge. This value depends
heavily on the pose graph you specify in poseGraphObj. To find a proper threshold based on all
the errors, use the edgeResidualErrors function for the pose graph.

Example: struct('MaxIterations',10,'TruncationThreshold',20)
Data Types: struct

solverOptions — Pose graph solver options
poseGraphSolverOptions parameters
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Pose graph solver options, specified as a set of parameters generated by calling the
poseGraphSolverOptions function. The function generates a set of solver options with default
values for the specified pose graph solver type:

pgSolverTrustRegion = poseGraphSolverOptions('builtin-trust-region')

pgSolverTrustRegion = 

TrustRegion (builtin-trust-region-dogleg) options:

               MaxIterations: 300
                     MaxTime: 10
           FunctionTolerance: 1.0000e-08
           GradientTolerance: 5.0000e-09
               StepTolerance: 1.0000e-12
    InitialTrustRegionRadius: 100
               VerboseOutput: 'off'

pgSolverG2o = poseGraphSolverOptions('g2o-levenberg-marquardt')

pgSolverG2o = 

G2oLevenbergMarquardt (g2o-levenberg-marquardt) options:

        MaxIterations: 300
              MaxTime: 10
    FunctionTolerance: 1.0000e-09
        VerboseOutput: 'off'

Modify the options to tune the solver parameters using dot notation.

pgSolverG2o.MaxIterations = 200;

Output Arguments
poseGraphUpdated — Pose graph with trimmed looped closures
poseGraph object | poseGraph3D object

Pose graph with trimmed looped closures, specified as a poseGraph or poseGraph3D object.

trimInfo — Information from trimming process
structure

Information from trimming process, returned as a structure with fields:

• LoopClosuresToRemove — Loop closure edge IDs to remove from the input poseGraphObj.
These loop closures are removed in the output poseGraphUpdated.

• Iterations — Number of trimming iterations performed.

Version History
Introduced in R2020b
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References
[1] Yang, Heng, et al. “Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal

Solvers to Global Outlier Rejection.” IEEE Robotics and Automation Letters, vol. 5, no. 2, Apr.
2020, pp. 1127–34. DOI.org (Crossref), doi:10.1109/LRA.2020.2965893.

See Also
Functions
poseGraphSolverOptions | edgeResidualErrors | removeEdges | edgeNodePairs |
edgeConstraints

Objects
poseGraph | poseGraph3D | lidarSLAM
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trvec2tform
Convert translation vector to homogeneous transformation

Syntax
tform = trvec2tform(trvec)

Description
tform = trvec2tform(trvec) converts the Cartesian representation of the translation vector
trvec to the corresponding homogeneous transformation tform. When using the transformation
matrix, premultiply it by the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Translation Vector to Homogeneous Transformation
trvec = [0.5 6 100];
tform = trvec2tform(trvec)

tform = 4×4

    1.0000         0         0    0.5000
         0    1.0000         0    6.0000
         0         0    1.0000  100.0000
         0         0         0    1.0000

Input Arguments
trvec — Cartesian representation of translation vector
n-by-2 matrix | n-by-3 matrix

Cartesian representation of a translation vector, specified as an n-by-2 matrix if tform is a 3-by-3-by-
n array and an n-by-3 matrix if tform is a 4-by-4-by-n array. n is the number of translation vectors.
Each vector is of the form [x y] or [x y z].
Example: [0.5 6 100]

Output Arguments
tform — Homogeneous transformation
3-by-3-by-n array | 4-by-4-by-n array

Homogeneous transformation, returned as a 3-by-3-by-n array or 4-by-4-by-n array. n is the number of
homogeneous transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]
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2-D homogeneous transformation matrices are of the form:

T =
r11 r12 t1
r21 r22 t2
0 0 1

3-D homogeneous transformation matrices are of the form:

T =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

More About
Homogeneous Transformation Matrices

Homogeneous transformation matrices consist of both an orthogonal rotation and a translation.
2-D Transformations

2-D transformations have a rotation θ about the z-axis:

Rz(θ) =
cosθ −sinθ
sinθ cosθ

, and a translation along the x and y axis:

t =
x
y

, resulting in the 2-D transformation matrix of the form:

T =
R t

01 × 2 1 =
I2 t

01 × 2 1
·

R 0
01 × 2 1

3-D Transformations

3-D transformations contain information about three rotations about the x-, y-, and z-axes:

Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

, Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

, Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

and after multiplying become the rotation about the xyz-axes:

Rxyz = Rx(ϕ)Ry(ψ)Rz(θ) =
cosϕcosψcosθ− sinϕsinθ −cosϕcosψsinθ− sinϕcosθ cosϕsinψ
sinϕcosψcosθ + cosϕsinθ −sinϕcosψsinθ + cosϕcosθ sinϕsinψ

−sinψcosθ sinψsinθ cosψ

and a translation along the x-, y-, and z-axis:
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t =
x
y
z

, resulting in the 3-D transformation matrix of the form:

T =
R t

01x3 1 =
I3 t

01x3 1
·

R 0
01x3 1

Version History
Introduced in R2015a

R2023a: trvec2tform Supports 2-D Translation Vectors

The trvec argument now accepts 2-D translation vectors as a n-by-2 matrix and trvec2tform
outputs 2-D homogeneous transformation matrices as a 3-by-3-by-n array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2trvec | se2 | se3
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tunernoise
Noise structure of fusion filter

Syntax
noiseStruct = tunernoise(filterName)
noiseStruct = tunernoise(filter)

Description
noiseStruct = tunernoise(filterName) returns the measurement noise structure for the filter
with name specified by the filterName input.

noiseStruct = tunernoise(filter) returns the measurement noise structure for the filter
object.

Examples

Obtain Measurement Noise Structure of insfilterAsync

Obtain the measurement noise structure of the insfilterAsync object.

noiseStruct = tunernoise('insfilterAsync')

noiseStruct = struct with fields:
    AccelerometerNoise: 1
        GyroscopeNoise: 1
     MagnetometerNoise: 1
      GPSPositionNoise: 1
      GPSVelocityNoise: 1

Tune insfilterAsync to Optimize Pose Estimate

Load the recorded sensor data and ground truth data.

load('insfilterAsyncTuneData.mat');

Create timetables for the sensor data and the truth data.

sensorData = timetable(Accelerometer, Gyroscope, ...
    Magnetometer, GPSPosition, GPSVelocity, 'SampleRate', 100);
groundTruth = timetable(Orientation, Position, ...
    'SampleRate', 100);

Create an insfilterAsync filter object that has a few noise properties.

filter = insfilterAsync('State', initialState, ...
    'StateCovariance', initialStateCovariance, ...
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    'AccelerometerBiasNoise', 1e-7, ...
    'GyroscopeBiasNoise', 1e-7, ...
    'MagnetometerBiasNoise', 1e-7, ...
    'GeomagneticVectorNoise', 1e-7);

Create a tuner configuration object for the filter. Set the maximum iterations to two. Also, set the
tunable parameters as the unspecified properties.

config = tunerconfig('insfilterAsync','MaxIterations',8);
config.TunableParameters = setdiff(config.TunableParameters, ...
    {'GeomagneticVectorNoise', 'AccelerometerBiasNoise', ...
    'GyroscopeBiasNoise', 'MagnetometerBiasNoise'});
config.TunableParameters

ans = 1×10 string
    "AccelerationNoise"    "AccelerometerNoise"    "AngularVelocityNoise"    "GPSPositionNoise"    "GPSVelocityNoise"    "GyroscopeNoise"    "MagnetometerNoise"    "PositionNoise"    "QuaternionNoise"    "VelocityNoise"

Use the tuner noise function to obtain a set of initial sensor noises used in the filter.

measNoise = tunernoise('insfilterAsync')

measNoise = struct with fields:
    AccelerometerNoise: 1
        GyroscopeNoise: 1
     MagnetometerNoise: 1
      GPSPositionNoise: 1
      GPSVelocityNoise: 1

Tune the filter and obtain the tuned parameters.

tunedParams = tune(filter,measNoise,sensorData,groundTruth,config);

    Iteration    Parameter               Metric
    _________    _________               ______
    1            AccelerationNoise       2.1345
    1            AccelerometerNoise      2.1264
    1            AngularVelocityNoise    1.9659
    1            GPSPositionNoise        1.9341
    1            GPSVelocityNoise        1.8420
    1            GyroscopeNoise          1.7589
    1            MagnetometerNoise       1.7362
    1            PositionNoise           1.7362
    1            QuaternionNoise         1.7218
    1            VelocityNoise           1.7218
    2            AccelerationNoise       1.7190
    2            AccelerometerNoise      1.7170
    2            AngularVelocityNoise    1.6045
    2            GPSPositionNoise        1.5948
    2            GPSVelocityNoise        1.5323
    2            GyroscopeNoise          1.4803
    2            MagnetometerNoise       1.4703
    2            PositionNoise           1.4703
    2            QuaternionNoise         1.4632
    2            VelocityNoise           1.4632
    3            AccelerationNoise       1.4596
    3            AccelerometerNoise      1.4548
    3            AngularVelocityNoise    1.3923
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    3            GPSPositionNoise        1.3810
    3            GPSVelocityNoise        1.3322
    3            GyroscopeNoise          1.2998
    3            MagnetometerNoise       1.2976
    3            PositionNoise           1.2976
    3            QuaternionNoise         1.2943
    3            VelocityNoise           1.2943
    4            AccelerationNoise       1.2906
    4            AccelerometerNoise      1.2836
    4            AngularVelocityNoise    1.2491
    4            GPSPositionNoise        1.2258
    4            GPSVelocityNoise        1.1880
    4            GyroscopeNoise          1.1701
    4            MagnetometerNoise       1.1698
    4            PositionNoise           1.1698
    4            QuaternionNoise         1.1688
    4            VelocityNoise           1.1688
    5            AccelerationNoise       1.1650
    5            AccelerometerNoise      1.1569
    5            AngularVelocityNoise    1.1454
    5            GPSPositionNoise        1.1100
    5            GPSVelocityNoise        1.0778
    5            GyroscopeNoise          1.0709
    5            MagnetometerNoise       1.0675
    5            PositionNoise           1.0675
    5            QuaternionNoise         1.0669
    5            VelocityNoise           1.0669
    6            AccelerationNoise       1.0634
    6            AccelerometerNoise      1.0549
    6            AngularVelocityNoise    1.0549
    6            GPSPositionNoise        1.0180
    6            GPSVelocityNoise        0.9866
    6            GyroscopeNoise          0.9810
    6            MagnetometerNoise       0.9775
    6            PositionNoise           0.9775
    6            QuaternionNoise         0.9768
    6            VelocityNoise           0.9768
    7            AccelerationNoise       0.9735
    7            AccelerometerNoise      0.9652
    7            AngularVelocityNoise    0.9652
    7            GPSPositionNoise        0.9283
    7            GPSVelocityNoise        0.8997
    7            GyroscopeNoise          0.8947
    7            MagnetometerNoise       0.8920
    7            PositionNoise           0.8920
    7            QuaternionNoise         0.8912
    7            VelocityNoise           0.8912
    8            AccelerationNoise       0.8885
    8            AccelerometerNoise      0.8811
    8            AngularVelocityNoise    0.8807
    8            GPSPositionNoise        0.8479
    8            GPSVelocityNoise        0.8238
    8            GyroscopeNoise          0.8165
    8            MagnetometerNoise       0.8165
    8            PositionNoise           0.8165
    8            QuaternionNoise         0.8159
    8            VelocityNoise           0.8159
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Fuse the sensor data using the tuned filter.

dt = seconds(diff(groundTruth.Time));
N = size(sensorData,1);
qEst = quaternion.zeros(N,1);
posEst = zeros(N,3);
% Iterate the filter for prediction and correction using sensor data.
for ii=1:N
    if ii ~= 1
        predict(filter, dt(ii-1));
    end
    if all(~isnan(Accelerometer(ii,:)))
        fuseaccel(filter,Accelerometer(ii,:), ...
            tunedParams.AccelerometerNoise);
    end
    if all(~isnan(Gyroscope(ii,:)))
        fusegyro(filter, Gyroscope(ii,:), ...
            tunedParams.GyroscopeNoise);
    end
    if all(~isnan(Magnetometer(ii,1)))
        fusemag(filter, Magnetometer(ii,:), ...
            tunedParams.MagnetometerNoise);
    end
    if all(~isnan(GPSPosition(ii,1)))
        fusegps(filter, GPSPosition(ii,:), ...
            tunedParams.GPSPositionNoise, GPSVelocity(ii,:), ...
            tunedParams.GPSVelocityNoise);
    end
    [posEst(ii,:), qEst(ii,:)] = pose(filter);
end

Compute the RMS errors.

orientationError = rad2deg(dist(qEst, Orientation));
rmsorientationError = sqrt(mean(orientationError.^2))

rmsorientationError = 2.7801

positionError = sqrt(sum((posEst - Position).^2, 2));
rmspositionError = sqrt(mean( positionError.^2))

rmspositionError = 0.5966

Visualize the results.

figure();
t = (0:N-1)./ groundTruth.Properties.SampleRate;
subplot(2,1,1)
plot(t, positionError, 'b');
title("Tuned insfilterAsync" + newline + "Euclidean Distance Position Error")
xlabel('Time (s)');
ylabel('Position Error (meters)')
subplot(2,1,2)
plot(t, orientationError, 'b');
title("Orientation Error")
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');
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Input Arguments
filterName — Name of fusion filter
'insfilterAsync' | 'ahrs10filter' | 'insfilterMARG' | 'insfilterNonholonomic' |
'insfitlerErrorState'

Name of fusion filter, specified as specified as one of these:

• 'ahrs10filter'
• 'insfilterAsync'
• 'insfilterMARG'
• 'insfitlerErrorState'
• 'insfilterNonholonomic'

filter — Fusion filter
fusion filter object

Fusion filter, specified as one of these fusion filter objects:

• insEKF
• ahrs10filter
• insfilterAsync

1 Functions

1-322



• insfilterMARG
• insfilterErrorState
• insfilterNonholonomic

.

Output Arguments
noiseStruct — Structure of measurement noise
structure

Structure of measurement noise, returned as a structure. The exact fields of structure depend on the
filter object.

For example, the structure contains these fields for the insfilterAsync object.

Field Description Default
AccelerometerNoise Variance of accelerometer noise,

specified as a scalar in (m2/s)2
1

GyroscopeNoise Variance of gyroscope noise,
specified as a scalar in (rad/s)2

1

MagnetometerNoise Variance of magnetometer
noise, specified as a scalar in
(μT)2.

1

GPSPositionNoise Variance of GPS position noise,
specified as a scalar in m2

1

GPSVelocityNoise Standard deviation of GPS
velocity noise, specified as a
scalar in (m/s)2

1

To use this structure with a tune function, change the values of the noise to proper values as initial
guesses for tuning the noise. When the function tunes the measurement noise, it tunes all the
elements in each field together. For example, if the AccelerometerNoise is specified as diag([1
0.1 1]), then the tune function varies AccelerometerNoise as the product of a scalar and the
original diag([1 0.1 1]).

Version History
Introduced in R2020b
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tunerPlotPose
Plot filter pose estimates during tuning

Syntax
stopTuning = tunerPlotPose(params,tunerValues)

Description
stopTuning = tunerPlotPose(params,tunerValues) plots the current pose estimate,
consisting of orientation (and possibly position, depending on the filter), and the ground truth values.
params contains the best estimates of the filter parameters during the current tuning iteration.
tunerValues contains information on the tuner configuration, sensor data, and ground truth data.
Use this function as the value for the OutputFcn property of the tunerconfig object to plot the
tuning results during iterations.

Examples

Visualize Tuning Results Using tunerPlotPose

Create a tunerconfiguration object. Set the tunerPlotPose function as the output function of
the object.

tc = tunerconfig('imufilter','OutputFcn',@tunerPlotPose)

tc = 
  tunerconfig with properties:

               Filter: "imufilter"
    TunableParameters: ["AccelerometerNoise"    "GyroscopeNoise"    "GyroscopeDriftNoise"    "LinearAccelerationNoise"    "LinearAccelerationDecayFactor"]
          StepForward: 1.1000
         StepBackward: 0.5000
        MaxIterations: 20
       ObjectiveLimit: 0.1000
    FunctionTolerance: 0
              Display: iter
                 Cost: RMS
            OutputFcn: @tunerPlotPose

Load prerecorded sensor data.

ld = load('imufilterTuneData.mat');

Tune an imufilter object using the sensor data. The truth data and the estimates are shown in a
figure.

tune(imufilter,ld.sensorData,ld.groundTruth,tc)
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    Iteration    Parameter                        Metric
    _________    _________                        ______
    1            AccelerometerNoise               0.0857

Input Arguments
params — Estimates of filter parameters
structure

Estimates of filter parameters during the current iteration of the tuning process, specified as a
structure. The structure contains one field for every public property of the filter and additional fields
for any required measurement noise. The exact field names vary depending on the filter being tuned.

tunerValues — Tuner values
structure

Tuner values, specified as a structure. The structure has these fields:
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Field Name Description
Iteration Iteration count of the tuner, specified as a

positive integer
SensorData Sensor data input to the tune function
GroundTruth Ground truth input to the tune function
Configuration tunerconfig object used for tuning
Cost Tuning cost at the end of the current iteration

Output Arguments
stopTuning — Stop tuning process
false

Stop the tuning process, returned as false. As a result, using the tunerPlotPose function as the
output function of a tunerconfig object never terminates the tuning process of a fusion filter.

Version History
Introduced in R2021a

See Also
tunerconfig | tunernoise | imufilter | ahrsfilter | ahrs10filter | insfilterMARG |
insfilterAsync | insfilterErrorState | insfilterNonholonomic

1 Functions

1-326



velocityCommand
Retrieve velocity command from time series of velocity commands

Syntax
velout = velocityCommand(velcmds,timestamps,timeq)

Description
velout = velocityCommand(velcmds,timestamps,timeq) retrieves the velocity command
velout, at the queried time instant timeq, from a series of velocity commands, velcmds, and
corresponding timestamps, timestamps.

Examples

Retrieve Velocity from Time Series of Velocity Commands

Specify a set of velocity commands and corresponding timestamps.

velcmds = [0 0.5 1.0 1.2 1.4 1.5; ...
           0 0.2 0.5 0.2 0 0]';
timestamps = [0; 0.11; 0.2; 0.32; 0.45; 0.7];

Specify the query time.

timeq = 0.55;

Retrieve the velocity command at the queried time instant.

velout = velocityCommand(velcmds,timestamps,timeq);
disp("Set linear velocity to " + velout(1) + ...
    " and angular velocity to " + velout(2) + ".")

Set linear velocity to 1.4 and angular velocity to 0.

Input Arguments
velcmds — Series of velocity commands
N-by-2 matrix

Series of velocity commands, specified as an N-by-2 matrix, where the first column is the linear
velocity and the second column is the angular velocity.
Data Types: double

timestamps — Timestamps of velocity commands
N-element column vector

Timestamps of velocity commands, specified as an N-element column vector. Each element is the
timestamp for the corresponding row in the velcmds input.
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Data Types: double

timeq — Query time
positive numeric scalar

Query time, specified as a positive numeric scalar.
Data Types: double

Output Arguments
velout — Velocity command
two-element row vector

Velocity command, returned as a two-element row vector containing the linear and angular velocity at
the queried time timeq.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
headingFromXY

Objects
controllerTEB | plannerAStarGrid | mobileRobotPRM
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writeBinaryOccupancyGrid
Write values from grid to ROS message

Syntax
writeBinaryOccupancyGrid(msg,map)

Description
writeBinaryOccupancyGrid(msg,map) writes occupancy values and other information to the
ROS message, msg, from the binary occupancy grid, map.

Input Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

Binary occupancy grid, specified as a binaryOccupancyMap object handle. map is converted to a
'nav_msgs/OccupancyGrid' message on the ROS network. map is an object with a grid of binary
values, where 1 indicates an occupied location and 0 indications an unoccupied location.

msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object handle.

Version History
Introduced in R2015a

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosReadOccupancyGrid |
rosWriteOccupancyGrid
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writeBytes
Write raw commands to the GPS receiver

Syntax
writeBytes(gps,cmdArray)

Description
writeBytes(gps,cmdArray) writes raw commands specified by cmdArray to configure the GPS
module.

Examples

Write Configuration Commands to GPS Receiver

Write configuration commands to the GPS receiver connected to the host computer using
serialport object.

Required Hardware

To run this example, you need:

• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires

Hardware Connection
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Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Connect to the GPS receiver using serialport object. Specify the port name and the baud rate.

s = serialport('COM4',9600)

s = 
  Serialport with properties:

                 Port: "COM4"
             BaudRate: 9600
    NumBytesAvailable: 0

  Show all properties, functions

gps = gpsdev(s)

gps = 
  gpsdev with properties:

                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)

                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Write Configuration Commands

In the default configuration the GPS receiver returns the following NMEA messages: GPRMC,
GPVTG, GPGGA, GPGSA, GPGSV, and GPGLL. The receiver can be configured to have a user defined
set of output messages.

Read few lines of default messages from the serial port the GPS receiver is connected.

for i = 1:10    
data = readline(s);
disp(data);
end

$GPRMC,,V,,,,,,,,,,N*53
$GPVTG,,,,,,,,,N*30
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$GPGGA,,,,,,0,00,99.99,,,,,,*48
$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
$GPGSV,2,1,08,01,,,18,08,,,12,09,,,12,15,,,19*77
$GPGSV,2,2,08,23,,,13,24,,,09,25,,,10,27,,,25*79
$GPGLL,,,,,,V,N*64
$GPRMC,,V,,,,,,,,,,N*53
$GPVTG,,,,,,,,,N*30
$GPGGA,,,,,,0,00,99.99,,,,,,*48

Write the version monitor command to the GPS receiver to return the software and hardware version
of the GPS receiver.

configCMD = [0xB5 0x62 0x0A 0x04 0x00 0x00 0x0E 0x34];
% writeBytes(gps,cfg)
write(s,configCMD,'uint8')

Read few lines of messages again to verify the version message.

for i = 1:10    
data = readline(s);
disp(data);
end

$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
$GPGSV,2,1,05,01,,,13,09,,,11,15,,,16,23,,,12*74
$GPGSV,2,2,05,25,,,10*7A
$GPGLL,,,,,,V,N*64
µb
( 7.03 (45969)                  00040007  °$GPRMC,,V,,,,,,,,,,N*53
$GPVTG,,,,,,,,,N*30
$GPGGA,,,,,,0,00,99.99,,,,,,*48
$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
$GPGSV,2,1,06,01,,,11,09,,,11,23,,,14,24,,,21*75

It can be observed from the output, 7.03 (45969) is the software version and 00040007 is the
hardware version.

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;
clear s;

Input Arguments
gps — GPS sensor
gpsdev object

The GPS sensor, specified as a gpsdev object.

cmdArray — Raw command to configure GPS module
hexadecimal array

Raw command to configure the GPS module, specified as an hexadecimal array.
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Example: [0xB5 0x62 0x06 0x01 0x08 0x00 0xF0 0x08 0x00 0x01 0x00 0x00 0x00 0x00
0x08 0x60]

Data Types: uint8

Version History
Introduced in R2020b

See Also
Objects
gpsdev

Functions
flush | release | read | info
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writeOccupancyGrid
Write values from grid to ROS message

Syntax
writeOccupancyGrid(msg,map)

Description
writeOccupancyGrid(msg,map) writes occupancy values and other information to the ROS
message, msg, from the occupancy grid, map.

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as an OccupancyGrid ROS message object
handle.

map — Occupancy map
occupancyMap object handle

Occupancy map, specified as an occupancyMap object handle.

Version History
Introduced in R2016b

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosReadOccupancyGrid |
rosWriteOccupancyGrid
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insCreateMotionModelTemplate
Create template file for motion model

Syntax
insCreateMotionModelTemplate(name)

Description
insCreateMotionModelTemplate(name) creates a template class file of a motion model to be
used with the insEKF filter object. The function opens the file in the MATLAB editor. The name
argument specifies the name of the class. Modify the class definition based on your application.

Examples

Create Motion Model Template for insEKF

Create a motion model template using the insCreateMotionModel object function. Specify the
name of the class as newMotionModel.

insCreateMotionModelTemplate("newMotionModel")

In the MATLAB editor, an untitled file opens with its class definition. After modifying the class
definition, save the class file and use an object of the class with the insEKF object.

classdef newMotionModel < positioning.INSMotionModel
    %newMotionModel Template for motion model using insEKF
    %   Customize this motion model and use it with the insEKF to fuse
    %   data.
    %
    %   Example:
    %       filt = insEKF(newMotionModel);
    %
    %   See also insEKF, positioning.INSMotionModel.

    %   Generated on 13-Mar-2022 11:25:13

    properties (Constant)
        State1Length = 1 % Length of motion model state State1
        State2Length = 2 % Length of motion model state State2
    end

    methods
        function s = modelstates(motion, opts)
            %modelstates Define the tracked states for this motion model
            %   MODELSTATES returns a struct which describes the
            %   states used by this motion model and tracked by the insEKF
            %   filter object. The field names describe the individual state
            %   quantities, and you can access the estimates of those
            %   quantities through the statesparts function. The values of
            %   the struct determine the size and default values of the
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            %   state vector. The input OPTS is the insOptions object used
            %   to build the filter.
            %
            %   See also insEKF, positioning.INSMotionModel.

            % Preallocate a struct with fields State1 and State2.
            % Overwrite the fields with different default values if
            % needed.
            s = struct("State1", zeros(1, motion.State1Length, opts.Datatype), ...
                "State2", zeros(1, motion.State2Length, opts.Datatype));
        end

        function statesdot = stateTransition(motion, filt, dt, varargin)
            %stateTransition State transition for motion states
            %   STATETRANSITION returns a struct with identical fields
            %   as the output of the modelstates function. The
            %   returned struct describes the per-state transition function
            %   for the motion model states.
            %
            %   This function is called by the insEKF object FILT when the
            %   PREDICT method of the FILT function is called. The DT and
            %   varargin inputs are the corresponding inputs to the
            %   predict method of the insEKF object.
            %
            %   *** THIS METHOD IS OPTIONAL ***
            %   If you delete this method, the model states will be
            %   constant. In this case, also delete the
            %   stateTransitionJacobian method.
            %
            %   See also insEKF, positioning.INSMotionModel.

            % Set statesdot.State1 to the derivative of State1 with
            % respect to time. If State1 is constant overtime, leave the
            % following line unchanged.
            statesdot.State1 = zeros(1, motion.State1Length, "like", filt.State);

            % Set statesdot.State2 to the derivative of State2 with
            % respect to time. If State2 is constant overtime, leave the
            % following line unchanged.
            statesdot.State2 = zeros(1, motion.State2Length, "like", filt.State);
        end

        function dfdx = stateTransitionJacobian(motion, filt, dt, varargin)
            %stateTransitionJacobian Jacobian of the stateTransition function
            %   STATETRANSITIONJACOBIAN returns a struct with identical
            %   fields as modelstates and describes the Jacobian of the
            %   per-state transition function relative to the State
            %   property of FILT. Each field value of STATESDOT should be a
            %   M-by-numel(FILT.State) row vector, representing the partial
            %   derivatives of that field's state transition function
            %   relative to the state vector.
            %
            %   This function is called by the insEKF object FILT when the
            %   PREDICT method of the FILT function is called. The DT and
            %   varargin inputs are the corresponding inputs to the
            %   predict method.
            %
            %   *** THIS METHOD IS OPTIONAL ***
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            %   If this method is not implemented, a numerical Jacobian
            %   will be used instead.
            %
            %   See also insEKF, positioning.INSMotionModel.

            N = numel(filt.State);

            dfdx.State1 = zeros(motion.State1Length, N, "like", filt.State);
            dfdx.State2 = zeros(motion.State2Length, N, "like", filt.State);

            % Create indexing
            s1idx = stateinfo(filt, "State1");
            s2idx = stateinfo(filt, "State2");

            % Uncomment the line below, and set dfdx.State1 to the
            % Jacobian of the stateTransition function with respect to
            % the State property of the filter object filt. Use s1idx to
            % index the columns of dfdx.State1.

            % % dfdx.State1(:,s1idx) =

            % Uncomment the line below, and set dfdx.State2 to the
            % Jacobian of the stateTransition function with respect to
            % the State property of the filter object filt. Use s2idx to
            % index the columns of dfdx.State2.

            % % dfdx.State2(:,s2idx) =
        end
    end
end

% [EOF]

Input Arguments
name — Motion model class name
string scalar | character vector

Motion model class name, specified as a string scalar or a character vector.
Example: "myClass"
Data Types: char | string

Version History
Introduced in R2022b

See Also
insCreateSensorModelTemplate | insEKF
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insCreateSensorModelTemplate
Create template file for sensor model

Syntax
insCreateSensorModelTemplate(name)

Description
insCreateSensorModelTemplate(name) creates a template class file of a sensor model to be
used with the insEKF filter object. The function opens the file in the MATLAB editor. The name
argument specifies the name of the class. Modify the class definition based on your application.

Examples

Create Sensor Model Template for insEKF

Create a sensor model template using the insCreateMotionModel object function. Specify the
name of the class as newSensorModel.

insCreateMotionModelTemplate("newSensorModel")

In the MATLAB editor, an untitled file opens with its class definition. After modifying the class
definition, save the class file and use an object of the class with the insEKF object.

classdef newSensorModel < positioning.INSMotionModel
    %newSensorModel Template for motion model using insEKF
    %   Customize this motion model and use it with the insEKF to fuse
    %   data.
    %
    %   Example:
    %       filt = insEKF(newSensorModel);
    %
    %   See also insEKF, positioning.INSMotionModel.

    %   Generated on 13-Mar-2022 11:37:21

    properties (Constant)
        State1Length = 1 % Length of motion model state State1
        State2Length = 2 % Length of motion model state State2
    end

    methods
        function s = modelstates(motion, opts)
            %modelstates Define the tracked states for this motion model
            %   MODELSTATES returns a struct which describes the
            %   states used by this motion model and tracked by the insEKF
            %   filter object. The field names describe the individual state
            %   quantities, and you can access the estimates of those
            %   quantities through the statesparts function. The values of
            %   the struct determine the size and default values of the
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            %   state vector. The input OPTS is the insOptions object used
            %   to build the filter.
            %
            %   See also insEKF, positioning.INSMotionModel.

            % Preallocate a struct with fields State1 and State2.
            % Overwrite the fields with different default values if
            % needed.
            s = struct("State1", zeros(1, motion.State1Length, opts.Datatype), ...
                "State2", zeros(1, motion.State2Length, opts.Datatype));
        end

        function statesdot = stateTransition(motion, filt, dt, varargin)
            %stateTransition State transition for motion states
            %   STATETRANSITION returns a struct with identical fields
            %   as the output of the modelstates function. The
            %   returned struct describes the per-state transition function
            %   for the motion model states.
            %
            %   This function is called by the insEKF object FILT when the
            %   PREDICT method of the FILT function is called. The DT and
            %   varargin inputs are the corresponding inputs to the
            %   predict method of the insEKF object.
            %
            %   *** THIS METHOD IS OPTIONAL ***
            %   If you delete this method, the model states will be
            %   constant. In this case, also delete the
            %   stateTransitionJacobian method.
            %
            %   See also insEKF, positioning.INSMotionModel.

            % Set statesdot.State1 to the derivative of State1 with
            % respect to time. If State1 is constant overtime, leave the
            % following line unchanged.
            statesdot.State1 = zeros(1, motion.State1Length, "like", filt.State);

            % Set statesdot.State2 to the derivative of State2 with
            % respect to time. If State2 is constant overtime, leave the
            % following line unchanged.
            statesdot.State2 = zeros(1, motion.State2Length, "like", filt.State);
        end

        function dfdx = stateTransitionJacobian(motion, filt, dt, varargin)
            %stateTransitionJacobian Jacobian of the stateTransition function
            %   STATETRANSITIONJACOBIAN returns a struct with identical
            %   fields as modelstates and describes the Jacobian of the
            %   per-state transition function relative to the State
            %   property of FILT. Each field value of STATESDOT should be a
            %   M-by-numel(FILT.State) row vector, representing the partial
            %   derivatives of that field's state transition function
            %   relative to the state vector.
            %
            %   This function is called by the insEKF object FILT when the
            %   PREDICT method of the FILT function is called. The DT and
            %   varargin inputs are the corresponding inputs to the
            %   predict method.
            %
            %   *** THIS METHOD IS OPTIONAL ***
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            %   If this method is not implemented, a numerical Jacobian
            %   will be used instead.
            %
            %   See also insEKF, positioning.INSMotionModel.

            N = numel(filt.State);

            dfdx.State1 = zeros(motion.State1Length, N, "like", filt.State);
            dfdx.State2 = zeros(motion.State2Length, N, "like", filt.State);

            % Create indexing
            s1idx = stateinfo(filt, "State1");
            s2idx = stateinfo(filt, "State2");

            % Uncomment the line below, and set dfdx.State1 to the
            % Jacobian of the stateTransition function with respect to
            % the State property of the filter object filt. Use s1idx to
            % index the columns of dfdx.State1.

            % % dfdx.State1(:,s1idx) =

            % Uncomment the line below, and set dfdx.State2 to the
            % Jacobian of the stateTransition function with respect to
            % the State property of the filter object filt. Use s2idx to
            % index the columns of dfdx.State2.

            % % dfdx.State2(:,s2idx) =
        end
    end
end

% [EOF]

Input Arguments
name — Sensor model class name
string scalar | character vector

Sensor model class name, specified as a string scalar or a character vector.
Example: "myClass"
Data Types: char | string

Version History
Introduced in R2022b

See Also
insCreateMotionModelTemplate | insEKF
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yumaread
Read data from YUMA almanac file

Syntax
data = yumaread(filename)
data = yumaread(filename,GPSWeekEpoch=refdate)

Description
data = yumaread(filename) reads data from the YUMA almanac file specified by filename, and
returns the parameters of each associated satellite as a timetable.

data = yumaread(filename,GPSWeekEpoch=refdate) specifies the reference date from which
the YUMA almanac file counts the Global Positioning System (GPS) week number.

Examples

Read GPS Navigation Message Data from YUMA Almanac File

Download the YUMA almanac file from the NAVCEN website and parse it. Specify the date for which
to download the file.

d = datetime("today") - 2;

Create the URL.

baseURL = "https://www.navcen.uscg.gov/sites/default/files/gps/almanac/";
almanacType = "/yuma/";
almanacExtension = ".alm";
url = baseURL + d.Year + almanacType + num2str(day(d,"dayofyear"),'%03d') + ...
      almanacExtension;

Specify a filename for the saved almanac file.

filename = "yumaAlmanac" + "_" + d.Year + "-" + ...
           d.Month + "-" + d.Day + ".alm";

Save the file.

websave(filename,url);

Get the orbital parameters from the downloaded YUMA almanac file.

data = yumaread(filename)

data=31×13 timetable
            Time            PRN    Health    Eccentricity    TimeOfApplicability    OrbitalInclination    RateOfRightAscen    SQRTA     RightAscenAtWeek    ArgumentOfPerigee    MeanAnom         Af0            Af1        Week
    ____________________    ___    ______    ____________    ___________________    __________________    ________________    ______    ________________    _________________    _________    ___________    ___________    ____

    27-Jan-2023 19:56:30     1       0          0.012259         5.0381e+05              0.98919            -7.6575e-09       5153.6         -1.7636             0.93699           -1.3324     0.00021935     -3.638e-12    2246
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    27-Jan-2023 19:56:30     2       0          0.020082         5.0381e+05              0.96693            -7.8289e-09       5153.6           -1.86             -1.3346           -2.3153    -0.00062466      3.638e-12    2246
    27-Jan-2023 19:56:30     3       0          0.004446         5.0381e+05               0.9773            -7.8746e-09       5153.7        -0.73153              1.0233           -2.4793    -0.00036907      3.638e-12    2246
    27-Jan-2023 19:56:30     4       0         0.0022964         5.0381e+05              0.96264            -7.8975e-09       5153.7         0.34944             -3.0639           0.47758    -4.0054e-05      7.276e-12    2246
    27-Jan-2023 19:56:30     5       0         0.0057855         5.0381e+05               0.9643            -8.0232e-09       5153.5        -0.77652              1.1341            1.2373    -0.00011349              0    2246
    27-Jan-2023 19:56:30     6       0         0.0028877         5.0381e+05              0.98846            -7.6346e-09       5153.6         -1.7719            -0.86284           -1.0726     0.00056458      3.638e-12    2246
    27-Jan-2023 19:56:30     7       0          0.016655         5.0381e+05              0.95017            -7.8746e-09       5153.5          1.3653             -2.2286           -1.9321     0.00025177     -7.276e-12    2246
    27-Jan-2023 19:56:30     8       0         0.0082297         5.0381e+05              0.96065            -8.0803e-09       5153.6         -2.8518             0.20048           0.91139    -0.00010586     -3.638e-12    2246
    27-Jan-2023 19:56:30     9       0         0.0025482         5.0381e+05              0.95586            -7.9889e-09       5153.6         0.29373              1.9652            1.2322    -0.00022888      7.276e-12    2246
    27-Jan-2023 19:56:30    10       0         0.0084252         5.0381e+05              0.97706            -7.8746e-09       5153.6        -0.73421             -2.4529            2.8739    -2.1935e-05              0    2246
    27-Jan-2023 19:56:30    11       0        0.00078106         5.0381e+05              0.96453            -7.8746e-09       5153.7         -1.7278             -2.6895           0.14565    -8.8692e-05    -1.0914e-11    2246
    27-Jan-2023 19:56:30    12       0         0.0088811         5.0381e+05              0.96648            -8.0003e-09       5153.6            2.48              1.3307           -2.7255    -0.00033283     -3.638e-12    2246
    27-Jan-2023 19:56:30    13       0         0.0067534         5.0381e+05              0.96972            -7.8175e-09       5153.6         0.45204             0.94145           0.42546     0.00046635      7.276e-12    2246
    27-Jan-2023 19:56:30    14       0          0.002604         5.0381e+05              0.94981            -8.1489e-09       5153.6          2.4432             -3.0813           -2.6751    -4.0054e-05      7.276e-12    2246
    27-Jan-2023 19:56:30    15       0          0.014733         5.0381e+05              0.93207            -8.2861e-09       5153.6         0.17855              1.1759         -0.076497     8.5831e-06      3.638e-12    2246
    27-Jan-2023 19:56:30    16       0          0.013348         5.0381e+05              0.96625            -8.0003e-09       5153.7          2.4984             0.75825            1.7264    -0.00052261              0    2246
      ⋮

View Satellite Positions Visible from Receiver Position Using YUMA Almanac File

Read GPS and QZSS navigation message data from a YUMA almanac file.

gpsQzssData = yumaread("qg2022309.alm");

Get the satellite positions, velocities, and IDs at the specified time.

t = datetime(2022,11,10,8,12,00);
[satPos,satVel,satID] = gnssconstellation(t,gpsQzssData,GNSSFileType="YUMA");

Specify a GNSS receiver position in geodetic coordinates (latitude, longitude, and altitude).

recPos = [35.67 139.73 50]; % Tokyo

Get the azimuth and elevation look angles of the satellite positions for the specified receiver position.
The isVis output indicates which satellites are visible. Find the total number of visible satellites by
using nnz.

[az,el,isVis] = lookangles(recPos,satPos);
fprintf('%d satellites visible at %s.\n',nnz(isVis),t);

12 satellites visible at 10-Nov-2022 08:12:00.

Specify the PRN as the label for each point. Specify the categorical groups.

prn = gpsQzssData.PRN;
GPSPrn = (prn <= 32);
group = categorical(GPSPrn,[true false],["GPS" "QZSS"]);

Visualize the visible satellites. Show the legend.

skyplot(az(isVis),el(isVis),satID(isVis),GroupData=group(isVis))
legend("GPS","QZSS")
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Extract GPS and QZSS Data from YUMA Almanac File

Read a YUMA almanac file containing GPS and QZSS data, downloaded from the QZSS website.

filenameQG = "qg2022309.alm";
dataQG = yumaread(filenameQG)

dataQG=35×13 timetable
            Time            PRN    Health    Eccentricity    TimeOfApplicability    OrbitalInclination    RateOfRightAscen    SQRTA     RightAscenAtWeek    ArgumentOfPerigee    MeanAnom        Af0           Af1        Week
    ____________________    ___    ______    ____________    ___________________    __________________    ________________    ______    ________________    _________________    ________    ___________    __________    ____

    08-Nov-2022 16:50:54     1       0           0.01204         2.3347e+05              0.98919            -7.5089e-09       5153.6        -0.38418             0.94107          0.45277     0.00025463    -7.276e-12    2235
    08-Nov-2022 16:50:54     2       0           0.02012         2.3347e+05              0.96699            -7.7603e-09       5154.9        -0.47885             -1.3867         -0.44223    -0.00063896     3.638e-12    2235
    08-Nov-2022 16:50:54     3       0         0.0044513         2.3347e+05              0.97615            -7.5889e-09       5153.7         0.64757              1.0521         -0.66094    -0.00037193    -3.638e-12    2235
    08-Nov-2022 16:50:54     4       0         0.0021377         2.3347e+05              0.96147            -8.0232e-09       5153.7          1.7292             -3.1181           2.3566    -8.9645e-05     7.276e-12    2235
    08-Nov-2022 16:50:54     5       0         0.0059276         2.3347e+05               0.9632             -7.726e-09       5153.5         0.60365              1.1404           2.9734    -0.00010395             0    2235
    08-Nov-2022 16:50:54     6       0         0.0026011         2.3347e+05              0.98847            -7.5317e-09       5153.5        -0.39246            -0.91841            0.726     0.00051308    1.0914e-11    2235
    08-Nov-2022 16:50:54     7       0          0.016459         2.3347e+05              0.95087            -7.7375e-09       5153.6          2.7459             -2.2384         -0.16947     0.00028992    -3.638e-12    2235
    08-Nov-2022 16:50:54     8       0         0.0077338         2.3347e+05              0.96113            -8.3432e-09       5153.6         -1.4706             0.16515           2.7185    -9.2506e-05    -3.638e-12    2235
    08-Nov-2022 16:50:54     9       0         0.0026331         2.3347e+05              0.95461            -8.1032e-09       5153.7          1.6741              1.9245           3.0836     -0.0002718     7.276e-12    2235
    08-Nov-2022 16:50:54    10       0         0.0081372         2.3347e+05              0.97593            -7.5546e-09       5153.6         0.64487             -2.5026           -1.554    -1.1444e-05             0    2235
    08-Nov-2022 16:50:54    11       0        0.00080109         2.3347e+05               0.9645             -7.726e-09       5153.6        -0.34663             -2.9148            2.172    -3.7193e-05    -7.276e-12    2235
    08-Nov-2022 16:50:54    12       0         0.0085993         2.3347e+05              0.96761             -7.886e-09       5153.7         -2.4237              1.3193         -0.90595    -0.00030231    -3.638e-12    2235
    08-Nov-2022 16:50:54    13       0         0.0066509         2.3347e+05              0.96872            -7.9432e-09       5153.6          1.8313             0.95082           2.2082     0.00042057     7.276e-12    2235
    08-Nov-2022 16:50:54    14       0         0.0023918         2.3347e+05              0.95102            -8.0003e-09       5153.6         -2.4592             -3.0426          -0.9278    -8.5831e-05     3.638e-12    2235
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    08-Nov-2022 16:50:54    15       0          0.014719         2.3347e+05               0.9307            -8.3661e-09       5153.6          1.5609               1.157           1.7184    -1.4305e-05     3.638e-12    2235
    08-Nov-2022 16:50:54    16       0          0.012957         2.3347e+05               0.9674            -7.9089e-09       5153.7         -2.4053             0.73788          -2.6905    -0.00052643             0    2235
      ⋮

Extract GPS data from the timetable based on valid GPS PRNs between 1 and 32.

GPSdata = dataQG((dataQG.PRN >= 1 & dataQG.PRN <= 32),:)

GPSdata=31×13 timetable
            Time            PRN    Health    Eccentricity    TimeOfApplicability    OrbitalInclination    RateOfRightAscen    SQRTA     RightAscenAtWeek    ArgumentOfPerigee    MeanAnom        Af0           Af1        Week
    ____________________    ___    ______    ____________    ___________________    __________________    ________________    ______    ________________    _________________    ________    ___________    __________    ____

    08-Nov-2022 16:50:54     1       0           0.01204         2.3347e+05              0.98919            -7.5089e-09       5153.6        -0.38418             0.94107          0.45277     0.00025463    -7.276e-12    2235
    08-Nov-2022 16:50:54     2       0           0.02012         2.3347e+05              0.96699            -7.7603e-09       5154.9        -0.47885             -1.3867         -0.44223    -0.00063896     3.638e-12    2235
    08-Nov-2022 16:50:54     3       0         0.0044513         2.3347e+05              0.97615            -7.5889e-09       5153.7         0.64757              1.0521         -0.66094    -0.00037193    -3.638e-12    2235
    08-Nov-2022 16:50:54     4       0         0.0021377         2.3347e+05              0.96147            -8.0232e-09       5153.7          1.7292             -3.1181           2.3566    -8.9645e-05     7.276e-12    2235
    08-Nov-2022 16:50:54     5       0         0.0059276         2.3347e+05               0.9632             -7.726e-09       5153.5         0.60365              1.1404           2.9734    -0.00010395             0    2235
    08-Nov-2022 16:50:54     6       0         0.0026011         2.3347e+05              0.98847            -7.5317e-09       5153.5        -0.39246            -0.91841            0.726     0.00051308    1.0914e-11    2235
    08-Nov-2022 16:50:54     7       0          0.016459         2.3347e+05              0.95087            -7.7375e-09       5153.6          2.7459             -2.2384         -0.16947     0.00028992    -3.638e-12    2235
    08-Nov-2022 16:50:54     8       0         0.0077338         2.3347e+05              0.96113            -8.3432e-09       5153.6         -1.4706             0.16515           2.7185    -9.2506e-05    -3.638e-12    2235
    08-Nov-2022 16:50:54     9       0         0.0026331         2.3347e+05              0.95461            -8.1032e-09       5153.7          1.6741              1.9245           3.0836     -0.0002718     7.276e-12    2235
    08-Nov-2022 16:50:54    10       0         0.0081372         2.3347e+05              0.97593            -7.5546e-09       5153.6         0.64487             -2.5026           -1.554    -1.1444e-05             0    2235
    08-Nov-2022 16:50:54    11       0        0.00080109         2.3347e+05               0.9645             -7.726e-09       5153.6        -0.34663             -2.9148            2.172    -3.7193e-05    -7.276e-12    2235
    08-Nov-2022 16:50:54    12       0         0.0085993         2.3347e+05              0.96761             -7.886e-09       5153.7         -2.4237              1.3193         -0.90595    -0.00030231    -3.638e-12    2235
    08-Nov-2022 16:50:54    13       0         0.0066509         2.3347e+05              0.96872            -7.9432e-09       5153.6          1.8313             0.95082           2.2082     0.00042057     7.276e-12    2235
    08-Nov-2022 16:50:54    14       0         0.0023918         2.3347e+05              0.95102            -8.0003e-09       5153.6         -2.4592             -3.0426          -0.9278    -8.5831e-05     3.638e-12    2235
    08-Nov-2022 16:50:54    15       0          0.014719         2.3347e+05               0.9307            -8.3661e-09       5153.6          1.5609               1.157           1.7184    -1.4305e-05     3.638e-12    2235
    08-Nov-2022 16:50:54    16       0          0.012957         2.3347e+05               0.9674            -7.9089e-09       5153.7         -2.4053             0.73788          -2.6905    -0.00052643             0    2235
      ⋮

Extract QZSS data from the timetable based on valid QZSS PRNs between 193 and 202.

QZSSData = dataQG((dataQG.PRN >= 193 & dataQG.PRN <= 202),:)

QZSSData=4×13 timetable
            Time            PRN    Health    Eccentricity    TimeOfApplicability    OrbitalInclination    RateOfRightAscen    SQRTA     RightAscenAtWeek    ArgumentOfPerigee    MeanAnom        Af0        Af1    Week
    ____________________    ___    ______    ____________    ___________________    __________________    ________________    ______    ________________    _________________    ________    ___________    ___    ____

    08-Nov-2022 08:53:02    194      0          0.076374          2.048e+05               0.72544            -2.343e-09       6492.9         -2.4966             -1.5847           2.5734              0     0     2235
    08-Nov-2022 08:53:02    195      0          0.074928          2.048e+05               0.71092           -2.3772e-09       6493.5        -0.78221             -1.5662           0.8499    -3.8147e-06     0     2235
    08-Nov-2022 08:53:02    196      0          0.074762          2.048e+05               0.60598            -3.383e-09       6493.2         0.94933              -1.559         -0.93973     0.00011253     0     2235
    08-Nov-2022 08:53:02    199      0        0.00022411          2.048e+05             0.0011924            1.0286e-09       6493.4          3.1171             0.38448           1.0834              0     0     2235

Plot Trajectories of Satellites over Time from YUMA Almanac File

Read GPS navigation message data from a YUMA almanac file.

gpsData = yumaread("yumaAlmanac_2022-9-27.alm");

Use the initial GPS timestamp from the almanac data to determine the absolute GPS times for each
60 second time step across 12 hours.

startTime = gpsData.Time(1);
numHours = 12;
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secondsPerHour = 3600;
dt = 60;
timeElapsed = 0:dt:(numHours*secondsPerHour);
t = startTime + seconds(timeElapsed);

Specify a GNSS receiver position in geodetic coordinates (latitude, longitude, and altitude).

recPos = [42 -71 50]; % Natick, MA

Get the azimuth and elevation look angles for the positions of all satellites for the specified receiver
position.

numSats = numel(gpsData.PRN); % Number of satellites
[allAz,allEl] = deal(NaN(numel(t),numSats));
for i = 1:numel(t)
    [satPos,~,satID] = gnssconstellation(t(i),gpsData,GNSSFileType="YUMA");
    [az,el,vis] = lookangles(recPos,satPos);
    allAz(i,:) = az;
    allEl(i,:) = el;
end

Mark all satellites below the horizon as NaN for no visibility.

allEl(allEl < 0) = NaN;

Visualize the trajectories of the satellites.

figure
skyplot(allAz,allEl,satID)
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Animate the trajectories of the satellites.

figure
sp = skyplot(allAz(1,:),allEl(1,:),satID);
for i = 1:size(allAz,1)
    set(sp,AzimuthData=allAz(1:i,:),ElevationData=allEl(1:i,:))
    drawnow
end

Input Arguments
filename — YUMA almanac filename
string scalar | character vector

YUMA almanac filename, specified as a string scalar or character vector. You can specify a relative or
an absolute path, but if you specify only the filename itself, the function saves the file in the current
working directory. The filename can also include a file extension.
Example: "yumaAlmanac_2022-4-20.alm"
Example: "mydir/yumaAlmanac_2022-4-20.alm"
Example: "C:/mydir/yumaAlmanac_2022-4-20.alm"
Data Types: char | string
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refdate — Reference date
"06-Jan-1980" | "21-Aug-1999" | "06-Apr-2019"

Reference date, specified as one of these valid datetime strings that coincide with the GPS week
number rollover dates:

• "06-Jan-1980"
• "21-Aug-1999"
• "06-Apr-2019"

These dates occur every 1024 weeks, starting from January 6, 1980 at 00:00 (UTC). The default value
is a datetime string that coincides with the most recent GPS week number rollover date before the
current day.
Example: GPSWeekEpoch="21-Aug-1999"
Data Types: char | string

Output Arguments
data — Parameters of each satellite
timetable

Parameters of each satellite, returned as a timetable with a row for each record and a column for
each parameter in that record.

Parameter Data Type Description
Time datetime GPS Time, calculated using

Week and
TimeOfApplicability.

PRN double Satellite pseudorandom noise
number.

Health double Satellite vehicle health data
code.

Eccentricity double Eccentricity of the satellite.
TimeOfApplicability double Number of seconds since

beginning of GPS week number.
OrbitalInclination double Inclination angle at reference

time, in radians.
RateOfRightAscen double Rate of change in measurement

of angle of right ascension, in
radians per second.

SQRTA double Square root of semimajor axis,
in meters1/2.

RightAscenAtWeek double Geographic longitude of orbital
plane at weekly epoch, in
radians.
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Parameter Data Type Description
ArgumentOfPerigee double Angle from equator to perigee,

in radians.
MeanAnom double Angle from position of satellite

in its orbit relative to perigee, in
radians.

Af0 double Satellite almanac zeroth-order
clock correction term, in
seconds.

Af1 double Satellite almanac first order
clock correction term, in
seconds per second.

Week double GPS week number, continuous,
not mod(1024).

Tips
• To download YUMA almanac files from the NAVCEN website for the current date, you must specify

a date two days before the current date because the GPS time of applicability is approximately 70
hours later than the transmission time of the almanac data set. See the “Read GPS Navigation
Message Data from YUMA Almanac File” on page 1-341 example for more details.

Version History
Introduced in R2023a

References
[1] Science Applications International Corporation. NAVSTAR GPS Space Segment/Navigation User

Interfaces. IS-GPS-200M. Los Angeles, CA: United States Space Force Space Systems
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pnt-004.pdf.
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See Also
semread | rinexread | gnssconstellation | skyplot
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accelparams
Accelerometer sensor parameters

Description
The accelparams class creates an accelerometer sensor parameters object. You can use this object
to model an accelerometer when simulating an IMU with imuSensor. See the “Algorithms” on page
2-545 section of imuSensor for details of accelparams modeling.

Creation
Syntax
params = accelparams
params = accelparams(Name,Value)

Description

params = accelparams returns an ideal accelerometer sensor parameters object with default
values.

params = accelparams(Name,Value) configures an accelerometer sensor parameters object
properties using one or more Name-Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Any unspecified
properties take default values.

Properties
MeasurementRange — Maximum sensor reading (m/s2)
inf (default) | real positive scalar

Maximum sensor reading in m/s2, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements ((m/s2)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (m/s2)/LSB, specified as a real nonnegative scalar. Here, LSB is
the acronym for least significant bit. Resolution is often referred to as Scale Factor for accelerometer.
Data Types: single | double

ConstantBias — Constant sensor offset bias (m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in m/s2, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
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Data Types: single | double

AxesMisalignment — Sensor axes skew (%)
diag([100 100 100]) (default) | scalar in the range [0,100] | 3-element row vector in the range
[0,100] | 3-by-3 matrix in the range [0,100]

Sensor axes skew in percentage, specified as a scalar, a 3-element row vector, or a 3-by-3 matrix with
values ranging from 0 to 100. The diagonal elements of the matrix account for the misalignment
effects for each axes. The off-diagonal elements account for the cross-axes misalignment effects. The
measured state vmeasure is obtained from the true state vtrue via the misalignment matrix as:

vmeasure = 1
100Mvtrue = 1

100

m11 m12 m13
m21 m22 m23
m31 m32 m33

vtrue

• If you specify the property as a scalar, then all the off-diagonal elements of the matrix take the
value of the specified scalar and all the diagonal elements are 100.

• If you specify the property as a vector [a b c], then m21 = m31 = a, m12 = m32 = b, and m13 = m23 =
c. All the diagonal elements are 100.

Data Types: single | double

NoiseDensity — Power spectral density of sensor noise (m/s2/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in (m/s2/√Hz), specified as a real scalar or 3-element row
vector. This property corresponds to the velocity random walk (VRW). Any scalar input is converted
into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in m/s2, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor ((m/s2)*(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (m/s2)*(√Hz), specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

TemperatureBias — Sensor bias from temperature ((m/s2)/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (m/s2)/℃, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double
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TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector
with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

Examples

Generate Accelerometer Data from Stationary Inputs

Generate accelerometer data for an imuSensor object from stationary inputs.

Generate an accelerometer parameter object with a maximum sensor reading of 19.6 m/s2 and a
resolution of 0.598 mm/s2 /LSB. The constant offset bias is 0.49 m/s2. The sensor has a power
spectral density of 3920 μm/s2 / Hz. The bias from temperature is 0.294 m/s2 /0C. The scale factor
error from temperature is 0.02%/0C. The sensor axes are skewed by 2%.

params = accelparams('MeasurementRange',19.6,'Resolution',0.598e-3,'ConstantBias',0.49,'NoiseDensity',3920e-6,'TemperatureBias',0.294,'TemperatureScaleFactor',0.02,'AxesMisalignment',2);

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object using the
accelerometer parameter object.

Fs = 100;
numSamples = 1000;
t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('SampleRate', Fs, 'Accelerometer', params);

Generate accelerometer data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);
 
accelData = imu(acc, angvel, orient);

Plot the resultant accelerometer data.

plot(t, accelData)
title('Accelerometer')
xlabel('s')
ylabel('m/s^2')
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Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
imuSensor | gyroparams | magparams
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ahrs10filter
Height and orientation from MARG and altimeter readings

Description
The ahrs10filter object fuses MARG and altimeter sensor data to estimate device height and
orientation. MARG (magnetic, angular rate, gravity) data is typically derived from magnetometer,
gyroscope, and accelerometer sensors. The filter uses an 18-element state vector to track the
orientation quaternion, vertical velocity, vertical position, MARG sensor biases, and geomagnetic
vector. The ahrs10filter object uses an extended Kalman filter to estimate these quantities.

Creation

Syntax
FUSE = ahrs10filter
FUSE = ahrs10filter('ReferenceFrame',RF)
FUSE = ahrs10filter( ___ ,Name,Value)

Description

FUSE = ahrs10filter returns an extended Kalman filter object, FUSE, for sensor fusion of MARG
and altimeter readings to estimate device height and orientation.

FUSE = ahrs10filter('ReferenceFrame',RF) returns an extended Kalman filter object that
estimates device height and orientation relative to the reference frame RF. Specify RF as 'NED'
(North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

FUSE = ahrs10filter( ___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the IMU in Hz, specified as a positive scalar.
Data Types: single | double

GyroscopeNoise — Multiplicative process noise variance from gyroscope ((rad/s)2)
[1e-9,1e-9,1e-9] (default) | scalar | three-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as positive real finite
numbers.
Data Types: single | double
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AccelerometerNoise — Multiplicative process noise variance from accelerometer ((m/s2)2)
[1e-4,1e-4,1e-4] (default) | scalar | three-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as positive real
finite numbers.
Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope bias ((rad/
s2)2)
[1e-10,1e-10,1e-10] (default) | scalar | three-element row vector

Multiplicative process noise variance from the gyroscope bias in (rad/s2)2, specified as positive real
finite numbers.
Data Types: single | double

AccelerometerBiasNoise — Multiplicative process noise variance from accelerometer bias
((m/s2)2)
[1e-4,1e-4,1e-4] (default) | scalar | three-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as positive real
finite numbers.
Data Types: single | double

GeomagneticVectorNoise — Additive process noise for geomagnetic vector (μT2)
[1e-6,1e-6,1e-6] (default) | scalar | three-element row vector

Additive process noise for geomagnetic vector in μT2, specified as positive real finite numbers.
Data Types: single | double

MagnetometerBiasNoise — Additive process noise for magnetometer bias (μT2)
[0.1,0.1,0.1] (default) | scalar | three-element row vector

Additive process noise for magnetometer bias in μT2, specified as positive real finite numbers.
Data Types: single | double

State — State vector of extended Kalman filter
18-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Altitude (NED or ENU) m 5
Vertical Velocity (NED or ENU) m/s 6
Delta Angle Bias (XYZ) rad/s 7:9
Delta Velocity Bias (XYZ) m/s 10:12
Geomagnetic Field Vector (NED
or ENU)

μT 13:15

Magnetometer Bias (XYZ) μT 16:18
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The default initial state corresponds to an object at rest located at [0 0 0] in geodetic LLA
coordinates.
Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(18)*1e-6 (default) | 18-by-18 matrix

State error covariance for the Kalman filter, specified as an 18-by-18-element matrix of real numbers.
Data Types: single | double

Object Functions
predict Update states using accelerometer and gyroscope data for ahrs10filter
fusemag Correct states using magnetometer data for ahrs10filter
fusealtimeter Correct states using altimeter data for ahrs10filter
correct Correct states using direct state measurements for ahrs10filter
residual Residuals and residual covariances from direct state measurements for

ahrs10filter
residualmag Residuals and residual covariance from magnetometer measurements for

ahrs10filter
residualaltimeter Residuals and residual covariance from altimeter measurements for ahrs10filter
pose Current orientation and position estimate for ahrs10filter
reset Reset internal states for ahrs10filter
stateinfo Display state vector information for ahrs10filter
tune Tune ahrs10filter parameters to reduce estimation error
copy Create copy of ahrs10filter

Examples

Estimate Pose of UAV

Load logged sensor data, ground truth pose, and initial state and initial state covariance. Calculate
the number of IMU samples per altimeter sample and the number of IMU samples per magnetometer
sample.

load('fuse10exampledata.mat', ...
     'imuFs','accelData','gyroData', ...
     'magnetometerFs','magData', ...
     'altimeterFs','altData', ...
     'expectedHeight','expectedOrient', ...
     'initstate','initcov');

imuSamplesPerAlt = fix(imuFs/altimeterFs);
imuSamplesPerMag = fix(imuFs/magnetometerFs);

Create an AHRS filter that fuses MARG and altimeter readings to estimate height and orientation. Set
the sampling rate and measurement noises of the sensors. The values were determined from
datasheets and experimentation.

filt = ahrs10filter('IMUSampleRate',imuFs, ...
                    'AccelerometerNoise',0.1, ...
                    'State',initstate, ...
                    'StateCovariance',initcov);
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Ralt = 0.24;
Rmag = 0.9;

Preallocate variables to log height and orientation.

numIMUSamples = size(accelData,1);
estHeight = zeros(numIMUSamples,1);
estOrient = zeros(numIMUSamples,1,'quaternion');

Fuse accelerometer, gyroscope, magnetometer and altimeter data. The outer loop predicts the filter
forward at the fastest sample rate (the IMU sample rate).

for ii = 1:numIMUSamples
    
    % Use predict to estimate the filter state based on the accelometer and
    % gyroscope data.
    predict(filt,accelData(ii,:),gyroData(ii,:));
    
    % Magnetometer data is collected at a lower rate than IMU data. Fuse
    % magnetometer data at the lower rate.
    if ~mod(ii,imuSamplesPerMag)
        fusemag(filt,magData(ii,:),Rmag);
    end
    
    % Altimeter data is collected at a lower rate than IMU data. Fuse
    % altimeter data at the lower rate.
    if ~mod(ii, imuSamplesPerAlt)
        fusealtimeter(filt,altData(ii),Ralt);
    end
    
    % Log the current height and orientation estimate.
    [estHeight(ii),estOrient(ii)] = pose(filt);
end

Calculate the RMS errors between the known true height and orientation and the output from the
AHRS filter.

pErr = expectedHeight - estHeight;
qErr = rad2deg(dist(expectedOrient,estOrient));

pRMS = sqrt(mean(pErr.^2));
qRMS = sqrt(mean(qErr.^2));

fprintf('Altitude RMS Error\n');

Altitude RMS Error

fprintf('\t%.2f (meters)\n\n',pRMS);

    0.38 (meters)

Visualize the true and estimated height over time.

t = (0:(numIMUSamples-1))/imuFs;
plot(t,expectedHeight);hold on
plot(t,estHeight);hold off
legend('Ground Truth','Estimated Height','location','best')
ylabel('Height (m)')
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xlabel('Time (s)')
grid on

fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n',qRMS);

    2.93 (degrees)

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | insfilter
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correct
Correct states using direct state measurements for ahrs10filter

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance based on the measurement and measurement covariance. The
measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1,18]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1,18].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Altitude (NED) m 5
Vertical Velocity (NED) m/s 6
Delta Angle Bias (XYZ) rad/s 7:9
Delta Velocity Bias (XYZ) m/s 10:12
Geomagnetic Field Vector (NED) μT 13:15
Magnetometer Bias (XYZ) μT 16:18

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
Data Types: single | double

 correct
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measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N is the
number of elements of the index argument, idx.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter
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copy
Create copy of ahrs10filter

Syntax
newFilter = copy(filter)

Description
newFilter = copy(filter) returns a copy of the ahrs10filter, filter, with the exactly same
property values.

Input Arguments
filter — Filter to be copied
ahrs10filter

Filter to be copied, specified as an ahrs10filter object.

Output Arguments
newFilter — New copied filter
ahrs10filter

New copied filter, returned as an ahrs10filter object.

Version History
Introduced in R2020b

See Also
ahrs10filter
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fusealtimeter
Correct states using altimeter data for ahrs10filter

Syntax
[res,resCov] = fusealtimeter(FUSE,altimeterReadings,
altimeterReadingsCovariance)

Description
[res,resCov] = fusealtimeter(FUSE,altimeterReadings,
altimeterReadingsCovariance) fuses altimeter data to correct the state estimate.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

altimeterReadings — Altimeter readings (m)
real scalar

Altimeter readings in meters, specified as a real scalar.
Data Types: single | double

altimeterReadingsCovariance — Altimeter readings error covariance (m2)
real scalar

Altimeter readings error covariance in m2, specified as a real scalar.
Data Types: single | double

Output Arguments
res — Measurement residual
scalar

Measurement residual, returned as a scalar in meters.

resCov — Residual covariance
nonnegative scalar

Residual covariance, returned as a nonnegative scalar in m2.

Version History
Introduced in R2019a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter
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fusemag
Correct states using magnetometer data for ahrs10filter

Syntax
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance) fuses
magnetometer data to correct the state estimate.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

Version History
Introduced in R2019a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter
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pose
Current orientation and position estimate for ahrs10filter

Syntax
[position, orientation, velocity] = pose(FUSE)
[position, orientation, velocity] = pose(FUSE,format)

Description
[position, orientation, velocity] = pose(FUSE) returns the current estimate of the pose.

[position, orientation, velocity] = pose(FUSE,format) returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate expressed in the local coordinate system (m)
3-element row vector

Position estimate expressed in the local coordinate system of the filter in meters, returned as a 3-
element row vector.
Data Types: single | double

orientation — Orientation estimate expressed in the local coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate expressed in the local coordinate system of the filter, returned as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix represents a frame rotation
from the local reference frame of the filter to the body reference frame.
Data Types: single | double | quaternion

velocity — Velocity estimate expressed in local coordinate system (m/s)
3-element row vector
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Velocity estimate expressed in the local coordinate system of the filter in m/s, returned as a 3-element
row vector.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter
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predict
Update states using accelerometer and gyroscope data for ahrs10filter

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope data to
update the state estimate.

Input Arguments
FUSE — ahrs10Filter object
object

Object of ahrs10filter.

accelReadings — Accelerometer readings in the sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in local sensor body coordinate system in m/s2, specified as an N-by-3 matrix.
N is the number of samples, and the three columns of accelReadings represent the [x y z]
measurements. Accelerometer readings are assumed to correspond to the sample rate specified by
the IMUSampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in the sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix. N is
the number of samples, and the three columns of gyroReadings represent the [x y z] measurements.
Gyroscope readings are assumed to correspond to the sample rate specified by the IMUSampleRate
property.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
ahrs10filter | insfilter
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reset
Reset internal states for ahrs10filter

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their default values.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

2 Classes

2-22



residual
Residuals and residual covariances from direct state measurements for ahrs10filter

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — ahrs10filter
ahrs10filter | object

ahrs10filter, specified as an object.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1,18]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1,18].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Altitude (NED) m 5
Vertical Velocity (NED) m/s 6
Delta Angle Bias (XYZ) rad/s 7:9
Delta Velocity Bias (XYZ) m/s 10:12
Geomagnetic Field Vector (NED) μT 13:15
Magnetometer Bias (XYZ) μT 16:18

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

measurementCovariance — Covariance of measurement
N-by-N matrix

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.
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Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter
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residualaltimeter
Residuals and residual covariance from altimeter measurements for ahrs10filter

Syntax
[res,resCov] = residualaltimeter(FUSE,altimeterReadings,
altimeterReadingsCovariance)

Description
[res,resCov] = residualaltimeter(FUSE,altimeterReadings,
altimeterReadingsCovariance) computes the residual, res, and the innovation covariance,
resCov, based on the magnetometer readings and the corresponding covariance.

Input Arguments
FUSE — ahrs10filter
ahrs10filter | object

ahrs10filter, specified as an object.

altimeterReadings — Altimeter readings (m)
real scalar

Altimeter readings in meters, specified as a real scalar.
Data Types: single | double

altimeterReadingsCovariance — Altimeter readings error covariance (m2)
real scalar

Altimeter readings error covariance in m2, specified as a real scalar.
Data Types: single | double

Output Arguments
res — Measurement residual
scalar

Measurement residual, returned as a scalar in meters.

resCov — Residual covariance
nonnegative scalar

Residual covariance, returned as a nonnegative scalar in m2.

Version History
Introduced in R2020a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter
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residualmag
Residuals and residual covariance from magnetometer measurements for ahrs10filter

Syntax
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance) computes the
residual, residual, and the residual covariance, resCov, based on the magnetometer readings and
the corresponding covariance.

Input Arguments
FUSE — ahrs10filter
ahrs10filter | object

ahrs10filter, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.
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Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter

2 Classes

2-28



stateinfo
Display state vector information for ahrs10filter

Syntax
stateinfo(FUSE)
info = stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the associated
units.

info = stateinfo(FUSE) returns a structure with fields containing descriptions of the elements of
the state vector of the filter, FUSE.

Examples

State information of ahrs10filter

Create an ahrs10filter object.

filter = ahrs10filter;

Display the state information of the created filter.

stateinfo(filter)

States                            Units    Index
Orientation (quaternion parts)             1:4  
Altitude (NAV)                    m        5    
Vertical Velocity (NAV)           m/s      6    
Delta Angle Bias (XYZ)            rad      7:9  
Delta Velocity Bias (XYZ)         m/s      10:12
Geomagnetic Field Vector (NAV)    µT       13:15
Magnetometer Bias (XYZ)           µT       16:18

Output the state information of the filter as a structure.

info = stateinfo(filter)

info = struct with fields:
               Orientation: [1 2 3 4]
                  Altitude: 5
          VerticalVelocity: 6
            DeltaAngleBias: [7 8 9]
         DeltaVelocityBias: [10 11 12]
    GeomagneticFieldVector: [13 14 15]
          MagnetometerBias: [16 17 18]
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Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

Output Arguments
info — State information
structure

State information, returned as a structure. The field names of the structure are names of the
elements of the state vector in the filter. The values of each field are the corresponding indices of the
state vector.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter
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tune
Tune ahrs10filter parameters to reduce estimation error

Syntax
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth)
tunedMeasureNoise = tune( ___ ,config)

Description
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth) adjusts the
properties of the ahrs10filter filter object, filter, and measurement noises to reduce the root-
mean-squared (RMS) state estimation error between the fused sensor data and the ground truth. The
function also returns the tuned measurement noise, tunedMeasureNoise. The function uses the
property values in the filter and the measurement noise provided in the measureNoise structure as
the initial estimate for the optimization algorithm.

tunedMeasureNoise = tune( ___ ,config) specifies the tuning configuration based on a
tunerconfig object, config.

Examples

Tune ahrs10filter to Optimize Pose Estimate

Load the recorded sensor data and ground truth data.

load('ahrs10filterTuneData.mat');

Create tables for the sensor data and the truth data.

sensorData = table(Accelerometer,Gyroscope,...
    Magnetometer,Altimeter);
groundTruth = table(Orientation, Altitude);

Create an ahrs10filter filter object.

filter = ahrs10filter('State', initialState, ...
    'StateCovariance', initialStateCovariance);      

Create a tuner configuration object for the filter. Set the maximum iterations to ten and set the
objective limit to 0.001.

cfg = tunerconfig('ahrs10filter','MaxIterations',10,...
          'ObjectiveLimit',1e-3);

Use the tuner noise function to obtain a set of initial sensor noises used in the filter.

measNoise = tunernoise('ahrs10filter')

measNoise = struct with fields:
    MagnetometerNoise: 1
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       AltimeterNoise: 1

Tune the filter and obtain the tuned parameters.

tunedNoise = tune(filter, measNoise, sensorData, ...
    groundTruth, cfg);

    Iteration    Parameter                 Metric
    _________    _________                 ______
    1            AccelerometerNoise        0.0526
    1            GyroscopeNoise            0.0526
    1            MagnetometerNoise         0.0523
    1            AltimeterNoise            0.0515
    1            AccelerometerBiasNoise    0.0510
    1            GyroscopeBiasNoise        0.0510
    1            GeomagneticVectorNoise    0.0510
    1            MagnetometerBiasNoise     0.0508
    2            AccelerometerNoise        0.0508
    2            GyroscopeNoise            0.0508
    2            MagnetometerNoise         0.0504
    2            AltimeterNoise            0.0494
    2            AccelerometerBiasNoise    0.0490
    2            GyroscopeBiasNoise        0.0490
    2            GeomagneticVectorNoise    0.0490
    2            MagnetometerBiasNoise     0.0487
    3            AccelerometerNoise        0.0487
    3            GyroscopeNoise            0.0487
    3            MagnetometerNoise         0.0482
    3            AltimeterNoise            0.0472
    3            AccelerometerBiasNoise    0.0467
    3            GyroscopeBiasNoise        0.0467
    3            GeomagneticVectorNoise    0.0467
    3            MagnetometerBiasNoise     0.0463
    4            AccelerometerNoise        0.0463
    4            GyroscopeNoise            0.0463
    4            MagnetometerNoise         0.0456
    4            AltimeterNoise            0.0446
    4            AccelerometerBiasNoise    0.0442
    4            GyroscopeBiasNoise        0.0442
    4            GeomagneticVectorNoise    0.0442
    4            MagnetometerBiasNoise     0.0437
    5            AccelerometerNoise        0.0437
    5            GyroscopeNoise            0.0437
    5            MagnetometerNoise         0.0428
    5            AltimeterNoise            0.0417
    5            AccelerometerBiasNoise    0.0413
    5            GyroscopeBiasNoise        0.0413
    5            GeomagneticVectorNoise    0.0413
    5            MagnetometerBiasNoise     0.0408
    6            AccelerometerNoise        0.0408
    6            GyroscopeNoise            0.0408
    6            MagnetometerNoise         0.0397
    6            AltimeterNoise            0.0385
    6            AccelerometerBiasNoise    0.0381
    6            GyroscopeBiasNoise        0.0381
    6            GeomagneticVectorNoise    0.0381
    6            MagnetometerBiasNoise     0.0375
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    7            AccelerometerNoise        0.0375
    7            GyroscopeNoise            0.0375
    7            MagnetometerNoise         0.0363
    7            AltimeterNoise            0.0351
    7            AccelerometerBiasNoise    0.0347
    7            GyroscopeBiasNoise        0.0347
    7            GeomagneticVectorNoise    0.0347
    7            MagnetometerBiasNoise     0.0342
    8            AccelerometerNoise        0.0342
    8            GyroscopeNoise            0.0342
    8            MagnetometerNoise         0.0331
    8            AltimeterNoise            0.0319
    8            AccelerometerBiasNoise    0.0316
    8            GyroscopeBiasNoise        0.0316
    8            GeomagneticVectorNoise    0.0316
    8            MagnetometerBiasNoise     0.0313
    9            AccelerometerNoise        0.0313
    9            GyroscopeNoise            0.0313
    9            MagnetometerNoise         0.0313
    9            AltimeterNoise            0.0301
    9            AccelerometerBiasNoise    0.0298
    9            GyroscopeBiasNoise        0.0298
    9            GeomagneticVectorNoise    0.0298
    9            MagnetometerBiasNoise     0.0296
    10           AccelerometerNoise        0.0296
    10           GyroscopeNoise            0.0296
    10           MagnetometerNoise         0.0296
    10           AltimeterNoise            0.0285
    10           AccelerometerBiasNoise    0.0283
    10           GyroscopeBiasNoise        0.0283
    10           GeomagneticVectorNoise    0.0283
    10           MagnetometerBiasNoise     0.0282

Fuse the sensor data using the tuned filter.

N = size(sensorData,1);
qEstTuned = quaternion.zeros(N,1);
altEstTuned = zeros(N,1);
for ii=1:N
    predict(filter,Accelerometer(ii,:),Gyroscope(ii,:));
    if all(~isnan(Magnetometer(ii,1)))
        fusemag(filter, Magnetometer(ii,:),tunedNoise.MagnetometerNoise);
    end
    if ~isnan(Altimeter(ii))
        fusealtimeter(filter, Altimeter(ii),tunedNoise.AltimeterNoise);
    end
    [altEstTuned(ii), qEstTuned(ii)] = pose(filter);
end

Compute the RMS errors.

orientationErrorTuned = rad2deg(dist(qEstTuned, Orientation));
rmsOrientationErrorTuned = sqrt(mean(orientationErrorTuned.^2))

rmsOrientationErrorTuned = 2.2899

positionErrorTuned = altEstTuned - Altitude;
rmsPositionErrorTuned = sqrt(mean( positionErrorTuned.^2))
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rmsPositionErrorTuned = 0.0199

Visualize the results.

figure;
t = (0:N-1)./ filter.IMUSampleRate;
subplot(2,1,1)
plot(t, positionErrorTuned, 'b');
title("Tuned ahrs10filter" + newline + ...
    "Altitude Error")
xlabel('Time (s)');
ylabel('Position Error (meters)')
subplot(2,1,2)
plot(t, orientationErrorTuned, 'b');
title("Orientation Error")
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');

Input Arguments
filter — Filter object
ahrs10filter object

Filter object, specified as an ahrs10filter object.
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measureNoise — Measurement noise
structure

Measurement noise, specified as a structure. The function uses the measurement noise input as the
initial guess for tuning the measurement noise. The structure must contain these fields:

Field name Description
MagnetometerNoise Variance of magnetometer noise, specified as a

scalar in (μT)2

AltimeterNoise Variance of altimeter noise, specified as a scalar
in m2

sensorData — Sensor data
table

Sensor data, specified as a table. In each row, the sensor data is specified as:

• Accelerometer — Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.
• Gyroscope— Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.
• Magnetometer — Magnetometer data, specified as a 1-by-3 vector of scalars in μT.
• Altimeter — Altimeter data, specified as a scalar in meters.

If the magnetometer does not produce measurements, specify the corresponding entry as NaN. If you
set the Cost property of the tuner configuration input, config, to Custom, then you can use other
data types for the sensorData input based on your choice.

groundTruth — Ground truth data
table

Ground truth data, specified as a table. In each row, the table can optionally contain any of these
variables:

• Orientation — Orientation from the navigation frame to the body frame, specified as a
quaternion or a 3-by-3 rotation matrix.

• Altitude — Altitude, specified as a scalar in meters.
• VertialVelocity — Velocity in the vertical direction, specified as a scalar in m/s.
• DeltaAngleBias — Delta angle bias, specified as a 1-by-3 vector of scalars in radians.
• DeltaVelocityBias — Delta velocity bias, specified as a 1-by-3 vector of scalars in m/s.
• GeomagneticFieldVector — Geomagnetic field vector in navigation frame, specified as a 1-by-3

vector of scalars.
• MagnetometerBias — Magnetometer bias in body frame, specified as a 1-by-3 vector of scalars

in μT.

The function processes each row of the sensorData and groundTruth tables sequentially to
calculate the state estimate and RMS error from the ground truth. State variables not present in
groundTruth input are ignored for the comparison. The sensorData and the groundTruth tables
must have the same number of rows.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the groundTruth input based on your choice.
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config — Tuner configuration
tunerconfig object

Tuner configuration, specified as a tunerconfig object.

Output Arguments
tunedMeasureNoise — Tuned measurement noise
structure

Tuned measurement noise, returned as a structure. The structure contains these fields.

Field name Description
MagnetometerNoise Variance of magnetometer noise, specified as a

scalar in (μT)2

AltimeterNoise Variance of altimeter noise, specified as a scalar
in m2

Version History
Introduced in R2021a

References
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman

Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.

See Also
tunerconfig | tunernoise
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ahrsfilter
Orientation from accelerometer, gyroscope, and magnetometer readings

Description
The ahrsfilter System object™ fuses accelerometer, magnetometer, and gyroscope sensor data to
estimate device orientation.

To estimate device orientation:

1 Create the ahrsfilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
FUSE = ahrsfilter
FUSE = ahrsfilter('ReferenceFrame',RF)
FUSE = ahrsfilter( ___ ,Name,Value)

Description

FUSE = ahrsfilter returns an indirect Kalman filter System object, FUSE, for sensor fusion of
accelerometer, gyroscope, and magnetometer data to estimate device orientation and angular
velocity. The filter uses a 12-element state vector to track the estimation error for the orientation, the
gyroscope bias, the linear acceleration, and the magnetic disturbance.

FUSE = ahrsfilter('ReferenceFrame',RF) returns an ahrsfilter System object that fuses
accelerometer, gyroscope, and magnetometer data to estimate device orientation relative to the
reference frame RF. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default
value is 'NED'.

FUSE = ahrsfilter( ___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SampleRate — Input sample rate of sensor data (Hz)
100 (default) | positive scalar

Input sample rate of the sensor data in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

DecimationFactor — Decimation factor
1 (default) | positive integer

Decimation factor by which to reduce the input sensor data rate as part of the fusion algorithm,
specified as a positive integer.

The number of rows of the inputs –– accelReadings, gyroReadings, and magReadings –– must be
a multiple of the decimation factor.
Data Types: single | double

AccelerometerNoise — Variance of accelerometer signal noise ((m/s2)2)
0.00019247 (default) | positive real scalar

Variance of accelerometer signal noise in (m/s2)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

MagnetometerNoise — Variance of magnetometer signal noise (μT2)
0.1 (default) | positive real scalar

Variance of magnetometer signal noise in μT2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

GyroscopeNoise — Variance of gyroscope signal noise ((rad/s)2)
9.1385e-5 (default) | positive real scalar

Variance of gyroscope signal noise in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

GyroscopeDriftNoise — Variance of gyroscope offset drift ((rad/s)2)
3.0462e-13 (default) | positive real scalar

Variance of gyroscope offset drift in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

LinearAccelerationNoise — Variance of linear acceleration noise (m/s2)2

0.0096236 (default) | positive real scalar
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Variance of linear acceleration noise in (m/s2)2, specified as a positive real scalar. Linear acceleration
is modeled as a lowpass-filtered white noise process.

Tunable: Yes
Data Types: single | double

LinearAccelerationDecayFactor — Decay factor for linear acceleration drift
0.5 (default) | scalar in the range [0,1)

Decay factor for linear acceleration drift, specified as a scalar in the range [0,1). If linear acceleration
is changing quickly, set LinearAcclerationDecayFactor to a lower value. If linear acceleration
changes slowly, set LinearAcclerationDecayFactor to a higher value. Linear acceleration drift is
modeled as a lowpass-filtered white noise process.

Tunable: Yes
Data Types: single | double

MagneticDisturbanceNoise — Variance of magnetic disturbance noise (μT2)
0.5 (default) | real finite positive scalar

Variance of magnetic disturbance noise in μT2, specified as a real finite positive scalar.

Tunable: Yes
Data Types: single | double

MagneticDisturbanceDecayFactor — Decay factor for magnetic disturbance
0.5 (default) | positive scalar in the range [0,1]

Decay factor for magnetic disturbance, specified as a positive scalar in the range [0,1]. Magnetic
disturbance is modeled as a first order Markov process.

Tunable: Yes
Data Types: single | double

InitialProcessNoise — Covariance matrix for process noise
12-by-12 matrix

Covariance matrix for process noise, specified as a 12-by-12 matrix. The default is:

  Columns 1 through 6

   0.000006092348396                   0                   0                   0                   0                   0
                   0   0.000006092348396                   0                   0                   0                   0
                   0                   0   0.000006092348396                   0                   0                   0
                   0                   0                   0   0.000076154354947                   0                   0
                   0                   0                   0                   0   0.000076154354947                   0
                   0                   0                   0                   0                   0   0.000076154354947
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
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  Columns 7 through 12

                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
   0.009623610000000                   0                   0                   0                   0                   0
                   0   0.009623610000000                   0                   0                   0                   0
                   0                   0   0.009623610000000                   0                   0                   0
                   0                   0                   0   0.600000000000000                   0                   0
                   0                   0                   0                   0   0.600000000000000                   0
                   0                   0                   0                   0                   0   0.600000000000000

The initial process covariance matrix accounts for the error in the process model.
Data Types: single | double

ExpectedMagneticFieldStrength — Expected estimate of magnetic field strength (μT)
50 (default) | real positive scalar

Expected estimate of magnetic field strength in μT, specified as a real positive scalar. The expected
magnetic field strength is an estimate of the magnetic field strength of the Earth at the current
location.

Tunable: Yes
Data Types: single | double

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size of the
output depends on the input size, N, and the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

Data Types: char | string

Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,magReadings)

Description

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,magReadings)
fuses accelerometer, gyroscope, and magnetometer data to compute orientation and angular velocity
measurements. The algorithm assumes that the device is stationary before the first call.
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Input Arguments

accelReadings — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix.
N is the number of samples, and the three columns of accelReadings represent the [x y z]
measurements. Accelerometer readings are assumed to correspond to the sample rate specified by
the SampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix. N is
the number of samples, and the three columns of gyroReadings represent the [x y z] measurements.
Gyroscope readings are assumed to correspond to the sample rate specified by the SampleRate
property.
Data Types: single | double

magReadings — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix

Magnetometer readings in the sensor body coordinate system in µT, specified as an N-by-3 matrix. N
is the number of samples, and the three columns of magReadings represent the [x y z]
measurements. Magnetometer readings are assumed to correspond to the sample rate specified by
the SampleRate property.
Data Types: single | double

Output Arguments

orientation — Orientation that rotates quantities from local navigation coordinate system
to sensor body coordinate system
M-by-1 array of quaternions (default) | 3-by-3-by-M array

Orientation that can rotate quantities from the local navigation coordinate system to a body
coordinate system, returned as quaternions or an array. The size and type of orientation depends
on whether the OrienationFormat property is set to 'quaternion' or 'Rotation matrix':

• 'quaternion' –– the output is an M-by-1 vector of quaternions, with the same underlying data
type as the inputs

• 'Rotation matrix' –– the output is a 3-by-3-by-M array of rotation matrices the same data type
as the inputs

The number of input samples, N, and the DecimationFactor property determine M.

You can use orientation in a rotateframe function to rotate quantities from a local navigation
system to a sensor body coordinate system.
Data Types: quaternion | single | double

angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
M-by-3 array (default)
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Angular velocity with gyroscope bias removed in the sensor body coordinate system in rad/s, returned
as an M-by-3 array. The number of input samples, N, and the DecimationFactor property
determine M.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to ahrsfilter
tune Tune ahrsfilter parameters to reduce estimation error

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Orientation Using ahrsfilter

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and magnetometer
sensor data from a device oscillating in pitch (around y-axis), then yaw (around z-axis), and then roll
(around x-axis). The file also contains the sample rate of the recording.

load 'rpy_9axis' sensorData Fs
accelerometerReadings = sensorData.Acceleration;
gyroscopeReadings = sensorData.AngularVelocity;
magnetometerReadings = sensorData.MagneticField;

Create an ahrsfilter System object™ with SampleRate set to the sample rate of the sensor data.
Specify a decimation factor of two to reduce the computational cost of the algorithm.

decim = 2;
fuse = ahrsfilter('SampleRate',Fs,'DecimationFactor',decim);

Pass the accelerometer readings, gyroscope readings, and magnetometer readings to the
ahrsfilter object, fuse, to output an estimate of the sensor body orientation over time. By default,
the orientation is output as a vector of quaternions.

q = fuse(accelerometerReadings,gyroscopeReadings,magnetometerReadings);

Orientation is defined by angular displacement required to rotate a parent coordinate system to a
child coordinate system. Plot the orientation in Euler angles in degrees over time.

ahrsfilter correctly estimates the change in orientation over time, including the south-facing
initial orientation.
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time = (0:decim:size(accelerometerReadings,1)-1)/Fs;

plot(time,eulerd(q,'ZYX','frame'))
title('Orientation Estimate')
legend('z-axis', 'y-axis', 'x-axis')
ylabel('Rotation (degrees)')

Simulate Magnetic Jamming on ahrsFilter

This example shows how performance of the ahrsfilter System object™ is affected by magnetic
jamming.

Load StationaryIMUReadings, which contains accelerometer, magnetometer, and gyroscope
readings from a stationary IMU.

load 'StationaryIMUReadings.mat' accelReadings magReadings gyroReadings SampleRate

numSamples = size(accelReadings,1);

The ahrsfilter uses magnetic field strength to stabilize its orientation against the assumed
constant magnetic field of the Earth. However, there are many natural and man-made objects which
output magnetic fields and can confuse the algorithm. To account for the presence of transient
magnetic fields, you can set the MagneticDisturbanceNoise property on the ahrsfilter object.
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Create an ahrsfilter object with the decimation factor set to 2 and note the default expected
magnetic field strength.

decim = 2;
FUSE = ahrsfilter('SampleRate',SampleRate,'DecimationFactor',decim);

Fuse the IMU readings using the attitude and heading reference system (AHRS) filter, and then
visualize the orientation of the sensor body over time. The orientation fluctuates at the beginning and
stabilizes after approximately 60 seconds.

orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');
time = (0:decim:(numSamples-1))'/SampleRate;

figure(1)
plot(time,orientationEulerAngles(:,1), ...
     time,orientationEulerAngles(:,2), ...
     time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data')

Mimic magnetic jamming by adding a transient, strong magnetic field to the magnetic field recorded
in the magReadings. Visualize the magnetic field jamming.
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jamStrength = [10,5,2];
startStop = (50*SampleRate):(150*SampleRate);
jam = zeros(size(magReadings));
jam(startStop,:) = jamStrength.*ones(numel(startStop),3);

magReadings = magReadings + jam;

figure(2)
plot(time,magReadings(1:decim:end,:))
xlabel('Time (s)')
ylabel('Magnetic Field Strength (\mu T)')
title('Simulated Magnetic Field with Jamming')
legend('z-axis','y-axis','x-axis')

Run the simulation again using the magReadings with magnetic jamming. Plot the results and note
the decreased performance in orientation estimation.

reset(FUSE)
orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(3)
plot(time,orientationEulerAngles(:,1), ...
     time,orientationEulerAngles(:,2), ...
     time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
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legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data with Magnetic Disturbance and Default Properties')

The magnetic jamming was misinterpreted by the AHRS filter, and the sensor body orientation was
incorrectly estimated. You can compensate for jamming by increasing the
MagneticDisturbanceNoise property. Increasing the MagneticDisturbanceNoise property
increases the assumed noise range for magnetic disturbance, and the entire magnetometer signal is
weighted less in the underlying fusion algorithm of ahrsfilter.

Set the MagneticDisturbanceNoise to 200 and run the simulation again.

The orientation estimation output from ahrsfilter is more accurate and less affected by the
magnetic transient. However, because the magnetometer signal is weighted less in the underlying
fusion algorithm, the algorithm may take more time to restabilize.

reset(FUSE)
FUSE.MagneticDisturbanceNoise = 20;

orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(4)
plot(time,orientationEulerAngles(:,1), ...
     time,orientationEulerAngles(:,2), ...
     time,orientationEulerAngles(:,3))
xlabel('Time (s)')
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ylabel('Rotation (degrees)')
legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data with Magnetic Disturbance and Modified Properties')

Track Shaking 9-Axis IMU

This example uses the ahrsfilter System object™ to fuse 9-axis IMU data from a sensor body that
is shaken. Plot the quaternion distance between the object and its final resting position to visualize
performance and how quickly the filter converges to the correct resting position. Then tune
parameters of the ahrsfilter so that the filter converges more quickly to the ground-truth resting
position.

Load IMUReadingsShaken into your current workspace. This data was recorded from an IMU that
was shaken then laid in a resting position. Visualize the acceleration, magnetic field, and angular
velocity as recorded by the sensors.

load 'IMUReadingsShaken' accelReadings gyroReadings magReadings SampleRate
numSamples = size(accelReadings,1);
time = (0:(numSamples-1))'/SampleRate;

figure(1)
subplot(3,1,1)
plot(time,accelReadings)
title('Accelerometer Reading')
ylabel('Acceleration (m/s^2)')
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subplot(3,1,2)
plot(time,magReadings)
title('Magnetometer Reading')
ylabel('Magnetic Field (\muT)')

subplot(3,1,3)
plot(time,gyroReadings)
title('Gyroscope Reading')
ylabel('Angular Velocity (rad/s)')
xlabel('Time (s)')

Create an ahrsfilter and then fuse the IMU data to determine orientation. The orientation is
returned as a vector of quaternions; convert the quaternions to Euler angles in degrees. Visualize the
orientation of the sensor body over time by plotting the Euler angles required, at each time step, to
rotate the global coordinate system to the sensor body coordinate system.

fuse = ahrsfilter('SampleRate',SampleRate);
orientation = fuse(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(2)
plot(time,orientationEulerAngles(:,1), ...
     time,orientationEulerAngles(:,2), ...
     time,orientationEulerAngles(:,3))
xlabel('Time (s)')
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ylabel('Rotation (degrees)')
title('Orientation over Time')
legend('Rotation around z-axis', ...
       'Rotation around y-axis', ...
       'Rotation around x-axis')

In the IMU recording, the shaking stops after approximately six seconds. Determine the resting
orientation so that you can characterize how fast the ahrsfilter converges.

To determine the resting orientation, calculate the averages of the magnetic field and acceleration for
the final four seconds and then use the ecompass function to fuse the data.

Visualize the quaternion distance from the resting position over time.

restingOrientation = ecompass(mean(accelReadings(6*SampleRate:end,:)), ...
                              mean(magReadings(6*SampleRate:end,:)));

figure(3)
plot(time,rad2deg(dist(restingOrientation,orientation)))
hold on
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')
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Modify the default ahrsfilter properties so that the filter converges to gravity more quickly.
Increase the GyroscopeDriftNoise to 1e-2 and decrease the LinearAccelerationNoise to
1e-4. This instructs the ahrsfilter algorithm to weigh gyroscope data less and accelerometer data
more. Because the accelerometer data provides the stabilizing and consistent gravity vector, the
resulting orientation converges more quickly.

Reset the filter, fuse the data, and plot the results.

fuse.LinearAccelerationNoise = 1e-4;
fuse.GyroscopeDriftNoise     = 1e-2;
reset(fuse)

orientation = fuse(accelReadings,gyroReadings,magReadings);

figure(3)
plot(time,rad2deg(dist(restingOrientation,orientation)))
legend('Default AHRS Filter','Tuned AHRS Filter')
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Algorithms
Note: The following algorithm only applies to an NED reference frame.

The ahrsfilter uses the nine-axis Kalman filter structure described in [1]. The algorithm attempts
to track the errors in orientation, gyroscope offset, linear acceleration, and magnetic disturbance to
output the final orientation and angular velocity. Instead of tracking the orientation directly, the
indirect Kalman filter models the error process, x, with a recursive update:

xk =

θk
bk
ak
dk

= Fk

θk− 1
bk− 1
ak− 1
dk− 1

+ wk

where xk is a 12-by-1 vector consisting of:

• θk –– 3-by-1 orientation error vector, in degrees, at time k
• bk –– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time k
• ak –– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time k
• dk –– 3-by-1 magnetic disturbance error vector measured in the sensor frame, in µT, at time k

and where wk is a 12-by-1 additive noise vector, and Fk is the state transition model.
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Because xk is defined as the error process, the a priori estimate is always zero, and therefore the
state transition model, Fk, is zero. This insight results in the following reduction of the standard
Kalman equations:

Standard Kalman equations:

xk
− = Fkxk− 1

+

Pk
− = FkPk− 1

+ Fk
T + Qk

yk = zk− Hkxk
−

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = xk

− + Kkyk

Pk
+ = Pk−− KkHkPk

−

Kalman equations used in this algorithm:

xk
− = 0

Pk
− = Qk

yk = zk

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = Kkyk

Pk
+ = Pk−− KkHkPk

−

where:

• xk
− –– predicted (a priori) state estimate; the error process

• Pk
− –– predicted (a priori) estimate covariance

• yk –– innovation
• Sk –– innovation covariance
• Kk –– Kalman gain
• xk

+ –– updated (a posteriori) state estimate
• Pk

+ –– updated (a posteriori) estimate covariance

k represents the iteration, the superscript + represents an a posteriori estimate, and the superscript −
represents an a priori estimate.

The graphic and following steps describe a single frame-based iteration through the algorithm.
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Before the first iteration, the accelReadings, gyroReadings, and magReadings inputs are
chunked into DecimationFactor-by-3 frames. For each chunk, the algorithm uses the most current
accelerometer and magnetometer readings corresponding to the chunk of gyroscope readings.

Detailed Overview

Walk through the algorithm for an explanation of each stage of the detailed overview.

Model

The algorithm models acceleration and angular change as linear processes.
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Predict Orientation

The orientation for the current frame is predicted by first estimating the angular change from the
previous frame:

ΔφN × 3 =
gyroReadingsN × 3− gyroOf f set1 × 3

f s

where N is the decimation factor specified by the DecimationFactor property and fs is the sample rate
specified by the SampleRate property.

The angular change is converted into quaternions using the rotvec quaternion construction
syntax:

ΔQN × 1 = quaternion(ΔφN × 3, ′rotvec′)

The previous orientation estimate is updated by rotating it by ΔQ:

q1 × 1
− = q1 × 1

+ ∏
n = 1

N
ΔQn

During the first iteration, the orientation estimate, q−, is initialized by ecompass.
Estimate Gravity from Orientation

The gravity vector is interpreted as the third column of the quaternion, q−, in rotation matrix form:

g1 × 3 = rPrior(: , 3) T

See [1] for an explanation of why the third column of rPrior can be interpreted as the gravity vector.
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Estimate Gravity from Acceleration

A second gravity vector estimation is made by subtracting the decayed linear acceleration estimate of
the previous iteration from the accelerometer readings:

gAccel1 × 3 = accelReadings1 × 3− linAccelprior1 × 3

Estimate Earth's Magnetic Vector

Earth's magnetic vector is estimated by rotating the magnetic vector estimate from the previous
iteration by the a priori orientation estimate, in rotation matrix form:

mGyro1 × 3 = rPrior mT T

Error Model

The error model combines two differences:

• The difference between the gravity estimate from the accelerometer readings and the gravity
estimate from the gyroscope readings: zg = g− gAccel

• The difference between the magnetic vector estimate from the gyroscope readings and the
magnetic vector estimate from the magnetometer:zm = mGyro−magReadings

Magnetometer Correct

The magnetometer correct estimates the error in the magnetic vector estimate and detects magnetic
jamming.

Magnetometer Disturbance Error

The magnetic disturbance error is calculated by matrix multiplication of the Kalman gain associated
with the magnetic vector with the error signal:

mError3 × 1 = K(10:12, : )3 × 6 z1 × 6
T T
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The Kalman gain, K, is the Kalman gain calculated in the current iteration.

Magnetic Jamming Detection

Magnetic jamming is determined by verifying that the power of the detected magnetic disturbance is
less than or equal to four times the power of the expected magnetic field strength:

tf =
true
false

if
else

∑ mError 2 > 4 ExpectedMagneticFieldStrength 2

ExpectedMagneticFieldStrength is a property of ahrsfilter.

Kalman Equations

The Kalman equations use the gravity estimate derived from the gyroscope readings, g, the magnetic
vector estimate derived from the gyroscope readings, mGyro, and the observation of the error
process, z, to update the Kalman gain and intermediary covariance matrices. The Kalman gain is
applied to the error signal, z, to output an a posteriori error estimate, x+.

Observation Model

The observation model maps the 1-by-3 observed states, g and mGyro, into the 6-by-12 true state, H.

The observation model is constructed as:
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H3 × 9 =

0 gz −gy 0 −κgz κgy 1 0 0 0 0 0
−gz 0 gx κgz 0 −κgx 0 1 0 0 0 0
gy −gx 0 −κgy κgx 0 0 0 1 0 0 0
0 mz −my 0 −κmz −κmy 0 0 0 −1 0 0
−mz 0 mx κmz 0 −κmx 0 0 0 0 −1 0
my −mx 0 −κmy κmx 0 0 0 0 0 0 −1

where gx, gy, and gz are the x-, y-, and z-elements of the gravity vector estimated from the a priori
orientation, respectively. mx, my, and mz are the x-, y-, and z-elements of the magnetic vector
estimated from the a priori orientation, respectively. κ is a constant determined by the SampleRate
and DecimationFactor properties: κ = DecimationFactor/SampleRate.

See sections 7.3 and 7.4 of [1] for a derivation of the observation model.

Innovation Covariance

The innovation covariance is a 6-by-6 matrix used to track the variability in the measurements. The
innovation covariance matrix is calculated as:

S6x6 = R6x6 + H6x12 P12x12
− H6x12

T

where

• H is the observation model matrix
• P− is the predicted (a priori) estimate of the covariance of the observation model calculated in the

previous iteration
• R is the covariance of the observation model noise, calculated as:

R6 × 6 =

accelnoise 0 0 0 0 0
0 accelnoise 0 0 0 0
0 0 accelnoise 0 0 0
0 0 0 magnoise 0 0
0 0 0 0 magnoise 0
0 0 0 0 0 magnoise

where

accelnoise = AccelerometerNoise + LinearAccelerationNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

and

magnoise = MagnetometerNoise + MagneticDisturbanceNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

The following properties define the observation model noise variance:

• κ –– DecimationFactor/SampleRate
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• AccelerometerNoise
• LinearAccelerationNoise
• GyroscopeDriftNoise
• GyroscopeNoise
• MagneticDisturbanceNoise
• MagnetometerNoise

Update Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the state.

The error estimate covariance matrix is updated as:

P12 × 12
+ = P12 × 12

− − K12 × 6 H6 × 12 P12 × 12
−

where K is the Kalman gain, H is the measurement matrix, and P− is the error estimate covariance
calculated during the previous iteration.

Predict Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the state. The a
priori error estimate covariance, P−, is set to the process noise covariance, Q, determined during the
previous iteration. Q is calculated as a function of the a posteriori error estimate covariance, P+.
When calculating Q, it is assumed that the cross-correlation terms are negligible compared to the
autocorrelation terms, and are set to zero:
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Q =

P+(1) + κ2 P+(40) + β + η 0 0 −κ P+(40) + β 0 0 0 0 0 0 0 0

0 P+(14) + κ2 P+(53) + β + η 0 0 −κ P+(53) + β 0 0 0 0 0 0 0

0 0 P+(27) + κ2 P+(66) + β + η 0 0 −κ P+(66) + β 0 0 0 0 0 0

−κ P+(40) + β 0 0 P+(40) + β 0 0 0 0 0 0 0 0

0 −κ P+(53) + β 0 0 P+(53) + β 0 0 0 0 0 0 0

0 0 −κ P+(66) + β 0 0 P+(66) + β 0 0 0 0 0 0

0 0 0 0 0 0 ν2P+(79) + ξ 0 0 0 0 0

0 0 0 0 0 0 0 ν2P+(92) + ξ 0 0 0 0

0 0 0 0 0 0 0 0 ν2P+(105) + ξ 0 0 0

0 0 0 0 0 0 0 0 0 σ2P+(118) + γ 0 0

0 0 0 0 0 0 0 0 0 0 σ2P+(131) + γ 0

0 0 0 0 0 0 0 0 0 0 0 σ2P+(144) + γ
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where

• P+ –– is the updated (a posteriori) error estimate covariance
• κ –– DecimationFactor/SampleRate
• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• ν –– LinearAcclerationDecayFactor
• ξ –– LinearAccelerationNoise
• σ –– MagneticDisturbanceDecayFactor
• γ –– MagneticDisturbanceNoise

See section 10.1 of [1] for a derivation of the terms of the process error matrix.

Kalman Gain

The Kalman gain matrix is a 12-by-6 matrix used to weight the innovation. In this algorithm, the
innovation is interpreted as the error process, z.

The Kalman gain matrix is constructed as:

K12 × 6 = P12 × 12
− H6 × 12

T S6 × 6
T −1

where

• P− –– predicted error covariance
• H –– observation model
• S –– innovation covariance

Update a Posteriori Error

The a posterior error estimate is determined by combining the Kalman gain matrix with the error in
the gravity vector and magnetic vector estimations:

x12 × 1 = K12 × 6 (z1 × 6)T

If magnetic jamming is detected in the current iteration, the magnetic vector error signal is ignored,
and the a posterior error estimate is calculated as:

x9 × 1 = K(1:9, 1:3 (zg)T
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Correct

Estimate Orientation

The orientation estimate is updated by multiplying the previous estimation by the error:

q+ = q− θ+

Estimate Linear Acceleration

The linear acceleration estimation is updated by decaying the linear acceleration estimation from the
previous iteration and subtracting the error:

linAccelPrior = (linAccelPriork− 1)ν− b+

where

• ν –– LinearAcclerationDecayFactor

Estimate Gyroscope Offset

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from the
gyroscope offset from the previous iteration:

gyroOf f set = gyroOf f setk− 1− a+

Compute Angular Velocity

To estimate angular velocity, the frame of gyroReadings are averaged and the gyroscope offset
computed in the previous iteration is subtracted:

angularVelocity1 × 3 = ∑gyroReadingsN × 3
N − gyroOf f set1 × 3

where N is the decimation factor specified by the DecimationFactor property.

The gyroscope offset estimation is initialized to zeros for the first iteration.
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Update Magnetic Vector

If magnetic jamming was not detected in the current iteration, the magnetic vector estimate, m, is
updated using the a posteriori magnetic disturbance error and the a posteriori orientation.

The magnetic disturbance error is converted to the navigation frame:

mErrorNED1 × 3 = rPost3 × 3
T(mError1 × 3)T T

The magnetic disturbance error in the navigation frame is subtracted from the previous magnetic
vector estimate and then interpreted as inclination:

Μ = m−mErrorNED

inclination = atan2(Μ(3), Μ(1))

The inclination is converted to a constrained magnetic vector estimate for the next iteration:

m(1) = ExpectedMagneticFieldStrength cos(inclination)
m(2) = 0
m(3) = ExpectedMagneticFieldStrength sin(inclination)

ExpectedMagneticFieldStrength is a property of ahrsfilter.

Version History
Introduced in R2018b

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/

tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten, and P.H. Veltink. "Compensation of Magnetic
Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation."
IEEE Transactions on Neural Systems and Rehabilitation Engineering. Vol. 13. Issue 3, 2005,
pp. 395-405.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
ecompass | gpsSensor | imufilter | imuSensor
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tune
Tune ahrsfilter parameters to reduce estimation error

Syntax
tune(filter,sensorData,groundTruth)
tune( ___ ,config)

Description
tune(filter,sensorData,groundTruth) adjusts the properties of the ahrsfilter filter object,
filter, to reduce the root-mean-squared (RMS) quaternion distance error between the fused sensor
data and the ground truth. The function uses the property values in the filter as the initial estimate
for the optimization algorithm.

tune( ___ ,config) specifies the tuning configuration based on a tunerconfig object, config.

Examples

Tune ahrsfilter to Improve Orientation Estimate

Load recorded sensor data and ground truth data.

ld = load('ahrsfilterTuneData.mat');
qTrue = ld.groundTruth.Orientation; % true orientation

Create an arhsfitler object.

fuse = ahrsfilter;

Fuse the sensor data using the default, untuned filter.

qEstUntuned = fuse(ld.sensorData.Accelerometer, ...
    ld.sensorData.Gyroscope, ld.sensorData.Magnetometer);

Create a tunerconfig object. Tune the ahrsfilter object to improve the orientation estimation
based on the configuration.

config = tunerconfig('ahrsfilter');
tune(fuse,ld.sensorData,ld.groundTruth,config);

    Iteration    Parameter                         Metric
    _________    _________                         ______
    1            AccelerometerNoise                0.1345
    1            GyroscopeNoise                    0.1342
    1            MagnetometerNoise                 0.1341
    1            GyroscopeDriftNoise               0.1341
    1            LinearAccelerationNoise           0.1332
    1            MagneticDisturbanceNoise          0.1324
    1            LinearAccelerationDecayFactor     0.1317
    1            MagneticDisturbanceDecayFactor    0.1316
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    2            AccelerometerNoise                0.1316
    2            GyroscopeNoise                    0.1312
    2            MagnetometerNoise                 0.1311
    2            GyroscopeDriftNoise               0.1311
    2            LinearAccelerationNoise           0.1300
    2            MagneticDisturbanceNoise          0.1292
    2            LinearAccelerationDecayFactor     0.1285
    2            MagneticDisturbanceDecayFactor    0.1285
    3            AccelerometerNoise                0.1285
    3            GyroscopeNoise                    0.1280
    3            MagnetometerNoise                 0.1279
    3            GyroscopeDriftNoise               0.1279
    3            LinearAccelerationNoise           0.1267
    3            MagneticDisturbanceNoise          0.1258
    3            LinearAccelerationDecayFactor     0.1253
    3            MagneticDisturbanceDecayFactor    0.1253
    4            AccelerometerNoise                0.1252
    4            GyroscopeNoise                    0.1247
    4            MagnetometerNoise                 0.1246
    4            GyroscopeDriftNoise               0.1246
    4            LinearAccelerationNoise           0.1233
    4            MagneticDisturbanceNoise          0.1224
    4            LinearAccelerationDecayFactor     0.1220
    4            MagneticDisturbanceDecayFactor    0.1220
    5            AccelerometerNoise                0.1220
    5            GyroscopeNoise                    0.1213
    5            MagnetometerNoise                 0.1212
    5            GyroscopeDriftNoise               0.1212
    5            LinearAccelerationNoise           0.1200
    5            MagneticDisturbanceNoise          0.1190
    5            LinearAccelerationDecayFactor     0.1187
    5            MagneticDisturbanceDecayFactor    0.1187
    6            AccelerometerNoise                0.1187
    6            GyroscopeNoise                    0.1180
    6            MagnetometerNoise                 0.1178
    6            GyroscopeDriftNoise               0.1178
    6            LinearAccelerationNoise           0.1167
    6            MagneticDisturbanceNoise          0.1156
    6            LinearAccelerationDecayFactor     0.1155
    6            MagneticDisturbanceDecayFactor    0.1155
    7            AccelerometerNoise                0.1155
    7            GyroscopeNoise                    0.1147
    7            MagnetometerNoise                 0.1145
    7            GyroscopeDriftNoise               0.1145
    7            LinearAccelerationNoise           0.1137
    7            MagneticDisturbanceNoise          0.1126
    7            LinearAccelerationDecayFactor     0.1125
    7            MagneticDisturbanceDecayFactor    0.1125
    8            AccelerometerNoise                0.1125
    8            GyroscopeNoise                    0.1117
    8            MagnetometerNoise                 0.1116
    8            GyroscopeDriftNoise               0.1116
    8            LinearAccelerationNoise           0.1112
    8            MagneticDisturbanceNoise          0.1100
    8            LinearAccelerationDecayFactor     0.1099
    8            MagneticDisturbanceDecayFactor    0.1099
    9            AccelerometerNoise                0.1099
    9            GyroscopeNoise                    0.1091
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    9            MagnetometerNoise                 0.1090
    9            GyroscopeDriftNoise               0.1090
    9            LinearAccelerationNoise           0.1090
    9            MagneticDisturbanceNoise          0.1076
    9            LinearAccelerationDecayFactor     0.1075
    9            MagneticDisturbanceDecayFactor    0.1075
    10           AccelerometerNoise                0.1075
    10           GyroscopeNoise                    0.1066
    10           MagnetometerNoise                 0.1064
    10           GyroscopeDriftNoise               0.1064
    10           LinearAccelerationNoise           0.1064
    10           MagneticDisturbanceNoise          0.1049
    10           LinearAccelerationDecayFactor     0.1047
    10           MagneticDisturbanceDecayFactor    0.1047
    11           AccelerometerNoise                0.1047
    11           GyroscopeNoise                    0.1038
    11           MagnetometerNoise                 0.1036
    11           GyroscopeDriftNoise               0.1036
    11           LinearAccelerationNoise           0.1036
    11           MagneticDisturbanceNoise          0.1016
    11           LinearAccelerationDecayFactor     0.1014
    11           MagneticDisturbanceDecayFactor    0.1014
    12           AccelerometerNoise                0.1014
    12           GyroscopeNoise                    0.1005
    12           MagnetometerNoise                 0.1002
    12           GyroscopeDriftNoise               0.1002
    12           LinearAccelerationNoise           0.1002
    12           MagneticDisturbanceNoise          0.0978

Fuse the sensor data using the tuned filter.

qEstTuned = fuse(ld.sensorData.Accelerometer, ...
    ld.sensorData.Gyroscope, ld.sensorData.Magnetometer);

Compare the tuned and untuned RMS error performances.

dUntuned = rad2deg(dist(qEstUntuned, qTrue));
dTuned = rad2deg(dist(qEstTuned, qTrue));
rmsUntuned = sqrt(mean(dUntuned.^2))

rmsUntuned = 7.7088

rmsTuned = sqrt(mean(dTuned.^2))

rmsTuned = 5.6033

Visualize the errors with respect to time.

N = numel(dUntuned);
t = (0:N-1)./ fuse.SampleRate;
plot(t, dUntuned, 'r', t, dTuned, 'b');
legend('Untuned', 'Tuned');
title('ahrsfilter - Tuned vs Untuned Error')
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');
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Input Arguments
filter — Filter object
ahrsfilter object

Filter object, specified as an ahrsfilter object.

sensorData — Sensor data
table

Sensor data, specified as a table. In each row, the sensor data is specified as:

• Accelerometer — Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.
• Gyroscope — Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.
• Magnetometer — Magnetometer data, specified as a 1-by-3 vector of scalars in μT.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the sensorData input based on your choice.

groundTruth — Ground truth data
timetable

Ground truth data, specified as a table. The table has only one column of Orientation data. In
each row, the orientation is specified as a quaternion object or a 3-by-3 rotation matrix.
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The function processes each row of the sensorData and groundTruth tables sequentially to
calculate the state estimate and RMS error from the ground truth. Each row of the sensorData and
the groundTruth tables must correspond to each other.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the groundTruth input based on your choice.

config — Tuner configuration
tunerconfig object

Tuner configuration, specified as a tunerconfig object.

Version History
Introduced in R2020b

References
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman

Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.
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altimeterSensor
Altimeter simulation model

Description
The altimeterSensor System object models receiving data from an altimeter sensor.

To model an altimeter:

1 Create the altimeterSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
altimeter = altimeterSensor
altimeter = altimeterSensor('ReferenceFrame',RF)
altimeter = altimeterSensor( ___ ,Name,Value)

Description

altimeter = altimeterSensor returns an altimeterSensor System object that simulates
altimeter readings.

altimeter = altimeterSensor('ReferenceFrame',RF) returns an altimeterSensor
System object that simulates altimeter readings relative to the reference frame RF. Specify RF as
'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

altimeter = altimeterSensor( ___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Update rate of sensor (Hz)
1 (default) | positive scalar

Update rate of sensor in Hz, specified as a positive scalar.

2 Classes

2-68



Data Types: single | double

ConstantBias — Constant offset bias (m)
0 (default) | scalar

Constant offset bias in meters, specified as a scalar.

Tunable: Yes
Data Types: single | double

NoiseDensity — Power spectral density of sensor noise (m/√Hz)
0 (default) | nonnegative scalar

Power spectral density of sensor noise in m/√Hz, specified as a nonnegative scalar.

Tunable: Yes
Data Types: single | double

BiasInstability — Instability of bias offset (m)
0 (default) | nonnegative scalar

Instability of the bias offset in meters, specified as a nonnegative scalar.

Tunable: Yes
Data Types: single | double

DecayFactor — Bias instability noise decay factor
0 (default) | scalar in the range [0,1]

Bias instability noise decay factor, specified as a scalar in the range [0,1]. A decay factor of 0 models
the bias instability noise as a white noise process. A decay factor of 1 models the bias instability noise
as a random walk process.

Tunable: Yes
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer
scalar.
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Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double

Usage

Syntax
altimeterReadings = altimeter(position)

Description

altimeterReadings = altimeter(position) generates an altimeter sensor altitude reading
from the position input.

Input Arguments

position — Position of sensor in local navigation coordinate system (m)
N-by-3 matrix

Position of sensor in the local navigation coordinate system, specified as an N-by-3 matrix with
elements measured in meters. N is the number of samples in the current frame.
Data Types: single | double

Output Arguments

altimeterReadings — Altitude of sensor relative to local navigation coordinate system (m)
N-element column vector

Altitude of sensor relative to the local navigation coordinate system in meters, returned as an N-
element column vector. N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Generate Noisy Altimeter Readings from Stationary Input

Create an altimeterSensor System object™ to model receiving altimeter sensor data. Assume a
typical one Hz sample rate and a 10 minute simulation time. Set ConstantBias to 0.01,
NoiseDensity to 0.05, BiasInstability to 0.05, and DecayFactor to 0.5.

Fs = 1;
duration = 60*10;
numSamples = duration*Fs;

altimeter = altimeterSensor('SampleRate',Fs, ...
                            'ConstantBias',0.01, ...
                            'NoiseDensity',0.05, ...
                            'BiasInstability',0.05, ...
                            'DecayFactor',0.5);

truePosition = zeros(numSamples,3);

Call altimeter with the specified truePosition to model noisy altimeter readings from a
stationary platform.

altimeterReadings = altimeter(truePosition);

Plot the true position and the altimeter sensor readings for height.

t = (0:(numSamples-1))/Fs;

plot(t,altimeterReadings)
hold on
plot(t,truePosition(:,3),'LineWidth',2)
hold off
title('Altimeter Readings')
xlabel('Time (s)')
ylabel('Height (m)')
legend('Altimeter Readings','Ground Truth')
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Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
gpsSensor | imuSensor
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complementaryFilter

Estimate orientation using complementary filter

Description
The complementaryFilter System object fuses accelerometer, gyroscope, and magnetometer
sensor data to estimate device orientation and angular velocity.

To estimate orientation using this object:

1 Create the complementaryFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
FUSE = complementaryFilter
FUSE = complementaryFilter('ReferenceFrame',RF)
FUSE = complementaryFilter( ___ ,Name,Value)

Description

FUSE = complementaryFilter returns a complementaryFilter System object, FUSE, for sensor
fusion of accelerometer, gyroscope, and magnetometer data to estimate device orientation and
angular velocity.

FUSE = complementaryFilter('ReferenceFrame',RF) returns a complementaryFilter
System object that fuses accelerometer, gyroscope, and magnetometer data to estimate device
orientation relative to the reference frame RF. Specify RF as 'NED' (North-East-Down) or 'ENU'
(East-North-Up). The default value is 'NED'.

FUSE = complementaryFilter( ___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SampleRate — Input sample rate of sensor data (Hz)
100 (default) | positive scalar

Input sample rate of the sensor data in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

AccelerometerGain — Accelerometer gain
0.01 (default) | real scar in [0, 1]

Accelerometer gain, specified as a real scalar in the range of [0, 1]. The gain determines how much
the accelerometer measurement is trusted over the gyroscope measurement for orientation
estimation. This property is tunable.
Data Types: single | double

MagnetometerGain — Magnetometer gain
0.01 (default) | real scar in [0, 1]

Magnetometer gain, specified as a real scalar in the range of [0, 1]. The gain determines how much
the magnetometer measurement is trusted over the gyroscope measurement for orientation
estimation. This property is tunable.
Data Types: single | double

HasMagnetometer — Enable magnetometer input
true (default) | false

Enable magnetometer input, specified as true or false.
Data Types: logical

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size of the
output depends on the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

N is the number of samples.
Data Types: char | string

Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,magReadings)
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings)
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Description

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,magReadings)
fuses accelerometer, gyroscope, and magnetometer data to compute orientation and angular velocity.
To use this syntax, set the HasMagnetometer property as true.

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings) fuses
accelerometer and gyroscope data to compute orientation and angular velocity. To use this syntax, set
the HasMagnetometer property as false.

Input Arguments

accelReadings — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix.
N is the number of samples, and the three columns of accelReadings represent the [x y z]
measurements. Accelerometer readings are assumed to correspond to the sample rate specified by
the SampleRate property. In the filter, the gravity constant g is assumed to be 9.81 m/s2.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix. N is
the number of samples, and the three columns of gyroReadings represent the [x y z] measurements.
Gyroscope readings are assumed to correspond to the sample rate specified by the SampleRate
property.
Data Types: single | double

magReadings — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix

Magnetometer readings in the sensor body coordinate system in µT, specified as an N-by-3 matrix. N
is the number of samples, and the three columns of magReadings represent the [x y z]
measurements. Magnetometer readings are assumed to correspond to the sample rate specified by
the SampleRate property.
Data Types: single | double

Output Arguments

orientation — Orientation that rotates quantities from local navigation coordinate system
to sensor body coordinate system
N-by-1 array of quaternions (default) | 3-by-3-by-N array

Orientation that rotates quantities from the local navigation coordinate system to the body coordinate
system, returned as quaternions or an array. The size and type of orientation depends on whether
the OrienationFormat property is set to 'quaternion' or 'Rotation matrix':

• 'quaternion' –– the output is an N-by-1 vector of quaternions, where N is the number of
samples.

• 'Rotation matrix' –– the output is a 3-by-3-by-N array of rotation matrices, where N is the
number of samples.
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Data Types: quaternion | single | double

angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
N-by-3 array (default)

Angular velocity expressed in the sensor body coordinate system in rad/s, returned as an N-by-3
array, where N is the number of samples.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
clone Create duplicate System object
isLocked Determine if System object is in use

Examples

Estimate Orientation from Recorded IMU Data

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and magnetometer
sensor data from a device oscillating in pitch (around y-axis), then yaw (around z-axis), and then roll
(around x-axis). The file also contains the sample rate of the recording.

ld = load('rpy_9axis.mat');
accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
mag = ld.sensorData.MagneticField;

Create a complementary filter object with sample rate equal to the frequency of the data.

Fs  = ld.Fs;  % Hz
fuse = complementaryFilter('SampleRate', Fs);

Fuse accelerometer, gyroscope, and magnetometer data using the filter.

q = fuse(accel, gyro, mag);

Visualize the results.

plot(eulerd( q, 'ZYX', 'frame'));
title('Orientation Estimate');
legend('Z-rotation', 'Y-rotation', 'X-rotation');
ylabel('Degrees');
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Version History
Introduced in R2019b

References
[1] Valenti, R., I. Dryanovski, and J. Xiao. "Keeping a good attitude: A quaternion-based orientation

filter for IMUs and MARGs." Sensors. Vol. 15, Number 8, 2015, pp. 19302-19330.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | imufilter
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insfilterAsync
Estimate pose from asynchronous MARG and GPS data

Description
The insfilterAsync object implements sensor fusion of MARG and GPS data to estimate pose in
the NED (or ENU) reference frame. MARG (magnetic, angular rate, gravity) data is typically derived
from magnetometer, gyroscope, and accelerometer data, respectively. The filter uses a 28-element
state vector to track the orientation quaternion, velocity, position, MARG sensor biases, and
geomagnetic vector. The insfilterAsync object uses a continuous-discrete extended Kalman filter
to estimate these quantities.

Creation

Syntax
filter = insfilterAsync
filter = insfilterAsync('ReferenceFrame',RF)
filter = insfilterAsync( ___ ,Name,Value)

Description

filter = insfilterAsync creates an insfilterAsync object to fuse asynchronous MARG and
GPS data with default property values.

filter = insfilterAsync('ReferenceFrame',RF) allows you to specify the reference frame,
RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default
value is 'NED'.

filter = insfilterAsync( ___ ,Name,Value) also allows you set properties of the created
filter using one or more name-value pairs. Enclose each property name in single quotes.

Properties
ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | three-element positive row vector

Reference location, specified as a three-element row vector in geodetic coordinates (latitude,
longitude, and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The
reference location units are [degrees degrees meters].
Data Types: single | double

QuaternionNoise — Additive quaternion process noise variance
[1e-6 1e-6 1e-6 1e-6] (default) | scalar | four-element row vector

Additive quaternion process noise variance, specified as a scalar or four-element vector of quaternion
parts.
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Data Types: single | double

AngularVelocityNoise — Additive angular velocity process noise in local navigation
coordinate system ((rad/s)2)
[0.005 0.005 0.005] (default) | scalar | three-element row vector

Additive angular velocity process noise in the local navigation coordinate system in (rad/s)2, specified
as a scalar or three-element row vector of positive real finite numbers.

• If AngularVelocityNoise is a row vector, the elements correspond to the noise in the x, y, and
z axes of the local navigation coordinate system, respectively.

• If AngularVelocityNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

PositionNoise — Additive position process noise variance in local navigation coordinate
system (m2)
[1e-6 1e-6 1e-6] (default) | scalar | three-element row vector

Additive position process noise in the local navigation coordinate system in m2, specified as a scalar
or three-element row vector of positive real finite numbers.

• If PositionNoise is a row vector, the elements correspond to the noise in the x, y, and z axes of
the local navigation coordinate system, respectively.

• If PositionNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

VelocityNoise — Additive velocity process noise variance in local navigation coordinate
system ((m/s)2)
[1e-6 1e-6 1e-6] (default) | scalar | three-element row vector

Additive velocity process noise in the local navigation coordinate system in (m/s)2, specified as a
scalar or three-element row vector of positive real finite numbers.

• If VelocityNoise is a row vector, the elements correspond to the noise in the x, y, and z axes of
the local navigation coordinate system, respectively.

• If VelocityNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerationNoise — Additive acceleration process noise variance in local navigation
coordinate system ((m/s2)2)
[50 50 50] (default) | scalar | three-element row vector

Additive acceleration process noise in (m/s2)2, specified as a scalar or three-element row vector of
positive real finite numbers.

• If AccelerationNoise is a row vector, the elements correspond to the noise in the x, y, and z
axes of the local navigation coordinate system, respectively.

• If AccelerationNoise is a scalar, the single element is applied to each axis.

Data Types: single | double
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GyroscopeBiasNoise — Additive process noise variance from gyroscope bias ((rad/s)2)
[1e-10 1e-10 1e-10] (default) | scalar | three-element row vector

Additive process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar or three-
element row vector of positive real finite numbers.

• If GyroscopeBiasNoise is a row vector, the elements correspond to the noise in the x, y, and z
axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerometerBiasNoise — Additive process noise variance from accelerometer bias
((m/s2)2)
[1e-4 1e-4 1e-4] (default) | positive scalar | three-element row vector

Additive process noise variance from accelerometer bias in (m/s2)2, specified as a scalar or three-
element row vector of positive real numbers.

• If AccelerometerBiasNoise is a row vector, the elements correspond to the noise in the x, y,
and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is a scalar, the single element is applied to each axis.

GeomagneticVectorNoise — Additive process noise variance of geomagnetic vector in local
navigation coordinate system (μT2)
[1e-6 1e-6 1e-6] (default) | positive scalar | three-element row vector

Additive process noise variance of geomagnetic vector in μT2, specified as a scalar or three-element
row vector of positive real numbers.

• If GeomagneticVectorNoise is a row vector, the elements correspond to the noise in the x, y,
and z axes of the local navigation coordinate system, respectively.

• If GeomagneticVectorNoise is a scalar, the single element is applied to each axis.

MagnetometerBiasNoise — Additive process noise variance from magnetometer bias (μT2)
[0.1 0.1 0.1] (default) | positive scalar | three-element row vector

Additive process noise variance from magnetometer bias in μT2, specified as a scalar or three-element
row vector of positive real numbers.

• If MagnetometerBiasNoise is a row vector, the elements correspond to the noise in the x, y, and
z axes of the magnetometer, respectively.

• If MagnetometerBiasNoise is a scalar, the single element is applied to each axis.

State — State vector of extended Kalman filter
28-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Angular Velocity (XYZ) rad/s 5:7
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State Units Index
Position (NED or ENU) m 8:10
Velocity (NED or ENU) m/s 11:13
Acceleration (NED or ENU) m/s2 14:16
Accelerometer Bias (XYZ) m/s2 17:19
Gyroscope Bias (XYZ) rad/s 20:22
Geomagnetic Field Vector (NED
or ENU)

μT 23:25

Magnetometer Bias (XYZ) μT 26:28

The default initial state corresponds to an object at rest located at [0 0 0] in geodetic LLA
coordinates.
Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(28) (default) | 28-by-28 matrix

State error covariance for the extended Kalman filter, specified as a 28-by-28-element matrix of real
numbers.
Data Types: single | double

Object Functions
predict Update states based on motion model for insfilterAsync
fuseaccel Correct states using accelerometer data for insfilterAsync
fusegyro Correct states using gyroscope data for insfilterAsync
fusemag Correct states using magnetometer data for insfilterAsync
fusegps Correct states using GPS data for insfilterAsync
correct Correct states using direct state measurements for insfilterAsync
residual Residuals and residual covariances from direct state measurements for insfilterAsync
residualaccel Residuals and residual covariance from accelerometer measurements for

insfilterAsync
residualgps Residuals and residual covariance from GPS measurements for insfilterAsync
residualmag Residuals and residual covariance from magnetometer measurements for

insfilterAsync
residualgyro Residuals and residual covariance from gyroscope measurements for insfilterAsync
pose Current position, orientation, and velocity estimate for insfilterAsync
reset Reset internal states for insfilterAsync
stateinfo Display state vector information for insfilterAsync
copy Create copy of insfilterAsync
tune Tune insfilterAsync parameters to reduce estimation error
tunernoise Noise structure of fusion filter

Examples

Estimate Pose of UAV

Load logged sensor data and ground truth pose.
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load('uavshort.mat','refloc','initstate','imuFs', ...
    'accel','gyro','mag','lla','gpsvel', ...
    'trueOrient','truePos')

Create an INS filter to fuse asynchronous MARG and GPS data to estimate pose.

filt = insfilterAsync;
filt.ReferenceLocation = refloc;
filt.State = [initstate(1:4);0;0;0;initstate(5:10);0;0;0;initstate(11:end)];

Define sensor measurement noises. The noises were determined from datasheets and
experimentation.

Rmag  = 80;
Rvel  = 0.0464;
Racc  = 800;
Rgyro = 1e-4;
Rpos  = 34;

Preallocate variables for position and orientation. Allocate a variable for indexing into the GPS data.

N = size(accel,1);
p = zeros(N,3);
q = zeros(N,1,'quaternion');

gpsIdx = 1;

Fuse accelerometer, gyroscope, magnetometer, and GPS data. The outer loop predicts the filter
forward one time step and fuses accelerometer and gyroscope data at the IMU sample rate.

for ii = 1:N
    
    % Predict the filter forward one time step
    predict(filt,1./imuFs);
    
    % Fuse accelerometer and gyroscope readings
    fuseaccel(filt,accel(ii,:),Racc);
    fusegyro(filt,gyro(ii,:),Rgyro);
    
    % Fuse magnetometer at 1/2 the IMU rate
    if ~mod(ii, fix(imuFs/2))
        fusemag(filt,mag(ii,:),Rmag);
    end
    
    % Fuse GPS once per second
    if ~mod(ii,imuFs)
        fusegps(filt,lla(gpsIdx,:),Rpos,gpsvel(gpsIdx,:),Rvel);
        gpsIdx = gpsIdx + 1;
    end
    
    % Log the current pose estimate
    [p(ii,:),q(ii)] = pose(filt);
    
end

Calculate the RMS errors between the known true position and orientation and the output from the
asynchronous IMU filter.
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posErr = truePos - p;
qErr = rad2deg(dist(trueOrient,q));

pRMS = sqrt(mean(posErr.^2));
qRMS = sqrt(mean(qErr.^2));

fprintf('Position RMS Error\n');

Position RMS Error

fprintf('\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

    X: 0.55, Y: 0.71, Z: 0.74 (meters)

fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n', qRMS);

    4.72 (degrees)

Visualize the true position and the estimated position.

plot3(truePos(:,1),truePos(:,2),truePos(:,3),'LineWidth',2)
hold on
plot3(p(:,1),p(:,2),p(:,3),'r:','LineWidth',2)
grid on
xlabel('N (m)')
ylabel('E (m)')
zlabel('D (m)')

 insfilterAsync

2-83



Algorithms
Dynamic Model Used in insfilterAsync

Note: The following algorithm only applies to an NED reference frame.

insfilterAsync implements a 28-axis continuous-discrete extended Kalman filter using sequential
fusion. The filter relies on the assumption that individual sensor measurements are uncorrelated. The
filter uses an omnidirectional motion model and assumes constant angular velocity and constant
acceleration. The state is defined as:
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x =

q0
q1
q2
q3

angVelX
angVelY
angVelZ
positionN
positionE
positionD

νN
νE
νD

accelN
accelE
accelD

accelbiasX
accelbiasY
accelbiasZ
gyrobiasX
gyrobiasY
gyrobiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame
rotation from the platform's current orientation to the local NED coordinate system.

• angVelX, angVelY, angVelZ –– Angular velocity relative to the platform's body frame.
• positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.
• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
• accelN, accelE, accelD –– Acceleration of the platform in the local NED coordinate system.
• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.
• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
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• geomagneticFieldVectorN, geomagneticFieldVectorE, geomagneticFieldVectorD –– Estimate of the
geomagnetic field vector at the reference location.

• magbiasX, magbiasY, magbiasZ –– Bias in the magnetometer readings.

Given the conventional formation of the process equation, ẋ = f x + w, w is the process noise, ẋ is
the derivative of x, and:

f x =

− q1 angVelX − q2 angVelY − q3 angVelZ
2

q0 angVelX − q3 angVelY + q1 angVelZ
2

q3 angVelX + q0 angVelY − q1 angVelZ
2

q1 angVelX − q2 angVelY + q0 angVelZ
2
0
0
0
νN
νE
νD

accelN
accelE
accelD

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Version History
Introduced in R2019a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilterNonholonomic | insfilterMARG
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correct
Correct states using direct state measurements for insfilterAsync

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance based on the measurement and measurement covariance. The
measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1, 28]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1, 28].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Angular Velocity (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Acceleration (NED) m/s2 14:16
Accelerometer Bias (XYZ) m/s2 17:19
Gyroscope Bias (XYZ) rad/s 20:22
Geomagnetic Field Vector (NED) μT 23:25
Magnetometer Bias (XYZ) μT 26:28

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as an N-element vector. N is the number of elements of the
index argument, idx.
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Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N is the
number of elements of the index argument, idx.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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copy
Create copy of insfilterAsync

Syntax
newFilter = copy(filter)

Description
newFilter = copy(filter) returns a copy of the insfilterAsync, filter, that has exactly the
same property values.

Input Arguments
filter — Filter to be copied
insfilterAsync

Filter to be copied, specified as an insfilterAsync object.

Output Arguments
newFilter — New copied filter
insfilterAsync

New copied filter, returned as an insfilterAsync object.

Version History
Introduced in R2020b

See Also
insfilterAsync
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fuseaccel
Correct states using accelerometer data for insfilterAsync

Syntax
[res,resCov] = fuseaccel(FUSE,acceleration,accelerationCovariance)

Description
[res,resCov] = fuseaccel(FUSE,acceleration,accelerationCovariance) fuses
accelerometer data to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

acceleration — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in local sensor body coordinate system in m/s2, specified as a 3-element row
vector
Data Types: single | double

accelerationCovariance — Acceleration error covariance of accelerometer measurement
((m/s2)2)
scalar | 3-element row vector | 3-by-3 matrix

Acceleration error covariance of the accelerometer measurement in (m/s2)2, specified as a scalar, 3-
element row vector, or 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned a 1-by-3 vector of real values in m/s2.

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values in (m/s2)2.
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Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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fusegps
Correct states using GPS data for insfilterAsync

Syntax
[res,resCov] = fusegps(FUSE,position,positionCovariance)
[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = fusegps(FUSE,position,positionCovariance) fuses GPS position data to
correct the state estimate.

[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS position and velocity data to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix
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Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-6 vector of real values in m and m/s, respectively.

resCov — Residual covariance
6-by-6 matrix of real values

Residual covariance, returned as a 6-by-6 matrix of real values.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter | insfilterMARG
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fusegyro
Correct states using gyroscope data for insfilterAsync

Syntax
[res,resCov] = fusegyro(FUSE,gyroReadings,gyroCovariance)

Description
[res,resCov] = fusegyro(FUSE,gyroReadings,gyroCovariance) fuses gyroscope data to
correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in local sensor body coordinate system in rad/s, specified as a 3-element row
vector.
Data Types: single | double

gyroCovariance — Covariance of gyroscope measurement error ((rad/s)2)
scalar | 3-element row vector | 3-by-3 matrix

Covariance of gyroscope measurement error in (rad/s)2, specified as a scalar, 3-element row vector, or
3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in rad/s.

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values in (rad/s)2.

Version History
Introduced in R2019a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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fusemag
Correct states using magnetometer data for insfilterAsync

Syntax
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance) fuses
magnetometer data to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

Version History
Introduced in R2019a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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pose
Current position, orientation, and velocity estimate for insfilterAsync

Syntax
[position,orientation,velocity] = pose(FUSE)
[position,orientation,velocity] = pose(FUSE,format)

Description
[position,orientation,velocity] = pose(FUSE) returns the current estimate of the pose.

[position,orientation,velocity] = pose(FUSE,format) returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate expressed in the local coordinate system (m)
3-element row vector

Position estimate expressed in the local coordinate system of the filter in meters, returned as a 3-
element row vector.
Data Types: single | double

orientation — Orientation estimate expressed in the local coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate expressed in the local coordinate system of the filter, returned as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix represents a frame rotation
from the local reference frame of the filter to the body reference frame.
Data Types: single | double | quaternion

velocity — Velocity estimate expressed in local coordinate system (m/s)
3-element row vector
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Velocity estimate expressed in the local coordinate system of the filter in m/s, returned as a 3-element
row vector.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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predict
Update states based on motion model for insfilterAsync

Syntax
predict(FUSE,dt)

Description
predict(FUSE,dt) updates states based on the motion model.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

dt — Delta time to propagate forward (s)
scalar

Delta time to propagate forward in seconds, specified as a positive scalar.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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reset
Reset internal states for insfilterAsync

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State and StateCovariance properties of the insfilterAsync object
to their default values.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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residual
Residuals and residual covariances from direct state measurements for insfilterAsync

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1, 28]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1, 28].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Angular Velocity (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Acceleration (NED) m/s2 14:16
Accelerometer Bias (XYZ) m/s2 17:19
Gyroscope Bias (XYZ) rad/s 20:22
Geomagnetic Field Vector (NED) μT 23:25
Magnetometer Bias (XYZ) μT 26:28

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
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measurementCovariance — Covariance of measurement
N-by-N matrix

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.

Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync
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residualaccel
Residuals and residual covariance from accelerometer measurements for insfilterAsync

Syntax
[res,resCov] = residualaccel(FUSE,acceleration,accelerationCovariance)

Description
[res,resCov] = residualaccel(FUSE,acceleration,accelerationCovariance)
computes the residual, res, and the residual covariance, resCov, based on the acceleration readings
and the corresponding covariance.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

acceleration — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in local sensor body coordinate system in m/s2, specified as a 3-element row
vector
Data Types: single | double

accelerationCovariance — Acceleration error covariance of accelerometer measurement
((m/s2)2)
scalar | 3-element row vector | 3-by-3 matrix

Acceleration error covariance of the accelerometer measurement in (m/s2)2, specified as a scalar, 3-
element row vector, or 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned a 1-by-3 vector of real values in m/s2.

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (m/s2)2.
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Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter

2 Classes
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residualgps
Residuals and residual covariance from GPS measurements for insfilterAsync

Syntax
[res,resCov] = residualgps(FUSE,position,positionCovariance)
[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = residualgps(FUSE,position,positionCovariance) computes the
residual, res, and the residual covariance, resCov, based on the GPS position measurement and
covariance.

[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance) computes the residual, res, and the residual covariance, resCov, based on
the GPS position measurement and covariance.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix
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Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-3 vector of real values | 1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-3 vector of real values if the inputs only contain
position information, and returned as 1-by-6 vector of real values if the inputs also contain velocity
information.

resCov — Residual covariance
3-by-3 matrix of real values | 6-by-6 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values if the inputs only contain position
information, and a 6-by-6 matrix of real values if the inputs also contain velocity information.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync
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residualgyro
Residuals and residual covariance from gyroscope measurements for insfilterAsync

Syntax
[res,resCov] = residualgyro(FUSE,gyroReadings,gyroCovariance)

Description
[res,resCov] = residualgyro(FUSE,gyroReadings,gyroCovariance) computes the
residual, res, and the innovation covariance, resCov, based on the gyroscope readings and the
corresponding covariance.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in local sensor body coordinate system in rad/s, specified as a 3-element row
vector.
Data Types: single | double

gyroCovariance — Covariance of gyroscope measurement error ((rad/s)2)
scalar | 3-element row vector | 3-by-3 matrix

Covariance of gyroscope measurement error in (rad/s)2, specified as a scalar, 3-element row vector, or
3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in rad/s.

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values in (rad/s)2.

 residualgyro
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Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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residualmag
Residuals and residual covariance from magnetometer measurements for insfilterAsync

Syntax
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance) computes the
residual, residual, and the residual covariance, resCov, based on the magnetometer readings and
the corresponding covariance.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.
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Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync

2 Classes
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stateinfo
Display state vector information for insfilterAsync

Syntax
stateinfo(FUSE)
info = stateinfo(FUSE)

Description
stateinfo(FUSE) displays the description of each index of the State property of the
insfilterAsync object and the associated units.

info = stateinfo(FUSE) returns a structure with fields containing descriptions of the elements of
the state vector of the filter, FUSE.

Examples

State Information of insfilterAsync

Create an insfilterAsync object.

filter = insfilterAsync;

Display the state information of the created filter.

stateinfo(filter)

States                            Units    Index
Orientation (quaternion parts)             1:4  
Angular Velocity (XYZ)            rad/s    5:7  
Position (NAV)                    m        8:10 
Velocity (NAV)                    m/s      11:13
Acceleration (NAV)                m/s^2    14:16
Accelerometer Bias (XYZ)          m/s^2    17:19
Gyroscope Bias (XYZ)              rad/s    20:22
Geomagnetic Field Vector (NAV)    µT       23:25
Magnetometer Bias (XYZ)           µT       26:28

Output the state information of the filter as a structure.

info = stateinfo(filter)

info = struct with fields:
               Orientation: [1 2 3 4]
           AngularVelocity: [5 6 7]
                  Position: [8 9 10]
                  Velocity: [11 12 13]
              Acceleration: [14 15 16]
         AccelerometerBias: [17 18 19]
             GyroscopeBias: [20 21 22]
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    GeomagneticFieldVector: [23 24 25]
          MagnetometerBias: [26 27 28]

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

Output Arguments
info — State information
structure

State information, returned as a structure. The field names of the structure are names of the
elements of the state vector in the filter. The values of each field are the corresponding indices of the
state vector.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilter
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tune
Tune insfilterAsync parameters to reduce estimation error

Syntax
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth)
tunedMeasureNoise = tune( ___ ,config)

Description
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth) adjusts the
properties of the insfilterAsync filter object, filter, and measurement noises to reduce the
root-mean-squared (RMS) state estimation error between the fused sensor data and the ground truth.
The function also returns the tuned measurement noise, tunedMeasureNoise. The function uses the
property values in the filter and the measurement noise provided in the measureNoise structure as
the initial estimate for the optimization algorithm.

tunedMeasureNoise = tune( ___ ,config) specifies the tuning configuration based on a
tunerconfig object, config.

Examples

Tune insfilterAsync to Optimize Pose Estimate

Load the recorded sensor data and ground truth data.

load('insfilterAsyncTuneData.mat');

Create timetables for the sensor data and the truth data.

sensorData = timetable(Accelerometer, Gyroscope, ...
    Magnetometer, GPSPosition, GPSVelocity, 'SampleRate', 100);
groundTruth = timetable(Orientation, Position, ...
    'SampleRate', 100);

Create an insfilterAsync filter object that has a few noise properties.

filter = insfilterAsync('State', initialState, ...
    'StateCovariance', initialStateCovariance, ...
    'AccelerometerBiasNoise', 1e-7, ...
    'GyroscopeBiasNoise', 1e-7, ...
    'MagnetometerBiasNoise', 1e-7, ...
    'GeomagneticVectorNoise', 1e-7);

Create a tuner configuration object for the filter. Set the maximum iterations to two. Also, set the
tunable parameters as the unspecified properties.

config = tunerconfig('insfilterAsync','MaxIterations',8);
config.TunableParameters = setdiff(config.TunableParameters, ...
    {'GeomagneticVectorNoise', 'AccelerometerBiasNoise', ...

 tune
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    'GyroscopeBiasNoise', 'MagnetometerBiasNoise'});
config.TunableParameters

ans = 1×10 string
    "AccelerationNoise"    "AccelerometerNoise"    "AngularVelocityNoise"    "GPSPositionNoise"    "GPSVelocityNoise"    "GyroscopeNoise"    "MagnetometerNoise"    "PositionNoise"    "QuaternionNoise"    "VelocityNoise"

Use the tuner noise function to obtain a set of initial sensor noises used in the filter.

measNoise = tunernoise('insfilterAsync')

measNoise = struct with fields:
    AccelerometerNoise: 1
        GyroscopeNoise: 1
     MagnetometerNoise: 1
      GPSPositionNoise: 1
      GPSVelocityNoise: 1

Tune the filter and obtain the tuned parameters.

tunedParams = tune(filter,measNoise,sensorData,groundTruth,config);

    Iteration    Parameter               Metric
    _________    _________               ______
    1            AccelerationNoise       2.1345
    1            AccelerometerNoise      2.1264
    1            AngularVelocityNoise    1.9659
    1            GPSPositionNoise        1.9341
    1            GPSVelocityNoise        1.8420
    1            GyroscopeNoise          1.7589
    1            MagnetometerNoise       1.7362
    1            PositionNoise           1.7362
    1            QuaternionNoise         1.7218
    1            VelocityNoise           1.7218
    2            AccelerationNoise       1.7190
    2            AccelerometerNoise      1.7170
    2            AngularVelocityNoise    1.6045
    2            GPSPositionNoise        1.5948
    2            GPSVelocityNoise        1.5323
    2            GyroscopeNoise          1.4803
    2            MagnetometerNoise       1.4703
    2            PositionNoise           1.4703
    2            QuaternionNoise         1.4632
    2            VelocityNoise           1.4632
    3            AccelerationNoise       1.4596
    3            AccelerometerNoise      1.4548
    3            AngularVelocityNoise    1.3923
    3            GPSPositionNoise        1.3810
    3            GPSVelocityNoise        1.3322
    3            GyroscopeNoise          1.2998
    3            MagnetometerNoise       1.2976
    3            PositionNoise           1.2976
    3            QuaternionNoise         1.2943
    3            VelocityNoise           1.2943
    4            AccelerationNoise       1.2906
    4            AccelerometerNoise      1.2836
    4            AngularVelocityNoise    1.2491
    4            GPSPositionNoise        1.2258
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    4            GPSVelocityNoise        1.1880
    4            GyroscopeNoise          1.1701
    4            MagnetometerNoise       1.1698
    4            PositionNoise           1.1698
    4            QuaternionNoise         1.1688
    4            VelocityNoise           1.1688
    5            AccelerationNoise       1.1650
    5            AccelerometerNoise      1.1569
    5            AngularVelocityNoise    1.1454
    5            GPSPositionNoise        1.1100
    5            GPSVelocityNoise        1.0778
    5            GyroscopeNoise          1.0709
    5            MagnetometerNoise       1.0675
    5            PositionNoise           1.0675
    5            QuaternionNoise         1.0669
    5            VelocityNoise           1.0669
    6            AccelerationNoise       1.0634
    6            AccelerometerNoise      1.0549
    6            AngularVelocityNoise    1.0549
    6            GPSPositionNoise        1.0180
    6            GPSVelocityNoise        0.9866
    6            GyroscopeNoise          0.9810
    6            MagnetometerNoise       0.9775
    6            PositionNoise           0.9775
    6            QuaternionNoise         0.9768
    6            VelocityNoise           0.9768
    7            AccelerationNoise       0.9735
    7            AccelerometerNoise      0.9652
    7            AngularVelocityNoise    0.9652
    7            GPSPositionNoise        0.9283
    7            GPSVelocityNoise        0.8997
    7            GyroscopeNoise          0.8947
    7            MagnetometerNoise       0.8920
    7            PositionNoise           0.8920
    7            QuaternionNoise         0.8912
    7            VelocityNoise           0.8912
    8            AccelerationNoise       0.8885
    8            AccelerometerNoise      0.8811
    8            AngularVelocityNoise    0.8807
    8            GPSPositionNoise        0.8479
    8            GPSVelocityNoise        0.8238
    8            GyroscopeNoise          0.8165
    8            MagnetometerNoise       0.8165
    8            PositionNoise           0.8165
    8            QuaternionNoise         0.8159
    8            VelocityNoise           0.8159

Fuse the sensor data using the tuned filter.

dt = seconds(diff(groundTruth.Time));
N = size(sensorData,1);
qEst = quaternion.zeros(N,1);
posEst = zeros(N,3);
% Iterate the filter for prediction and correction using sensor data.
for ii=1:N
    if ii ~= 1
        predict(filter, dt(ii-1));
    end
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    if all(~isnan(Accelerometer(ii,:)))
        fuseaccel(filter,Accelerometer(ii,:), ...
            tunedParams.AccelerometerNoise);
    end
    if all(~isnan(Gyroscope(ii,:)))
        fusegyro(filter, Gyroscope(ii,:), ...
            tunedParams.GyroscopeNoise);
    end
    if all(~isnan(Magnetometer(ii,1)))
        fusemag(filter, Magnetometer(ii,:), ...
            tunedParams.MagnetometerNoise);
    end
    if all(~isnan(GPSPosition(ii,1)))
        fusegps(filter, GPSPosition(ii,:), ...
            tunedParams.GPSPositionNoise, GPSVelocity(ii,:), ...
            tunedParams.GPSVelocityNoise);
    end
    [posEst(ii,:), qEst(ii,:)] = pose(filter);
end

Compute the RMS errors.

orientationError = rad2deg(dist(qEst, Orientation));
rmsorientationError = sqrt(mean(orientationError.^2))

rmsorientationError = 2.7801

positionError = sqrt(sum((posEst - Position).^2, 2));
rmspositionError = sqrt(mean( positionError.^2))

rmspositionError = 0.5966

Visualize the results.

figure();
t = (0:N-1)./ groundTruth.Properties.SampleRate;
subplot(2,1,1)
plot(t, positionError, 'b');
title("Tuned insfilterAsync" + newline + "Euclidean Distance Position Error")
xlabel('Time (s)');
ylabel('Position Error (meters)')
subplot(2,1,2)
plot(t, orientationError, 'b');
title("Orientation Error")
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');
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Input Arguments
filter — Filter object
infilterAsync object

Filter object, specified as an insfilterAsync object.

measureNoise — Measurement noise
structure

Measurement noise, specified as a structure. The function uses the measurement noise input as the
initial guess for tuning the measurement noise. The structure must contain these fields:

Field name Description
AccelerometerNoise Variance of accelerometer noise, specified as a

scalar in (m2/s)
GyroscopeNoise Variance of gyroscope noise, specified as a scalar

in (rad/s)2

MagnetometerNoise Variance of magnetometer noise, specified as a
scalar in (μT)2

GPSPositionNoise Variance of GPS position noise, specified as a
scalar in m2

 tune
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Field name Description
GPSVelocityNoise Variance of GPS velocity noise, specified as a

scalar in (m/s)2

sensorData — Sensor data
duration

Sensor data, specified as a timetable. In each row, the time and sensor data is specified as:

• Time — Time at which the data is obtained, specified as a scalar in seconds.
• Accelerometer — Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.
• Gyroscope — Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.
• Magnetometer — Magnetometer data, specified as a 1-by-3 vector of scalars in μT.
• GPSPosition — GPS position data, specified as a 1-by-3 vector of latitude in degrees, longitude

in degrees, and altitude in meters.
• GPSVelocity — GPS velocity data, specified as a 1-by-3 vector of scalars in m/s.

If a sensor does not produce measurements, specify the corresponding entry as NaN. If you set the
Cost property of the tuner configuration input, config, to Custom, then you can use other data
types for the sensorData input based on your choice.

groundTruth — Ground truth data
duration

Ground truth data, specified as a timetable. In each row, the table can optionally contain any of
these variables:

• Orientation — Orientation from the navigation frame to the body frame, specified as a
quaternion or a 3-by-3 rotation matrix.

• AngularVelocity — Angular velocity in body frame, specified as a 1-by-3 vector of scalars in
rad/s.

• Position — Position in navigation frame, specified as a 1-by-3 vector of scalars in meters.
• Velocity — Velocity in navigation frame, specified as a 1-by-3 vector of scalars in m/s.
• Acceleration — Acceleration in navigation frame, specified as a 1-by-3 vector of scalars in m2/s.
• AccelerometerBias — Accelerometer delta angle bias in body frame, specified as a 1-by-3

vector of scalars in m2/s.
• GyroscopeBias — Gyroscope delta angle bias in body frame, specified as a 1-by-3 vector of

scalars in rad/s.
• GeomagneticFieldVector — Geomagnetic field vector in navigation frame, specified as a 1-by-3

vector of scalars.
• MagnetometerBias — Magnetometer bias in body frame, specified as a 1-by-3 vector of scalars

in μT.

The function processes each row of the sensorData and groundTruth tables sequentially to
calculate the state estimate and RMS error from the ground truth. State variables not present in
groundTruth input are ignored for the comparison. The sensorData and the groundTruth tables
must have the same time steps.
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If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the groundTruth input based on your choice.

config — Tuner configuration
tunerconfig object

Tuner configuration, specified as a tunerconfig object.

Output Arguments
tunedMeasureNoise — Tuned measurement noise
structure

Tuned measurement noise, returned as a structure. The structure contains these fields.

Field name Description
AccelerometerNoise Variance of accelerometer noise, specified as a

scalar in (m2/s)2

GyroscopeNoise Variance of gyroscope noise, specified as a scalar
in (rad/s)2

MagnetometerNoise Variance of magnetometer noise, specified as a
scalar in (μT)2

GPSPositionNoise Variance of GPS position noise, specified as a
scalar in m2

GPSVelocityNoise Variance of GPS velocity noise, specified as a
scalar in (m/s)2

Version History
Introduced in R2020b

References
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman

Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.

See Also
tunerconfig | tunernoise
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binaryOccupancyMap
Create occupancy grid with binary values

Description
The binaryOccupancyMap creates a 2-D occupancy map object, which you can use to represent and
visualize a robot workspace, including obstacles. The integration of sensor data and position
estimates create a spatial representation of the approximate locations of the obstacles.

Occupancy grids are used in robotics algorithms such as path planning. They are also used in
mapping applications, such as for finding collision-free paths, performing collision avoidance, and
calculating localization. You can modify your occupancy grid to fit your specific application.

Each cell in the occupancy grid has a value representing the occupancy status of that cell. An
occupied location is represented as true (1) and a free location is represented as false (0).

The object keeps track of three reference frames: world, local, and, grid. The world frame origin is
defined by GridLocationInWorld, which defines the bottom-left corner of the map relative to the
world frame. The LocalOriginInWorld property specifies the location of the origin of the local
frame relative to the world frame. The first grid location with index (1,1) begins in the top-left
corner of the grid.

Note This object was previously named robotics.BinaryOccupancyGrid.

Creation

Syntax
map = binaryOccupancyMap
map = binaryOccupancyMap(width,height)
map = binaryOccupancyMap(width,height,resolution)

map = binaryOccupancyMap(rows,cols,resolution,"grid")

map = binaryOccupancyMap(p)
map = binaryOccupancyMap(p,resolution)

map = binaryOccupancyMap(sourcemap)
map = binaryOccupancyMap(sourcemap,resolution)

Description

map = binaryOccupancyMap creates a 2-D binary occupancy grid with a width and height of 10m.
The default grid resolution is one cell per meter.

map = binaryOccupancyMap(width,height) creates a 2-D binary occupancy grid representing a
work space of width and height in meters. The default grid resolution is one cell per meter.
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map = binaryOccupancyMap(width,height,resolution) creates a grid with the Resolution
property specified in cells per meter. The map is in world coordinates by default.

map = binaryOccupancyMap(rows,cols,resolution,"grid") creates a 2-D binary occupancy
grid of size (rows,cols).

map = binaryOccupancyMap(p) creates a grid from the values in matrix p. The size of the grid
matches the size of the matrix, with each cell value interpreted from its location in the matrix. p
contains any numeric or logical type with zeros (0) and ones (1).

map = binaryOccupancyMap(p,resolution) creates a map from a matrix with the Resolution
property specified in cells per meter.

map = binaryOccupancyMap(sourcemap) creates an object using values from another
binaryOccupancyMap object.

map = binaryOccupancyMap(sourcemap,resolution) creates an object using values from
another binaryOccupancyMap object, but resamples the matrix to have the specified resolution.

Input Arguments

width — Map width
positive scalar

Map width, specified as a positive scalar in meters.

height — Map height
positive scalar

Map height, specified as a positive scalar in meters.

p — Map grid values
matrix

Map grid values, specified as a matrix.

sourcemap — Occupancy map object
binaryOccupancyMap object

Occupancy map object, specified as a binaryOccupancyMap object.

Properties
GridSize — Number of rows and columns in grid
two-element vector of form [rows cols]

This property is read-only.

Number of rows and columns in grid, stored as a two-element vector of the form [rows cols].

Resolution — Grid resolution
1 (default) | scalar

This property is read-only.
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Grid resolution, stored as a scalar in cells per meter.

XLocalLimits — Minimum and maximum values of x-coordinates in local frame
two-element vector of form [min max]

This property is read-only.

Minimum and maximum values of x-coordinates in local frame, stored as a two-element vector of the
form [min max]. Local frame is defined by LocalOriginInWorld property.

YLocalLimits — Minimum and maximum values of y-coordinates in local frame
two-element vector of form [min max]

This property is read-only.

Minimum and maximum values of y-coordinates in local frame, stored as a two-element vector of the
form [min max]. Local frame is defined by LocalOriginInWorld property.

XWorldLimits — Minimum and maximum values of x-coordinates in world frame
two-element vector of form [min max]

This property is read-only.

Minimum and maximum values of x-coordinates in world frame, stored as a two-element vector of the
form [min max]. These values indicate the world range of the x-coordinates in the grid.

YWorldLimits — Minimum and maximum values of y-coordinates
two-element vector of form [min max]

This property is read-only.

Minimum and maximum values of y-coordinates, stored as a two-element vector of the form [min
max]. These values indicate the world range of the y-coordinates in the grid.

GridLocationInWorld — Location of the grid in world coordinates
[0 0] (default) | two-element vector | [xGrid yGrid]

Location of the bottom-left corner of the grid in world coordinates, specified as a two-element vector,
[xGrid yGrid].

LocalOriginInWorld — Location of the local frame in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the origin of the local frame in world coordinates, specified as a two-element vector,
[xLocal yLocal]. Use the move function to shift the local frame as your vehicle moves.

GridOriginInLocal — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xLocal yLocal]

Location of the bottom-left corner of the grid in local coordinates, specified as a two-element vector,
[xLocal yLocal].

DefaultValue — Default value for unspecified map locations
0 (default) | 1

Default value for unspecified map locations including areas outside the map, specified as 0 or 1.
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Object Functions
copy Create copy of binary occupancy map
checkOccupancy Check if locations are free or occupied
getOccupancy Get occupancy value of locations
grid2local Convert grid indices to local coordinates
grid2world Convert grid indices to world coordinates
inflate Inflate each occupied location
insertRay Insert ray from laser scan observation
local2grid Convert local coordinates to grid indices
local2world Convert local coordinates to world coordinates
move Move map in world frame
occupancyMatrix Convert occupancy grid to matrix
raycast Compute cell indices along a ray
rayIntersection Find intersection points of rays and occupied map cells
setOccupancy Set occupancy value of locations
show Display binary occupancy map
syncWith Sync map with overlapping map
world2grid Convert world coordinates to grid indices
world2local Convert world coordinates to local coordinates

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)
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Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Image to Binary Occupancy Grid Example

This example shows how to convert an image to a binary occupancy grid for using with mapping and
path planning.

Import image.

image = imread('imageMap.png');

Convert to grayscale and then black and white image based on given threshold value.

grayimage = rgb2gray(image);
bwimage = grayimage < 0.5;

Use black and white image as matrix input for binary occupancy grid.

grid = binaryOccupancyMap(bwimage);

show(grid)
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Convert PGM Image to Map

This example shows how to convert a .pgm file into a binaryOccupancyMap object for use in
MATLAB.

Import image using imread. The image is quite large and should be cropped to the relevant area.

image = imread('playpen_map.pgm');
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)
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Unknown areas (gray) should be removed and treated as free space. Create a logical matrix based on
a threshold. Depending on your image, this value could be different. Occupied space should be set as
1 (white in image).

imageBW = imageCropped < 100;
imshow(imageBW)
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Create binaryOccupancyMap object using adjusted map image.

map = binaryOccupancyMap(imageBW);
show(map)
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Version History
Introduced in R2015a

R2019b: binaryOccupancyMap was renamed
Behavior change in future release

The binaryOccupancyMap object was renamed from robotics.BinaryOccupancyGrid. Use
binaryOccupancyMap for all object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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As of MATLAB R2022a, default map behavior during code generation has changed, which may result
in backwards compatibility issues. Maps such as binaryOccupancyMap now support fixed-size code
generation (DynamicMemoryAllocation="off").

1 Maps that are either default-constructed or constructed with compile-time constant size
information (or matrices that are of compile-time constant size) produce fixed-size maps.

2 To restore the previous behavior, use the coder.ignoreConst function when specifying size
inputs, or coder.varsize matrix variable name specified as a string scalar or character vector,
prior to constructing the map.

See Also
controllerPurePursuit

Topics
“Occupancy Grids”
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checkOccupancy
Check if locations are free or occupied

Syntax
occVal = checkOccupancy(map,xy)
occVal = checkOccupancy(map,xy,"local")
occVal = checkOccupancy(map,ij,"grid")
[occVal,validPts] = checkOccupancy( ___ )

occMatrix = checkOccupancy(map)
occMatrix = checkOccupancy(map,bottomLeft,matSize)
occMatrix = checkOccupancy(map,bottomLeft,matSize,"local")
occMatrix = checkOccupancy(map,topLeft,matSize,"grid")

Description
occVal = checkOccupancy(map,xy) returns an array of occupancy values at the xy locations in
the world frame. Obstacle-free cells return 0, occupied cells return 1. Unknown locations, including
outside the map, return -1.

occVal = checkOccupancy(map,xy,"local") returns an array of occupancy values at the xy
locations in the local frame. The local frame is based on the LocalOriginInWorld property of the
map.

occVal = checkOccupancy(map,ij,"grid") specifies ij grid cell indices instead of xy
locations. Grid indices start at (1,1) from the top left corner.

[occVal,validPts] = checkOccupancy( ___ ) also outputs an n-element vector of logical
values indicating whether input coordinates are within the map limits.

occMatrix = checkOccupancy(map) returns a matrix that contains the occupancy status of each
location. Obstacle-free cells return 0, occupied cells return 1. Unknown locations, including outside
the map, return -1.

occMatrix = checkOccupancy(map,bottomLeft,matSize) returns a matrix of occupancy
values by specifying the bottom-left corner location in world coordinates and the matrix size in
meters.

occMatrix = checkOccupancy(map,bottomLeft,matSize,"local") returns a matrix of
occupancy values by specifying the bottom-left corner location in local coordinates and the matrix
size in meters.

occMatrix = checkOccupancy(map,topLeft,matSize,"grid") returns a matrix of occupancy
values by specifying the top-left cell index in grid coordinates and the matrix size.

Examples

2 Classes

2-134



Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and free thresholds
of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = zeros(20,20);
p(11:20,11:20) = ones(10,10);
map = binaryOccupancyMap(p,10);
show(map)

Get the occupancy of different locations and check their occupancy statuses. The occupancy status
returns 0 for free space and 1 for occupied space. Unknown values return –1.

pocc = getOccupancy(map,[1.5 1]);
occupied = checkOccupancy(map,[1.5 1]);
pocc2 = getOccupancy(map,[5 5],'grid');

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.
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xy — Coordinates in the map
n-by-2 matrix

Coordinates in the map, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
coordinates. Coordinates can be world or local coordinates depending on the syntax.
Data Types: double

ij — Grid locations in the map
n-by-2 matrix

Grid locations in the map, specified as an n-by-2 matrix of [i j] pairs, where n is the number of
locations. Grid locations are given as [row col].
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength], or [gridRow
gridCol]. Size is in world, local, or grid coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
occVal — Occupancy values
n-by-1 column vector

Occupancy values, returned as an n-by-1 column vector equal in length to xy or ij input. Occupancy
values can be obstacle free (0), occupied (1), or unknown (-1).

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

occMatrix — Matrix of occupancy values
matrix
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Matrix of occupancy values, returned as matrix with size equal to matSize or the size of your map.
Occupancy values can be obstacle free (0), occupied (1), or unknown (-1).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | getOccupancy | occupancyMap
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copy
Create copy of binary occupancy map

Syntax
copyMap = copy(map)

Description
copyMap = copy(map) creates a deep copy of the binaryOccupancyMap object with the same
properties.

Examples

Copy Binary Occupancy Grid Map

Copy a binaryOccupancyMap object. Once copied, the original object can be modified without
affecting the copied map.

Create an occupancy map with zeros for an empty map.

p = zeros(10);
map = binaryOccupancyMap(p);

Copy the occupancy map. Modify the original map. The copied map is not modified. Plot the two maps
side by side.

mapCopy = copy(map);
setOccupancy(map,[1:3;1:3]',ones(3,1));
subplot(1,2,1)
show(map)
title('Original map')
subplot(1,2,2)
show(mapCopy)
title('Copied map')
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

Output Arguments
copyMap — Copied map representation
binaryOccupancyMap object

Copied map representation, returned as a binaryOccupancyMap object. The properties are the
same as the input object, map, but the copy has a different object handle.

Version History
Introduced in R2015a

See Also
binaryOccupancyMap | occupancyMap
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getOccupancy
Get occupancy value of locations

Syntax
occVal = getOccupancy(map,xy)
occVal = getOccupancy(map,xy,"local")
occVal = getOccupancy(map,ij,"grid")
[occVal,validPts] = getOccupancy( ___ )

occMatrix = getOccupancy(map)
occMatrix = getOccupancy(map,bottomLeft,matSize)
occMatrix = getOccupancy(map,bottomLeft,matSize,"local")
occMatrix = getOccupancy(map,topLeft,matSize,"grid")

Description
occVal = getOccupancy(map,xy) returns an array of occupancy values at the xy locations in the
world frame. Unknown locations, including outside the map, return map.DefaultValue.

occVal = getOccupancy(map,xy,"local") returns an array of occupancy values at the xy
locations in the local frame.

occVal = getOccupancy(map,ij,"grid") specifies ij grid cell indices instead of xy locations.

[occVal,validPts] = getOccupancy( ___ ) additionally outputs an n-element vector of logical
values indicating whether input coordinates are within the map limits.

occMatrix = getOccupancy(map) returns all occupancy values in the map as a matrix.

occMatrix = getOccupancy(map,bottomLeft,matSize) returns a matrix of occupancy values
by specifying the bottom-left corner location in world coordinates and the matrix size in meters.

occMatrix = getOccupancy(map,bottomLeft,matSize,"local") returns a matrix of
occupancy values by specifying the bottom-left corner location in local coordinates and the matrix
size in meters.

occMatrix = getOccupancy(map,topLeft,matSize,"grid") returns a matrix of occupancy
values by specifying the top-left cell index in grid indices and the matrix size.

Examples

Insert Laser Scans into Binary Occupancy Map

Create an empty binary occupancy grid map.

map = binaryOccupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.
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pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)

Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = logical
   1
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Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and free thresholds
of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = zeros(20,20);
p(11:20,11:20) = ones(10,10);
map = binaryOccupancyMap(p,10);
show(map)

Get the occupancy of different locations and check their occupancy statuses. The occupancy status
returns 0 for free space and 1 for occupied space. Unknown values return –1.

pocc = getOccupancy(map,[1.5 1]);
occupied = checkOccupancy(map,[1.5 1]);
pocc2 = getOccupancy(map,[5 5],'grid');

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.
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xy — Coordinates in the map
n-by-2 matrix

Coordinates in the map, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
coordinates. Coordinates can be world or local coordinates depending on the syntax.
Data Types: double

ij — Grid locations in the map
n-by-2 matrix

Grid locations in the map, specified as an n-by-2 matrix of [i j] pairs, where n is the number of
locations. Grid locations are given as [row col].
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength] or [gridRow
gridCol]. The size is in world coordinates, local coordinates, or grid indices based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
occVal — Occupancy values
n-by-1 column vector

Occupancy values, returned as an n-by-1 column vector equal in length to xy or ij. Occupancy values
can be obstacle free (0) or occupied (1).

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

occMatrix — Matrix of occupancy values
matrix

Matrix of occupancy values, returned as matrix with size equal to matSize or the size of map.
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | setOccupancy

Topics
“Occupancy Grids”
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grid2local
Convert grid indices to local coordinates

Syntax
xy = grid2local(map,ij)

Description
xy = grid2local(map,ij) converts a [row col] array of grid indices, ij, to an array of local
coordinates, xy.

Examples

Convert Grid Indices in Binary Occupancy Map to Local Coordinates

Create an empty binary occupancy map with a width and height of 10 meters.

map = binaryOccupancyMap(10,10);

Get local coordinates from grid indices.

[i,j] = meshgrid(1:5);
xyLocal = grid2local(map,[i(:) j(:)]);

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n
is the number of grid positions.

Output Arguments
xy — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of local
coordinates.
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | world2grid
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grid2world
Convert grid indices to world coordinates

Syntax
xy = grid2world(map,ij)

Description
xy = grid2world(map,ij) converts a [row col] array of grid indices, ij, to an array of world
coordinates, xy.

Examples

Convert Grid Indices in Binary Occupancy Map to World Coordinates

Create an empty binary occupancy map with a width and height of 10 meters.

map = binaryOccupancyMap(10,10);

Get world coordinates from grid indices.

[i,j] = meshgrid(1:5);
xyWorld = grid2world(map,[i(:) j(:)]);

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n
is the number of grid positions.

Output Arguments
xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | world2grid | grid2local
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inflate
Inflate each occupied location

Syntax
inflate(map,radius)
inflate(map,gridradius,'grid')

Description
inflate(map,radius) inflates each occupied position of the map by the radius given in meters.
radius is rounded up to the nearest cell equivalent based on the resolution of the map. Every cell
within the radius is set to true (1).

inflate(map,gridradius,'grid') inflates each occupied position by the radius given in number
of cells.

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)
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Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

radius — Dimension the defines how much to inflate occupied locations
scalar

Dimension that defines how much to inflate occupied locations, specified as a scalar. radius is
rounded up to the nearest cell value.
Data Types: double

gridradius — Dimension the defines how much to inflate occupied locations
positive scalar

Dimension that defines how much to inflate occupied locations, specified as a positive scalar.
gridradius is the number of cells to inflate the occupied locations.
Data Types: double
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | setOccupancy

Topics
“Occupancy Grids”
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insertRay
Insert ray from laser scan observation

Syntax
insertRay(map,pose,scan,maxrange)
insertRay(map,pose,ranges,angles,maxrange)
insertRay(map,startpt,endpoints)

Description
insertRay(map,pose,scan,maxrange) inserts one or more lidar scan sensor observations in the
occupancy grid, map, using the input lidarScan object, scan, to get ray endpoints. End point
locations are updated with an occupied value. If the ranges are above maxrange, the ray endpoints
are considered free space. All other points along the ray are treated as obstacle-free.

insertRay(map,pose,ranges,angles,maxrange) specifies the range readings as vectors
defined by the input ranges and angles.

insertRay(map,startpt,endpoints) inserts observations between the line segments from the
start point to the end points. The endpoints are updated are occupied space and other points along
the line segments are updated as free space.

Examples

Insert Laser Scans into Binary Occupancy Map

Create an empty binary occupancy grid map.

map = binaryOccupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)
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Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = logical
   1

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

pose — Position and orientation of vehicle
three-element vector

Position and orientation of vehicle, specified as an [x y theta] vector. The vehicle pose is an x and
y position with angular orientation theta (in radians) measured from the x-axis.

scan — Lidar scan readings
lidarScan object
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Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector of elements measured in meters. These range
values are distances from a sensor at given angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector of elements measured in radians. These angle
values correspond to the given ranges. The vector must be the same length as the corresponding
ranges vector.

maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values greater than or
equal to maxrange are considered free along the whole length of the ray, up to maxrange.

startpt — Start point for rays
two-element vector

Start point for rays, specified as a two-element vector, [x y], in the world coordinate frame. All rays
are line segments that originate at this point.

endpoints — Endpoints for rays
n-by-2 matrix

Endpoints for rays, specified as an n-by-2 matrix of [x y] pairs in the world coordinate frame, where
n is the length of ranges or angles. All rays are line segments that originate at startpt.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
occupancyMap | binaryOccupancyMap | lidarScan

Topics
“Occupancy Grids”
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local2grid
Convert local coordinates to grid indices

Syntax
ij = local2grid(map,xy)

Description
ij = local2grid(map,xy) converts an array of local coordinates, xy, to an array of grid indices,
ij in [row col] format.

Examples

Convert Local Coordinates in Binary Occupancy Map to Grid Indices

Create an empty binary occupancy map with a width and height of 10 meters.

map = binaryOccupancyMap(10,10);

Get grid indices from local coordinates.

[xLocal,yLocal] = meshgrid(0:0.5:2);
ij = local2grid(map,[xLocal(:) yLocal(:)]);

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of local
coordinates.
Data Types: double

Output Arguments
ij — Grid positions
n-by-2 matrix

Grid positions, returned as an n-by-2 matrix of [i j] pairs in [row col] format, where n is the
number of grid positions. The grid cell locations are counted from the top left corner of the grid.
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Data Types: double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap | grid2world | grid2world

Topics
“Occupancy Grids”
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local2world
Convert local coordinates to world coordinates

Syntax
xyWorld = local2world(map,xy)

Description
xyWorld = local2world(map,xy) converts an array of local coordinates to world coordinates.

Examples

Convert Local Coordinates in Binary Occupancy Map to World Coordinates

Create an empty binary occupancy map with a width and height of 10 meters.

map = binaryOccupancyMap(10,10);

Get world coordinates from local coordinates.

[xLocal,yLocal] = meshgrid(0:0.5:2);
xyWorld = local2world(map,[xLocal(:) yLocal(:)]);

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of local
coordinates.
Data Types: double

Output Arguments
xyWorld — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
Data Types: double
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Topics
“Occupancy Grids”
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move
Move map in world frame

Syntax
move(map,moveValue)
move(map,moveValue,Name,Value)

Description
move(map,moveValue) moves the local origin of the map to an absolute location, moveValue, in
the world frame, and updates the map limits. Move values are truncated based on the resolution of
the map. By default, newly revealed regions are set to map.DefaultValue.

move(map,moveValue,Name,Value) specifies additional options specified by one or more name-
value pair arguments.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world map. This
process emulates a vehicle driving in an environment and getting updates on obstacles in the new
areas.

Load example maps. Create a binary occupancy map from the complexMap.

load exampleMaps.mat
map = binaryOccupancyMap(complexMap);
show(map)
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Create a smaller local map.

mapLocal = binaryOccupancyMap(complexMap(end-20:end,1:20));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local frame.

Specify path locations and plot on the map.

path = [5 2
        8 2
        8 8
        30 8];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference between points
by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
        pause(0.2)
    end
end
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

moveValue — Local map origin move value
[x y] vector

Local map origin move value, specified as an [x y] vector. By default, the value is an absolute
location to move the local origin to in the world frame. Use the MoveType name-value pair to specify
a relative move.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MoveType','relative'

 move
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MoveType — Type of move
'absolute' (default) | 'relative'

Type of move, specified as 'absolute' or 'relative'. For relative moves, specify a relative [x y]
vector for moveValue based on your current local frame.

FillValue — Fill value for revealed locations
0 (default) | 1

Fill value for revealed locations because of the shifted map limits, specified as 0 or 1.

SyncWith — Secondary map to sync with
binaryOccupancyMap object

Secondary map to sync with, specified as a binaryOccupancyMap object. Any revealed locations
based on the move are updated with values in this map using the world coordinates.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap | occupancyMatrix
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occupancyMatrix
Convert occupancy grid to matrix

Syntax
mat = occupancyMatrix(map)

Description
mat = occupancyMatrix(map) returns occupancy values stored in the occupancy grid object as a
matrix.

Examples

Convert Binary Occupancy Map to Matrix

Generate a random 2-D maze map.

map = mapMaze(2,MapSize=[10 10],MapResolution=1);
show(map)
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Convert the binary occupancy map to occupancy values matrix.

occupancyMatrix(map)

ans = 10x10 logical array

   1   1   1   1   1   1   1   1   1   1
   1   0   0   0   0   0   0   0   0   1
   1   0   0   0   0   0   0   0   0   1
   1   1   1   1   1   1   1   0   0   1
   1   0   0   0   0   0   0   0   0   1
   1   0   0   0   0   0   0   0   0   1
   1   0   0   1   1   1   1   1   1   1
   1   0   0   0   0   0   0   0   0   1
   1   0   0   0   0   0   0   0   0   1
   1   1   1   1   1   1   1   1   1   1

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

Output Arguments
mat — Occupancy values
matrix

Occupancy values, returned as an h-by-w matrix, where h and w are defined by the two elements of
the GridSize property of the occupancy grid object.
Data Types: double

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap

Topics
“Occupancy Grids”
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raycast
Compute cell indices along a ray

Syntax
[endpoints,midpoints] = raycast(map,pose,range,angle)
[endpoints,midpoints] = raycast(map,p1,p2)

Description
[endpoints,midpoints] = raycast(map,pose,range,angle) returns cell indices of the
specified map for all cells traversed by a ray originating from the specified pose at the specified
angle and range values. endpoints contains all indices touched by the end of the ray, with all
other points included in midpoints.

[endpoints,midpoints] = raycast(map,p1,p2) returns the cell indices of the line segment
between the two specified points.

Examples

Compute Grid Cell Indices Along a Ray

Use the raycast function to generate cell indices for all cells traversed by a ray.

Create an empty map. A low-resolution map is used to illustrate the affected grid locations.

map = binaryOccupancyMap(10,10,1);
show(map)
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Get the grid indices of the midpoints and end points of a ray from [2 3] to [8.5 8]. Set occupancy
values for these grid indices. Midpoints are treated as open space. Update endpoints with an
occupied observation.

p1 = [2 3];
p2 = [8.5 8];
[endPts,midPts] = raycast(map,p1,p2);
setOccupancy(map,midPts,zeros(length(midPts),1),'grid');
setOccupancy(map,endPts,ones(length(endPts),1),'grid');

Plot the original ray over the map. Each grid cell touched by the line is updated. The starting point
overlaps multiple cells, and the line touches the edge of certain cells, but all the cells are still
updated.

show(map)
hold on
plot([p1(1) p2(1)],[p1(2) p2(2)],"-b","LineWidth",2)
plot(p2(1),p2(2),"or")
grid on
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

pose — Position and orientation of sensor
three-element vector

Position and orientation of sensor, specified as an [x y theta] vector. The sensor pose is an x and y
position with angular orientation theta (in radians) measured from the x-axis.

range — Range of ray
scalar

Range of ray, specified as a scalar in meters.

angle — Angle of ray
scalar

Angle of ray, specified as a scalar in radians. The angle value is for the corresponding range.
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p1 — Starting point of ray
two-element vector

Starting point of ray, specified as an [x y] two-element vector. Points are defined with respect to the
world-frame.

p2 — Endpoint of ray
two-element vector

Endpoint of ray, specified as an [x y] two-element vector. Points are defined with respect to the
world-frame.

Output Arguments
endpoints — Endpoint grid indices
n-by-2 matrix

Endpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of grid indices.
The endpoints are where the range value hits at the specified angle. Multiple indices are returned
when the endpoint lies on the boundary of multiple cells.

midpoints — Midpoint grid indices
n-by-2 matrix

Midpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of grid indices.
This argument includes all grid indices the ray intersects, excluding the endpoint.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | insertRay | occupancyMap

Topics
“Occupancy Grids” (Robotics System Toolbox)
“Occupancy Grids”

2 Classes

2-172



rayIntersection
Find intersection points of rays and occupied map cells

Syntax
intersectionPts = rayIntersection(map,pose,angles,maxrange)

Description
intersectionPts = rayIntersection(map,pose,angles,maxrange) returns intersection
points of rays and occupied cells in the specified map. Rays emanate from the specified pose and
angles. Intersection points are returned in the world coordinate frame. If there is no intersection up
to the specified maxrange, [NaN NaN] is returned.

Examples

Get Ray Intersection Points on Occupancy Map

Create a binary occupancy grid map. Add obstacles and inflate them. A lower resolution map is used
to illustrate the importance of the size of your grid cells. Show the map.

map = binaryOccupancyMap(10,10,2);
obstacles = [4 10; 3 5; 7 7];
setOccupancy(map,obstacles,ones(length(obstacles),1))
inflate(map,0.25)
show(map)
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Find the intersection points of occupied cells and rays that emit from the given vehicle pose. Specify
the max range and angles for these rays. The last ray does not intersect with an obstacle within the
max range, so it has no collision point.

maxrange = 6;
angles = [pi/4,-pi/4,0,-pi/8];
vehiclePose = [4,4,pi/2];
intsectionPts = rayIntersection(map,vehiclePose,angles,maxrange)

intsectionPts = 4×2

    3.5000    4.5000
    6.0000    6.0000
    4.0000    9.0000
       NaN       NaN

Plot the intersection points and plot rays from the pose to the intersection points.

hold on
plot(intsectionPts(:,1),intsectionPts(:,2),'*r') % Intersection points
plot(vehiclePose(1),vehiclePose(2),'ob') % Vehicle pose
for i = 1:3
    plot([vehiclePose(1),intsectionPts(i,1)],...
        [vehiclePose(2),intsectionPts(i,2)],'-b') % Plot intersecting rays
end
plot([vehiclePose(1),vehiclePose(1)-6*sin(angles(4))],...
    [vehiclePose(2),vehiclePose(2)+6*cos(angles(4))],'-b') % No intersection ray
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

pose — Position and orientation of sensor
three-element vector

Position and orientation of the sensor, specified as an [x y theta] vector. The sensor pose is an x
and y position with angular orientation theta (in radians) measured from the x-axis.

angles — Ray angles emanating from sensor
vector

Ray angles emanating from the sensor, specified as a vector with elements in radians. These angles
are relative to the specified sensor pose.

maxrange — Maximum range of sensor
scalar
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Maximum range of laser range sensor, specified as a scalar in meters. Range values greater than or
equal to maxrange are considered free along the whole length of the ray, up to maxrange.

Output Arguments
intersectionPts — Intersection points
n-by-2 matrix

Intersection points, returned as n-by-2 matrix of [x y] pairs in the world coordinate frame, where n
is the length of angles.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap

Topics
“Occupancy Grids” (Robotics System Toolbox)
“Occupancy Grids” (Robotics System Toolbox)
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setOccupancy
Set occupancy value of locations

Syntax
setOccupancy(map,xy,occval)
setOccupancy(map,xy,occval,"local")
setOccupancy(map,ij,occval,"grid")
validPts = setOccupancy( ___ )

setOccupancy(map,bottomLeft,inputMatrix)
setOccupancy(map,bottomLeft,inputMatrix,"local")
setOccupancy(map,topLeft,inputMatrix,"grid")

Description
setOccupancy(map,xy,occval) assigns occupancy values, occval, to the input array of world
coordinates, xy in the occupancy grid, map. Each row of the array, xy, is a point in the world and is
represented as an [x y] coordinate pair. occval is either a scalar or a single column array of the
same length as xy . An occupied location is represented as true (1), and a free location is
represented as false (0).

setOccupancy(map,xy,occval,"local") assigns occupancy values, occval, to the input array
of local coordinates, xy, as local coordinates.

setOccupancy(map,ij,occval,"grid") assigns occupancy values, occval, to the input array of
grid indices, ij, as [rows cols].

validPts = setOccupancy( ___ ) outputs an n-element vector of logical values indicating
whether input coordinates are within the map limits.

setOccupancy(map,bottomLeft,inputMatrix) assigns a matrix of occupancy values by
specifying the bottom-left corner location in world coordinates.

setOccupancy(map,bottomLeft,inputMatrix,"local") assigns a matrix of occupancy values
by specifying the bottom-left corner location in local coordinates.

setOccupancy(map,topLeft,inputMatrix,"grid") assigns a matrix of occupancy values by
specifying the top-left cell index in grid indices and the matrix size.

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.
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x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)

Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n
is the number of grid positions.
Data Types: double
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occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical array, where n
is the same n in either xy or ij. Values are given between 0 and 1 inclusively.

inputMatrix — Occupancy values
matrix

Occupancy values, specified as a matrix. Values are given between 0 and 1 inclusively.

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | getOccupancy | occupancyMap
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show
Display binary occupancy map

Syntax
show(map)
show(map, "local")
show(map, "grid")
show( ___ ,Name,Value)
mapImage = show( ___ )

Description
show(map) displays the binary occupancy grid map in the current axes, with the axes labels
representing the world coordinates.

show(map, "local") displays the binary occupancy grid map in the current axes, with the axes
labels representing the local coordinates instead of world coordinates.

show(map, "grid") displays the binary occupancy grid map in the current axes, with the axes
labels representing the grid coordinates.

show( ___ ,Name,Value) specifies additional options specified by one or more name-value pair
arguments.

mapImage = show( ___ ) returns the handle to the image object created by show.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world map. This
process emulates a vehicle driving in an environment and getting updates on obstacles in the new
areas.

Load example maps. Create a binary occupancy map from the complexMap.

load exampleMaps.mat
map = binaryOccupancyMap(complexMap);
show(map)
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Create a smaller local map.

mapLocal = binaryOccupancyMap(complexMap(end-20:end,1:20));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local frame.

Specify path locations and plot on the map.

path = [5 2
        8 2
        8 8
        30 8];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference between points
by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
        pause(0.2)
    end
end
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Parent',axHandle

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as either an Axes or UIAxesobject. See axes or uiaxes.

FastUpdate — Update existing map plot
0 (default) | 1
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Update existing map plot, specified as 0 or 1. If you previously plotted your map on your figure, set to
1 for a faster update to the figure. This is useful for updating the figure in a loop for fast animations.

Version History
Introduced in R2015a

See Also
binaryOccupancyMap | occupancyMap
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syncWith
Sync map with overlapping map

Syntax
mat = syncWith(map,sourcemap)

Description
mat = syncWith(map,sourcemap) updates map with data from another binaryOccupancyMap
object, sourcemap. Locations in map that are also found in sourcemap are updated. All other cells in
map are set to map.DefaultValue.

Examples

Sync Map With an Overlapping Map

This example shows how to sync two overlapping maps using the syncWith function.

2-D occupancy maps are used to represent and visualize robot workspaces. In this example 2-D
occupancy maps are created using existing map grid values stored inside exampleMaps.mat.

load('exampleMaps.mat');

Create and display a new empty 2-D occupancy map object using binaryOccupancyMap function.

map1 = binaryOccupancyMap(70,70); 
show(map1) 
title('New Map')
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Create and display 2-D occupancy map using the map grid values stored in complexMap.

map2 = binaryOccupancyMap(complexMap); 
show(map2)
title('Complex Map')
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Now update map1 with map2 using the syncWith function.

syncWith(map1,map2);
show(map1)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

sourcemap — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap
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Topics
“Occupancy Grids”
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world2grid
Convert world coordinates to grid indices

Syntax
ij = world2grid(map,xy)

Description
ij = world2grid(map,xy) converts an array of world coordinates, xy, to a [rows cols] array of
grid indices, ij.

Examples

Convert World Coordinates in Binary Occupancy Map to Grid Indices

Create an empty binary occupancy map with a width and height of 10 meters.

map = binaryOccupancyMap(10,10);

Get grid indices from world coordinates.

[xWorld,yWorld] = meshgrid(0:0.5:2);
ij = world2grid(map,[xWorld(:) yWorld(:)]);

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)
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Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.

Output Arguments
ij — Grid indices
n-by-2 vertical array

Grid indices, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n is
the number of grid positions.

Version History
Introduced in R2015a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | grid2world
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world2local
Convert world coordinates to local coordinates

Syntax
xyLocal = world2local(map,xy)

Description
xyLocal = world2local(map,xy) converts an array of world coordinates to local coordinates.

Examples

Convert World Coordinates in Binary Occupancy Map to Local Coordinates

Create an empty binary occupancy map with a width and height of 10 meters.

map = binaryOccupancyMap(10,10);

Get local coordinates from world coordinates.

[xWorld,yWorld] = meshgrid(0:0.5:2);
xyLocal = world2local(map,[xWorld(:) yWorld(:)]);

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.

Output Arguments
xyLocal — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of local
coordinates.
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | grid2world | local2world
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controllerVFH
Avoid obstacles using vector field histogram

Description
The controllerVFH System object enables your vehicle to avoid obstacles based on range sensor
data using vector field histograms (VFH) . Given laser scan readings and a target direction to drive
toward, the object computes an obstacle-free steering direction.

controllerVFH specifically uses the VFH+ algorithm to compute an obstacle-free direction. First,
the algorithm takes the ranges and angles from laser scan data and builds a polar histogram for
obstacle locations. Then, the input histogram thresholds are used to calculate a binary histogram that
indicates occupied and free directions. Finally, the algorithm computes a masked histogram, which is
computed from the binary histogram based on the minimum turning radius of the vehicle.

The algorithm selects multiple steering directions based on the open space and possible driving
directions. A cost function, with weights corresponding to the previous, current, and target
directions, calculates the cost of different possible directions. The object then returns an obstacle-
free direction with minimal cost. Using the obstacle-free direction, you can input commands to move
your vehicle in that direction.

To use this object for your own application and environment, you must tune the properties of the
algorithm. Property values depend on the type of vehicle, the range sensor, and the hardware you
use.

To find an obstacle-free steering direction:

1 Create the controllerVFH object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
VFH = controllerVFH
VFH = controllerVFH(Name,Value)

Description

VFH = controllerVFH returns a vector field histogram object that computes the obstacle-free
steering direction using the VFH+ algorithm.

VFH = controllerVFH(Name,Value) returns a vector field histogram object with additional
options specified by one or more Name,Value pairs. Name is the property name and Value is the
corresponding value. Name must appear inside single quotes (' '). You can specify several name-
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value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties not specified
retain their default values.

Properties
NumAngularSectors — Number of angular sectors in histogram
180 (default) | positive integer

Number of angular sectors in the vector field histogram, specified as a scalar. This property defines
the number of bins used to create the histograms. This property is non-tunable. You can only set this
when the object is initialized.

DistanceLimits — Limits for range readings
[0.05 2] (default) | 2-element vector

Limits for range readings, specified as a 2-element vector with elements measured in meters. The
range readings specified when calling the object are considered only if they fall within the distance
limits. Use the lower distance limit to ignore false positives from poor sensor performance at lower
ranges. Use the upper limit to ignore obstacles that are too far from the vehicle.

RobotRadius — Radius of vehicle
0.1 (default) | scalar

Radius of the vehicle in meters, specified as a scalar. This dimension defines the smallest circle that
can circumscribe your vehicle. The vehicle radius is used to account for vehicle size when computing
the obstacle-free direction.

SafetyDistance — Safety distance around vehicle
0.1 (default) | scalar

Safety distance around the vehicle, specified as a scalar in meters. This is a safety distance to leave
around the vehicle position in addition to the value of the RobotRadius parameter. The sum of the
vehicle radius and the safety distance is used to compute the obstacle-free direction.

MinTurningRadius — Minimum turning radius at current speed
0.1 (default) | scalar

Minimum turning radius in meters for the vehicle moving at its current speed, specified as a scalar.

TargetDirectionWeight — Cost function weight for target direction
5 (default) | scalar

Cost function weight for moving toward the target direction, specified as a scalar. To follow a target
direction, set this weight to be higher than the sum of the CurrentDirectionWeight and
PreviousDirectionWeight properties. To ignore the target direction cost, set this weight to zero.

CurrentDirectionWeight — Cost function weight for current direction
2 (default) | scalar

Cost function weight for moving the robot in the current heading direction, specified as a scalar.
Higher values of this weight produce efficient paths. To ignore the current direction cost, set this
weight to zero.

PreviousDirectionWeight — Cost function weight for previous direction
2 (default) | scalar
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Cost function weight for moving in the previously selected steering direction, specified as a scalar.
Higher values of this weight produces smoother paths. To ignore the previous direction cost, set this
weight to zero.

HistogramThresholds — Thresholds for binary histogram computation
[3 10] (default) | 2-element vector

Thresholds for binary histogram computation, specified as a 2-element vector. The algorithm uses
these thresholds to compute the binary histogram from the polar obstacle density. Polar obstacle
density values higher than the upper threshold are represented as occupied space (1) in the binary
histogram. Values smaller than the lower threshold are represented as free space (0). Values that fall
between the limits are set to the values in the previous binary histogram, with the default being free
space (0).

UseLidarScan — Use lidarScan object as scan input
false (default) | true

Use lidarScan object as scan input, specified as either true or false.

Usage

Syntax
steeringDir = vfh(scan,targetDir)
steeringDir = vfh(ranges,angles,targetDir)

Description

steeringDir = vfh(scan,targetDir) finds an obstacle-free steering direction using the VFH+
algorithm for the input lidarScan object, scan. A target direction is given based on the target
location.

To enable this syntax, you must set the UseLidarScan property to true. For example:

mcl = monteCarloLocalization('UseLidarScan',true);
...
[isUpdated,pose,covariance] = mcl(odomPose,scan);

steeringDir = vfh(ranges,angles,targetDir) defines the lidar scan with two vectors:
ranges and angles.

Input Arguments

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Dependencies

To use this argument, you must set the UseLidarScan property to true.

mcl.UseLidarScan = true;
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ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are distances from a
sensor at given angles. The vector must be the same length as the corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the specific
angles of the given ranges. The vector must be the same length as the corresponding ranges vector.

targetDir — Target direction for vehicle
scalar

Target direction for the vehicle, specified as a scalar in radians. The forward direction of the vehicle
is considered zero radians, with positive angles measured counterclockwise.

Output Arguments

steeringDir — Steering direction for vehicle
scalar

Steering direction for the vehicle, specified as a scalar in radians. This obstacle-free direction is
calculated based on the VFH+ algorithm. The forward direction of the vehicle is considered zero
radians, with positive angles measured counterclockwise.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to controllerVFH
show Display VectorFieldHistogram information in figure window

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create a Vector Field Histogram Object and Visualize Data

This example shows how to calculate a steering direction based on input laser scan data.

Create a controllerVFH object. Set the UseLidarScan property to true.
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vfh = controllerVFH;
vfh.UseLidarScan = true;

Input laser scan data and target direction.

ranges = 10*ones(1,500);
ranges(1,225:275) = 1.0;
angles = linspace(-pi,pi,500);
targetDir = 0;

Create a lidarScan object by specifying the ranges and angles.

scan = lidarScan(ranges,angles);

Compute an obstacle-free steering direction.

steeringDir = vfh(scan,targetDir);

Visualize the VectorFieldHistogram computation.

h = figure;
set(h,'Position',[50 50 800 400])
show(vfh)

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

Lidar scans require a limited size in code generation. The lidar scans, scan, are limited to 4000
points (range and angles) as a maximum.

For additional information about code generation for System objects, see “System Objects in MATLAB
Code Generation” (MATLAB Coder)

See Also
lidarScan | show

Topics
“Obstacle Avoidance with TurtleBot and VFH”
“Vector Field Histogram”
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show
Display VectorFieldHistogram information in figure window

Syntax
show(vfh)

show(vfh,'Parent',parent)

h = show( ___ )

Description
show(vfh) shows histograms calculated by the VFH+ algorithm in a figure window. The figure also
includes the parameters of the controllerVFH object and range values from the last object call.

show(vfh,'Parent',parent) sets the specified axes handle, parent, to the axes.

h = show( ___ ) returns the figure object handle created by show using any of the arguments from
the previous syntaxes.

Examples

Create a Vector Field Histogram Object and Visualize Data

This example shows how to calculate a steering direction based on input laser scan data.

Create a controllerVFH object. Set the UseLidarScan property to true.

vfh = controllerVFH;
vfh.UseLidarScan = true;

Input laser scan data and target direction.

ranges = 10*ones(1,500);
ranges(1,225:275) = 1.0;
angles = linspace(-pi,pi,500);
targetDir = 0;

Create a lidarScan object by specifying the ranges and angles.

scan = lidarScan(ranges,angles);

Compute an obstacle-free steering direction.

steeringDir = vfh(scan,targetDir);

Visualize the VectorFieldHistogram computation.

h = figure;
set(h,'Position',[50 50 800 400])
show(vfh)
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Input Arguments
vfh — Vector field histogram algorithm
controllerVFH object

Vector field histogram algorithm, specified as a controllerVFH object. This object contains all the
parameters for tuning the VFH+ algorithm.

parent — Axes properties
handle

Axes properties, specified as a handle.

Output Arguments
h — Axes handles for VFH algorithm display
Axes array

Axes handles for VFH algorithm display, specified as an Axes array. The VFH histogram and
HistogramThresholds are shown in the first axes. The binary histogram, range sensor readings,
target direction, and steering directions are shown in the second axes.

Version History
Introduced in R2019b
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See Also
controllerVFH
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controllerPurePursuit

Create controller to follow set of waypoints

Description
The controllerPurePursuit System object creates a controller object used to make a differential-
drive vehicle follow a set of waypoints. The object computes the linear and angular velocities for the
vehicle given the current pose. Successive calls to the object with updated poses provide updated
velocity commands for the vehicle. Use the MaxAngularVelocity and DesiredLinearVelocity
properties to update the velocities based on the vehicle's performance.

The LookaheadDistance property computes a look-ahead point on the path, which is a local goal for
the vehicle. The angular velocity command is computed based on this point. Changing
LookaheadDistance has a significant impact on the performance of the algorithm. A higher look-
ahead distance results in a smoother trajectory for the vehicle, but can cause the vehicle to cut
corners along the path. A low look-ahead distance can result in oscillations in tracking the path,
causing unstable behavior. For more information on the pure pursuit algorithm, see “Pure Pursuit
Controller”.

To compute linear and angular velocity control commands:

1 Create the controllerPurePursuit object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
controller = controllerPurePursuit

controller = controllerPurePursuit(Name,Value)

Description

controller = controllerPurePursuit creates a pure pursuit object that uses the pure pursuit
algorithm to compute the linear and angular velocity inputs for a differential drive vehicle.

controller = controllerPurePursuit(Name,Value) creates a pure pursuit object with
additional options specified by one or more Name,Value pairs. Name is the property name and Value
is the corresponding value. Name must appear inside single quotes (' '). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties not
specified retain their default values.
Example: controller = controllerPurePursuit('DesiredLinearVelocity', 0.5)
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Properties
DesiredLinearVelocity — Desired constant linear velocity
0.1 (default) | scalar in meters per second

Desired constant linear velocity, specified as a scalar in meters per second. The controller assumes
that the vehicle drives at a constant linear velocity and that the computed angular velocity is
independent of the linear velocity.
Data Types: double

LookaheadDistance — Look-ahead distance
1.0 (default) | scalar in meters

Look-ahead distance, specified as a scalar in meters. The look-ahead distance changes the response
of the controller. A vehicle with a higher look-ahead distance produces smooth paths but takes larger
turns at corners. A vehicle with a smaller look-ahead distance follows the path closely and takes
sharp turns, but potentially creating oscillations in the path.
Data Types: double

MaxAngularVelocity — Maximum angular velocity
1.0 (default) | scalar in radians per second

Maximum angular velocity, specified a scalar in radians per second. The controller saturates the
absolute angular velocity output at the given value.
Data Types: double

Waypoints — Waypoints
[ ] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of waypoints. You can
generate the waypoints from the mobileRobotPRM class or from another source.
Data Types: double

Usage

Syntax
[vel,angvel] = controller(pose)
[vel,angvel,lookaheadpoint] = controller(pose)

Description

[vel,angvel] = controller(pose) processes the vehicle's position and orientation, pose, and
outputs the linear velocity, vel, and angular velocity, angvel.

[vel,angvel,lookaheadpoint] = controller(pose) returns the look-ahead point, which is a
location on the path used to compute the velocity commands. This location on the path is computed
using the LookaheadDistance property on the controller object.
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Input Arguments

pose — Position and orientation of vehicle
3-by-1 vector in the form [x y theta]

Position and orientation of vehicle, specified as a 3-by-1 vector in the form [x y theta]. The vehicle
pose is an x and y position with angular orientation θ (in radians) measured from the x-axis.

Output Arguments

vel — Linear velocity
scalar in meters per second

Linear velocity, specified as a scalar in meters per second.
Data Types: double

angvel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.
Data Types: double

lookaheadpoint — Look-ahead point on path
[x y] vector

Look-ahead point on the path, returned as an [x y] vector. This value is calculated based on the
LookaheadDistance property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to controllerPurePursuit
info Characteristic information about controllerPurePursuit object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Get Additional Pure Pursuit Object Information

Use the info method to get more information about a controllerPurePursuit object. The info
function returns two fields, RobotPose and LookaheadPoint, which correspond to the current
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position and orientation of the robot and the point on the path used to compute outputs from the last
call of the object.

Create a controllerPurePursuit object.

pp = controllerPurePursuit;

Assign waypoints.

pp.Waypoints = [0 0;1 1];

Compute control commands using the pp object with the initial pose [x y theta] given as the
input.

[v,w] = pp([0 0 0]);

Get additional information.

s = info(pp)

s = struct with fields:
         RobotPose: [0 0 0]
    LookaheadPoint: [0.7071 0.7071]

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

For additional information about code generation for System objects, see “System Objects in MATLAB
Code Generation” (MATLAB Coder)

See Also
binaryOccupancyMap | occupancyMap | binaryOccupancyMap | occupancyMap |
controllerVFH

Topics
“Pure Pursuit Controller”
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info
Characteristic information about controllerPurePursuit object

Syntax
controllerInfo = info(controller)

Description
controllerInfo = info(controller) returns a structure, controllerInfo, with additional
information about the status of the controllerPurePursuit object, controller. The structure
contains the fields, RobotPose and LookaheadPoint.

Examples

Get Additional Pure Pursuit Object Information

Use the info method to get more information about a controllerPurePursuit object. The info
function returns two fields, RobotPose and LookaheadPoint, which correspond to the current
position and orientation of the robot and the point on the path used to compute outputs from the last
call of the object.

Create a controllerPurePursuit object.

pp = controllerPurePursuit;

Assign waypoints.

pp.Waypoints = [0 0;1 1];

Compute control commands using the pp object with the initial pose [x y theta] given as the
input.

[v,w] = pp([0 0 0]);

Get additional information.

s = info(pp)

s = struct with fields:
         RobotPose: [0 0 0]
    LookaheadPoint: [0.7071 0.7071]

Input Arguments
controller — Pure pursuit controller
controllerPurePursuit object

Pure pursuit controller, specified as a controllerPurePursuit object.
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Output Arguments
controllerInfo — Information on the controllerPurePursuit object
structure

Information on the controllerPurePursuit object, returned as a structure. The structure contains
two fields:

• RobotPose – A three-element vector in the form [x y theta] that corresponds to the x-y
position and orientation of the vehicle. The angle, theta, is measured in radians with positive
angles measured counterclockwise from the x-axis.

• LookaheadPoint– A two-element vector in the form [x y]. The location is a point on the path
that was used to compute outputs of the last call to the object.

Version History
Introduced in R2019b

See Also
controllerPurePursuit

Topics
“Pure Pursuit Controller”
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controllerTEB
Avoid unseen obstacles with time-optimal trajectories

Description
The controllerTEB object creates a controller (local planner) using the Timed Elastic Band (TEB)
algorithm. The controller enables a robot to follow a reference path typically generated by a global
planner, such as RRT or Hybrid A*. Additionally, the planner avoids obstacles and smooths the path
while optimizing travel time, and maintains a safe distance from obstacles known or unknown to the
global planner. The object also computes velocity commands and an optimal trajectory using the
current pose of the robot and its current linear and angular velocities.

Creation

Syntax
controller = controllerTEB(refpath)
controller = controllerTEB(refpath,map)
controller = controllerTEB( ___ ,Name=Value)

Description

controller = controllerTEB(refpath) creates a TEB controller object, controller, that
computes the linear and angular velocity commands for a differential-drive robot to follow the
reference path refpath and travel for 5 seconds in an obstacle-free environment. The refpath
input sets the value of the ReferencePath property.

controller = controllerTEB(refpath,map) attempts to avoid obstacles in the specified
occupancy map map. The controller assumes the space outside the map boundary is free. The map
input sets the value of the Map property.

controller = controllerTEB( ___ ,Name=Value) specifies properties using one or more name-
value arguments in addition to any combination of input arguments from the previous syntaxes.

Properties
ReferencePath — Reference path to follow
N-by-2 matrix | N-by-3 matrix | navPath object with SE(2) state space

Reference path to follow, specified as an N-by-2 matrix, N-by-3 matrix, or navPath object with an
SE(2) state space. When specified as a matrix, each row represents a pose on the path. Use the
LookAheadTime property to select a part of the ReferencePath for which to optimize the trajectory
and generate velocity commands.

Note If you specify the reference path as an N-by-2 matrix, then the object computes the orientation
using the headingFromXY function and appends it as the third column.
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Data Types: single | double

Map — Occupancy map representing environment
binaryOccupancyMap() (default) | binaryOccupancyMap object | occupancyMap object

Occupancy map representing the environment, specified as a binaryOccupancyMap object or
occupancyMap object containing the obstacles in the vicinity of the robot. When optimizing the
trajectory, the controller considers the space outside the boundary of the map to be free. Larger maps
can lead to slower performance.

CostWeights — Weights for cost function optimization
struct("Time",10,"Smoothness",1000,"Obstacle",50) (default) | structure

Weights for cost function optimization, specified as a structure. The fields of the structure are:

Field Description
Time Cost function weight for time, specified as a

positive scalar. To lower the travel time, increase
this weight value.

Smoothness Cost function weight for smooth motion, specified
as a positive scalar. To obtain a smoother path,
increase this weight value.

Obstacles Cost function weight for maintaining a safe
distance from obstacles, specified as a positive
scalar. To prioritize maintaining a safe distance
from obstacles, increase this weight value.

Data Types: struct

RobotInformation — Robot geometry information for collision checking
struct("Dimension",[1 0.67],"Shape","Rectangle") (default) | structure

Robot geometry information for collision checking, specified as a structure. The fields of the structure
are:

Field Description
Dimension Size of the robot, specified as a two-element

positive vector of the form [length width], in
meters.

Shape Shape of the robot, specified as "Rectangle" or
"Point".

Note When you set Shape is "Point", the
Dimension field is set to [0 0].

Data Types: struct

ObstacleSafetyMargin — Safe distance between robot and obstacles
0.5 (default) | positive scalar

Safe distance between the robot and the obstacles, specified as a positive scalar, in meters. Note that
this is a soft constraint that the planner may ignore.
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Data Types: single | double

NumIteration — Number of iterations to optimize trajectory
2 (default) | positive integer

Number of iterations to optimize the trajectory, specified as a positive integer. This value is the
number of times interpolation occurs and the controller calls the solver for trajectory optimization.
Data Types: single | double

MaxVelocity — Maximum limits of linear and angular velocity
[0.8 1.6] (default) | two-element positive vector

Maximum limits of linear and angular velocity for velocity commands, specified as a two-element
positive vector. The first element is the linear velocity limit, in meters per second, and the second
element is the angular velocity limit, in radians per second.
Data Types: single | double

MaxAcceleration — Maximum limits of linear and angular acceleration
[2.4 4.8] (default) | two-element positive vector

Maximum limits of linear and angular acceleration for velocity commands, specified as a two-element
positive vector. The first element is the linear acceleration limit, in meters per second squared, and
the second element is the angular acceleration limit, in radians per second squared.
Data Types: single | double

ReferenceDeltaTime — Reference travel time between consecutive poses
0.3 (default) | positive scalar

Reference travel time between consecutive poses, specified as a positive scalar in seconds. This
property affects the addition and deletion of poses for the optimized trajectory. Increase the value of
this property to have fewer poses and reduce it to have more poses in the output path.
Data Types: single | double

LookAheadTime — Look-ahead time
5 (default) | positive scalar

Look-ahead time, specified as a positive scalar in seconds. The controller generates velocity
commands and optimizes the trajectory until the controller reaches the look-ahead time. A higher
look-ahead time generates velocity commands further into the future. This enables the robot to react
earlier to unseen obstacles, but increases the controller execution time. Conversely, a shorter look-
ahead time reduces the available time to react to new, unknown obstacles, but enables the controller
to run at a faster rate.

Note This property impacts the number of velocity commands, timestamps, and poses in the path.

Data Types: single | double

Object Functions
step Compute velocity commands and optimal trajectory for subsequent time steps
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clone Create deep clone of controllerTEB object

Examples

Compute Velocity Commands and Optimal Trajectory for Differential-Drive Robot Using
Timed Elastic Band Algorithm

Set Up Parking Lot Environment

Create an occupancyMap object from a parking lot map and set the map resolution to 3 cells per
meter.

load parkingMap.mat;
resolution = 3;
map = occupancyMap(map,resolution);

Visualize the map. The map contains the floor plan of a parking lot with some parking slots already
occupied.

show(map)
title("Parking Lot Map")
hold on
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Set Up and Run Global Planner

Create a validatorOccupancyMap state validator using the stateSpaceSE2 definition. Specify the
map and the distance for interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2,Map=map);
validator.ValidationDistance = 0.1;

Create an RRT* path planner. Increase the maximum connection distance.

rrtstar = plannerRRTStar(validator.StateSpace,validator);
rrtstar.MaxConnectionDistance = 0.2;

Set the start and goal states.

start = [2 9 0];
goal = [27 18 -pi/2];

Plan a path with default settings.
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rng(42,"twister") % Set random number generator seed for repeatable result.
route = plan(rrtstar,start,goal);
refpath = route.States;

RRT* uses a random orientation, which can cause unnecessary turns.

headingToNextPose = headingFromXY(refpath(:,1:2));

Align the orientation to the path, except for at the start and goal states.

refpath(2:end-1,3) = headingToNextPose(2:end-1);

Visualize the path.

plot(refpath(:,1),refpath(:,2),"r-",LineWidth=2)
hold off

Set Up and Run Local Planner

Create a local occupancyMap object with a width and height of 15 meters and the same resolution as
the global map.
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localmap = occupancyMap(15,15,map.Resolution);

Create a controllerTEB object by using the reference path generated by the global planner and the
local map.

teb = controllerTEB(refpath,localmap);

Specify the properties of the controllerTEB object.

teb.LookAheadTime = 10;         % sec
teb.ObstacleSafetyMargin = 0.4; % meters

% To generate time-optimal trajectories, specify a larger weight value,
% like 100, for the cost function, Time. To follow the reference path
% closely, keep the weight to a smaller value like 1e-3.
teb.CostWeights.Time = 100;

Create a deep clone of the controllerTEB object.

teb2 = clone(teb);

Initialize parameters.

curpose = refpath(1,:);
curvel = [0 0];
simtime = 0;
% Reducing timestep can lead to more accurate path tracking.
timestep = 0.1;
itr = 0;
goalReached = false;

Compute velocity commands and optimal trajectory.

while ~goalReached && simtime < 200
    % Update map to keep robot in the center of the map. Also update the
    % map with new information from the global map or sensor measurements.
    moveMapBy = curpose(1:2) - localmap.XLocalLimits(end)/2;
    localmap.move(moveMapBy,FillValue=0.5)
    syncWith(localmap,map)

    if mod(itr,10) == 0 % every 1 sec
        % Generate new vel commands with teb
        [velcmds,tstamps,curpath,info] = step(teb,curpose,curvel);
        goalReached = info.HasReachedGoal;
        feasibleDriveDuration = tstamps(info.LastFeasibleIdx);
        % If robot is far from goal and only less than third of trajectory
        % is feasible, then an option is to re-plan the path to follow to
        % reach the goal.
        if info.LastFeasibleIdx ~= height(tstamps) && ...
                feasibleDriveDuration < (teb.LookAheadTime/3)
            route = plan(rrtstar,curpose,[27 18 -pi/2]);
            refpath = route.States;
            headingToNextPose = headingFromXY(refpath(:,1:2));
            refpath(2:end-1,3) = headingToNextPose(2:end-1);
            teb.ReferencePath = refpath;
        end
        timestamps = tstamps + simtime;

        % Show the updated information input to or output
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        % from controllerTEB
        clf
        show(localmap)
        hold on
        plot(refpath(:,1),refpath(:,2),".-",Color="#EDB120", ...
             DisplayName="Reference Path")
        quiver(curpath(:,1),curpath(:,2), ...
               cos(curpath(:,3)),sin(curpath(:,3)), ...
               0.2,Color="#A2142F",DisplayName="Current Path")
        quiver(curpose(:,1),curpose(:,2), ...
               cos(curpose(:,3)),sin(curpose(:,3)), ...
               0.5,"o",MarkerSize=20,ShowArrowHead="off", ...
               Color="#0072BD",DisplayName="Start Pose")
    end

    simtime = simtime+timestep;
    % Compute the instantaneous velocity to be sent to the robot from the
    % series of timestamped commands generated by controllerTEB
    velcmd = velocityCommand(velcmds,timestamps,simtime);
    % Very basic robot model, should be replaced by simulator.
    statedot = [velcmd(1)*cos(curpose(3)) ...
                velcmd(1)*sin(curpose(3)) ...
                velcmd(2)];
    curpose = curpose + statedot*timestep;

    if exist("hndl","var")
        delete(hndl)
    end
    hndl = quiver(curpose(:,1),curpose(:,2), ...
                  cos(curpose(:,3)),sin(curpose(:,3)), ...
                  0.5,"o",MarkerSize=20,ShowArrowHead="off", ...
                  Color="#D95319",DisplayName="Current Robot Pose");
    itr = itr + 1;
    drawnow
end
legend
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Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
controllerPurePursuit | plannerAStarGrid

Functions
step | clone | headingFromXY | velocityCommand
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dubinsConnection
Dubins path connection type

Description
The dubinsConnection object holds information for computing a dubinsPathSegment path
segment to connect between poses. A Dubins path segment connects two poses as a sequence of
three motions. The motion options are:

• Straight
• Left turn at maximum steer
• Right turn at maximum steer

A Dubins path segment only allows motion in the forward direction.

Use this connection object to define parameters for a robot motion model, including the minimum
turning radius and options for path types. To generate a path segment between poses using this
connection type, call the connect function.

Creation

Syntax
dubConnObj = dubinsConnection
dubConnObj = dubinsConnection(Name,Value)

Description

dubConnObj = dubinsConnection creates an object using default property values.

dubConnObj = dubinsConnection(Name,Value) specifies property values using name-value
pairs. To set multiple properties, specify multiple name-value pairs.

Properties
MinTurningRadius — Minimum turning radius of the vehicle
1 (default) | positive scalar in meters

Minimum turning radius of the vehicle, specified as a positive scalar in meters. The minimum turning
radius is for the smallest circle the vehicle can make with maximum steer in a single direction.
Data Types: double

DisabledPathTypes — Path types to disable
{} (default) | cell array of three-element character vectors | vector of three-element string scalars
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Dubins path types to disable, specified as a cell array of three-element character vectors or vector of
string scalars. The cell array defines three sequences of motions that are prohibited by the vehicle
motion model.

Motion Type Description
"S" Straight
"L" Left turn at the maximum steering angle of the

vehicle
"R" Right turn at the maximum steering angle of the

vehicle

To see all available path types, see the AllPathTypes property.

For Dubins connections, the available path types are: {"LSL"} {"LSR"} {"RSL"} {"RSR"}
{"RLR"} {"LRL"}.
Example: ["LSL","LSR"]
Data Types: string | cell

AllPathTypes — All possible path types
cell array of character vectors

This property is read-only.

All possible path types, returned as a cell array of character vectors. This property lists all types. To
disable certain types, specify types from this list in DisabledPathTypes.

For Dubins connections, the available path types are: {'LSL'} {'LSR'} {'RSL'} {'RSR'}
{'RLR'} {'LRL'}.
Data Types: cell

Object Functions
connect Connect poses for given connection type

Examples

Connect Poses Using Dubins Connection Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.
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show(pathSegObj{1})

Modify Connection Types for Dubins Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

pathSegObj = connect(dubConnObj,startPose,goalPose);

Show the generated path. Notice the direction of the turns.

show(pathSegObj{1})
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pathSegObj{1}.MotionTypes

ans = 1x3 cell
    {'R'}    {'L'}    {'R'}

Disable this specific motion sequence in a new connection object. Reduce the MinTurningRadius if
the robot is more maneuverable. Connect the poses again to get a different path.

dubConnObj = dubinsConnection('DisabledPathTypes',{'RLR'});
dubConnObj.MinTurningRadius = 0.5;

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);
pathSegObj{1}.MotionTypes

ans = 1x3 cell
    {'L'}    {'S'}    {'L'}

show(pathSegObj{1})
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Version History
Introduced in R2019b

References
[1] Shkel, Andrei M., and Vladimir Lumelsky. "Classification of the Dubins set." Robotics and

Autonomous Systems. Vol. 34, No. 4, 2001, pp. 179–202.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dubinsPathSegment | reedsSheppConnection | reedsSheppPathSegment

Functions
connect | interpolate | show
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dubinsPathSegment
Dubins path segment connecting two poses

Description
The dubinsPathSegment object holds information for a Dubins path segment that connects two
poses as a sequence of three motions. The motion options are:

• Straight
• Left turn at maximum steer
• Right turn at maximum steer

Creation
To generate a dubinsPathSegment object, use the connect function with a dubinsConnection
object:

dubPathSeg = connect(connectionObj,start,goal) connects the start and goal pose using
the specified connection type object.

To specifically define a path segment:

dubPathSeg = dubinsPathSegment(connectionObj,start,goal,motionLengths,
motionTypes) specifies the Dubins connection type, the start and goal poses, and the corresponding
motion lengths and types. These values are set to the corresponding properties in the object.

Properties
MinTurningRadius — Minimum turning radius of vehicle
positive scalar

This property is read-only.

Minimum turning radius of the vehicle, specified as a positive scalar in meters. This value
corresponds to the radius of the turning circle at the maximum steering angle of the vehicle.
Data Types: double

StartPose — Initial pose of the vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle at the start of the path segment, specified as an [x, y, Θ] vector. x and y are
in meters. Θ is in radians.
Data Types: double
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GoalPose — Goal pose of the vehicle
[x, y, Θ] vector

This property is read-only.

Goal pose of the vehicle at the end of the path segment, specified as an [x, y, Θ] vector. x and y are in
meters. Θ is in radians.
Data Types: double

MotionLengths — Length of each motion
three-element numeric vector

This property is read-only.

Length of each motion in the path segment, in world units, specified as a three-element numeric
vector. Each motion length corresponds to a motion type specified in MotionTypes.
Data Types: double

MotionTypes — Type of each motion
three-element string cell array

This property is read-only.

Type of each motion in the path segment, specified as a three-element string cell array.

Motion Type Description
"S" Straight
"L" Left turn at the maximum steering angle of the

vehicle
"R" Right turn at the maximum steering angle of the

vehicle

Each motion type corresponds to a motion length specified in MotionLengths.

For Dubins connections, the available path types are: {"LSL"} {"LSR"} {"RSL"} {"RSR"}
{"RLR"} {"LRL"}.
Example: {"R" "S" "R"}
Data Types: cell

Length — Length of path segment
positive scalar

This property is read-only.

Length of the path segment, specified as a positive scalar in meters. This length is just a sum of the
elements in MotionLengths.
Data Types: double

Object Functions
interpolate Interpolate poses along path segment
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show Visualize path segment

Examples

Connect Poses Using Dubins Connection Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dubinsConnection | reedsSheppConnection | reedsSheppPathSegment

Functions
connect | interpolate | show
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dynamicCapsuleList
Dynamic capsule-based obstacle list

Description
The dynamicCapsuleList object manages two lists of capsule-based collision objects in 2-D space.
Collision objects are separated into two lists, ego bodies and obstacles. For ego bodies and obstacles
in 3-D, see the dynamicCapsuleList3D object.

Each collision object in the two lists has three key elements:

• ID –– Integer that identifies each object, stored in the EgoIDs property for ego bodies and the
ObstacleIDs property for obstacles.

• States –– Location and orientation of the object as an M-by-3 matrix, where each row is of form [x
y theta] and M is the number of states along the path of the object in the world frame. The list
of states assumes each state is separated by a fixed time interval. xy-positions are in meters, and
theta is in radians. The default local origin is located at the center of the left semicircle of the
capsule.

• Geometry –– Size of the capsule-based object based on a specified length and radius. The radius
applies to the semicircle end caps, and the length applies to the central rectangle length. To shift
the capsule geometry and local origin relative to the default origin point, specify a fixed transform
relative to the local frame of the capsule.

Use the object functions to dynamically add, remove, and update the geometries and states of the
various objects in your environment. To add an ego body, see the addEgo object function. To add an
obstacle, see the addObstacle object function.
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After specifying all of the object states, validate the ego-body paths and check for collisions with
obstacles at every step using the checkCollision object function. The function only checks if an
ego body collides with an obstacle, ignoring collisions between only obstacles or only ego bodies.

Creation
Syntax
obstacleList = dynamicCapsuleList

Description

obstacleList = dynamicCapsuleList creates a dynamic capsule-based obstacle list with no ego
bodies or obstacles. To begin building an obstacle list, use the addEgo or addObstacle object
functions.

Properties
MaxNumSteps — Maximum number of time steps in obstacle list
31 (default) | positive integer

Maximum number of time steps in the obstacle list, specified as a positive integer. The number of
steps determines to the maximum length of the States field for a specific ego body or obstacle.
Data Types: double

EgoIDs — List of IDs for ego bodies
vector of positive integers

This property is read-only.

List of identifiers for ego bodies, returned as a vector of positive integers.
Data Types: double

ObstacleIDs — IDs for obstacles
vector of positive integers

This property is read-only.

List of identifiers for obstacles, returned as a vector of positive integers.
Data Types: double

NumObstacles — Number of obstacles in list
integer

This property is read-only.

Number of obstacles in list, returned as an integer.
Data Types: double

NumEgos — Number of ego bodies in list
integer
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This property is read-only.

Number of ego bodies in list, returned as an integer.
Data Types: double

Object Functions
addEgo Add ego bodies to capsule list
addObstacle Add obstacles to 2-D capsule list
checkCollision Check for collisions between ego bodies and obstacles
egoGeometry Geometric properties of ego bodies
egoPose Poses of ego bodies
obstacleGeometry Geometric properties of obstacles
obstaclePose Poses of obstacles
removeEgo Remove ego bodies from capsule list
removeObstacle Remove obstacles from capsule list
show Display ego bodies and obstacles in environment
updateEgoGeometry Update geometric properties of ego bodies
updateEgoPose Update states of ego bodies
updateObstacleGeometry Update geometric properties of obstacles
updateObstaclePose Update states of obstacles

Examples

Build Ego Body Paths and Check for Collisions with Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0m to x =
100m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(3));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis.. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0];
obsState2 = states + [0 -5 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduces the radius of the first obstacle to 0.5 m, and
change the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y 
     zeros(numSteps,1)]; % theta

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle, which the
display highlights in red. Notice that collisions between the obstacles are not checked.

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])
xlabel("X (m)")
ylabel("Y (m)")
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Programmatically check for collisions by using the checkCollision object function. The function
returns a vector of logical values that indicates the status of each time step. The vector is transposed
for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)]; % theta
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updateEgoPose(obsList,1,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose
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Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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addEgo
Add ego bodies to capsule list

Syntax
addEgo(capsuleListObj,egoStruct)
status = addEgo(capsuleListObj,egoStruct)

Description
addEgo(capsuleListObj,egoStruct) adds one or more ego bodies to the 2-D dynamic capsule
list with the specified ID, state, and geometry values given in egoStruct.

status = addEgo(capsuleListObj,egoStruct) additionally returns an indicator of whether
each specified ego body was added, updated, or a duplicate.

Examples

Build Ego Body Paths and Check for Collisions with Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0m to x =
100m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(3));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis.. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0];
obsState2 = states + [0 -5 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduces the radius of the first obstacle to 0.5 m, and
change the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y 
     zeros(numSteps,1)]; % theta

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle, which the
display highlights in red. Notice that collisions between the obstacles are not checked.

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])
xlabel("X (m)")
ylabel("Y (m)")
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Programmatically check for collisions by using the checkCollision object function. The function
returns a vector of logical values that indicates the status of each time step. The vector is transposed
for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)]; % theta
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updateEgoPose(obsList,1,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object

Dynamic capsule list, specified as a dynamicCapsuleList object.

egoStruct — Ego body parameters
structure | N-element structure array

Ego body parameters, specified as an N-element structure or a structure array, where N is the
number of added ego bodies. The fields of each structure define the ID, geometry, and states of an
ego body:

• ID –– Integer that identifies each object. Stored in the EgoIDs property of the
dynamicCapsuleList object specified by the capsuleListObj argument.

• States –– Location and orientation of the object as an M-by-3 matrix, where each row is of form
[x y theta], and M is the number of states for the specified ego body in the world frame. The
list of states assumes each state is separated by a fixed time interval. xy-positions are in meters
and theta is in radians.
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• Geometry –– Structure with fields Length, Radius, and FixedTransform. These fields define
the size of the capsule-based object using the specified length for the cylinder and semicircle
radius for the end caps. To shift the capsule geometry from the default origin, specify the
FixedTransform field as a fixed transform relative to the local frame of the capsule. To keep the
default capsule origin, specify the transform as eye(3).

Output Arguments
status — Result of adding ego bodies
N-element column vector

Result of adding ego bodies, returned as a N-element column vector of ones, zeros, and negative
ones. N is the number of ego bodies specified in the egoStruct argument. Each value indicates
whether the associated body is added (1), updated (0), or a duplicate (-1). While adding ego bodies, if
multiple structures with the same body ID are found in the structure array egoStruct, then the
function marks the previous entry as duplicate and ignores it.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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addObstacle
Add obstacles to 2-D capsule list

Syntax
addObstacle(capsuleListObj,obstacleStruct)
status = addObstacle(capsuleListObj,obstacleStruct)

Description
addObstacle(capsuleListObj,obstacleStruct) adds one or more obstacles to the 2-D
dynamic capsule list with the specified ID, state, and geometry values given in obstacleStruct.

status = addObstacle(capsuleListObj,obstacleStruct) additionally returns an indicator
of whether each specified obstacle was added, updated, or a duplicate.

Examples

Build Ego Body Paths and Check for Collisions with Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0m to x =
100m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(3));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis.. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0];
obsState2 = states + [0 -5 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduces the radius of the first obstacle to 0.5 m, and
change the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y 
     zeros(numSteps,1)]; % theta

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle, which the
display highlights in red. Notice that collisions between the obstacles are not checked.

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])
xlabel("X (m)")
ylabel("Y (m)")
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Programmatically check for collisions by using the checkCollision object function. The function
returns a vector of logical values that indicates the status of each time step. The vector is transposed
for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)]; % theta
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updateEgoPose(obsList,1,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object

Dynamic capsule list, specified as a dynamicCapsuleList object.

obstacleStruct — Obstacle parameters
structure | N-element structure array

Obstacle parameters, specified as an N-element structure or a structure array, where N is the number
of added obstacles. The fields of each structure define the ID, geometry, and states of an obstacle:

• ID –– Integer that identifies each object. Stored in the ObstacleIDs property of the
dynamicCapsuleList object specified by the capsuleListObj argument.

• States –– Location and orientation of the object as an M-by-3 matrix, where each row is of form
[x y theta], and M is the number of states for the specified obstacle in the world frame. The
list of states assumes each state is separated by a fixed time interval. xy-positions are in meters
and theta is in radians.
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• Geometry –– Structure with fields Length, Radius, and FixedTransform. These fields define
the size of the capsule-based object using the specified length for the cylinder and semicircle
radius for the end caps. To shift the capsule geometry from the default origin, specify the
FixedTransform field as a fixed transform relative to the local frame of the capsule. To keep the
default capsule origin, specify the transform as eye(3).

Output Arguments
status — Result of adding obstacles
N-element column vector

Result of adding obstacles, returned as a N-element column vector of ones, zeros, and negative ones.
N is the number of obstacles specified in the obstacleStruct argument. Each value indicates
whether the associated body is added (1), updated (0), or a duplicate (-1). While adding obstacles, if
multiple structures with the same body ID are found in the structure array obstaclesStruct, then
the function marks the previous entry as duplicate and ignores it.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | checkCollision | egoGeometry | egoPose | obstacleGeometry | obstaclePose |
removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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checkCollision
Check for collisions between ego bodies and obstacles

Syntax
collisionFound = checkCollision(capsuleListObj)
[fullResults,distance] = checkCollision(capsuleListObj,options)

Description
collisionFound = checkCollision(capsuleListObj) checks each ego body for collisions
with obstacles in the environment. The function indicates whether each ego body is in collision at
each time step..

[fullResults,distance] = checkCollision(capsuleListObj,options) checks each ego
body for collisions with obstacles in the environment, and returns the results using additional
specified collision detection options options.

Examples

Build Ego Body Paths and Check for Collisions with Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0m to x =
100m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(3));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis.. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0];
obsState2 = states + [0 -5 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduces the radius of the first obstacle to 0.5 m, and
change the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y 
     zeros(numSteps,1)]; % theta

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle, which the
display highlights in red. Notice that collisions between the obstacles are not checked.

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])
xlabel("X (m)")
ylabel("Y (m)")
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Programmatically check for collisions by using the checkCollision object function. The function
returns a vector of logical values that indicates the status of each time step. The vector is transposed
for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)]; % theta
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updateEgoPose(obsList,1,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

options — Collision detection options
structure

Collision detection options, specified as a structure with these fields:

• FullResults –– Return the collision results for each obstacle separately , specified as a logical 0
(false) or 1 (true). See the fullResults output argument.

• ReturnDistance –– Return the distance calculation from collision checking, specified as a logical
0 (false) or 1 (true). See the distance output argument.

Data Types: struct
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Output Arguments
collisionFound — Collision checking results
n-by-e matrix of logical values

Collision checking results, returned as an n-by-e matrix of logical values. By default, the function
checks for any collision between any object, which returns an n-by-e matrix, where n is the maximum
number of states for ego bodies in the specified capsuleListobj object, and e is the number of ego
bodies.
Data Types: logical

fullResults — Full collision checking results for each obstacle
n-by-o-by-e array of logical values

Full collision checking results for each obstacle, returned as an n-by-o-by-e array of logical values. n
is the maximum number of states for ego bodies in the specified capsuleListobj argument, o is the
number of obstacles, and e is the number of ego bodies.

Dependencies

To return the fullResults output argument, specify the options input argument with the
FullResults field set to true.
Data Types: logical

distance — Distance from obstacles
n-by-e numeric matrix | n-by-oby-e numeric array

Distance from obstacles, returned as an n-by-e numeric matrix or n-by-oby-e numeric array. The
dimensions and behavior of the distance argument depend on the value of the FullResults field of
the options argument

distance Dimensions FullResults
Value

Behavior

n-by-e numeric matrix false Returns the distance between each ego body and the
closest obstacle at each time step. n is the maximum
number of states for ego bodies specified in the
capsuleListObj argument, and e is the number of
ego bodies.

n-by-oby-e numeric array true Returns the distance between each ego body and
each obstacle at each time step. o is the number of
obstacles.

Dependencies

To return the distance output argument, specify the options input argument with the
ReturnDistance field set to true.
Data Types: single | double

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | egoGeometry | egoPose | obstacleGeometry | obstaclePose |
removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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egoGeometry
Geometric properties of ego bodies

Syntax
[egoIDs,geomStruct] = egoGeometry(capsuleListObj)
[egoIDs,geomStruct] = egoGeometry(capsuleListObj,selectEgoIDs)
[egoIDs,geomStruct,status] = egoGeometry(capsuleListObj,selectEgoIDs)

Description
[egoIDs,geomStruct] = egoGeometry(capsuleListObj) returns the ego ID and the geometry
parameters for each ego body in the capsule list.

[egoIDs,geomStruct] = egoGeometry(capsuleListObj,selectEgoIDs) specifies which ego
bodies to return the ID and geometry parameters for.

[egoIDs,geomStruct,status] = egoGeometry(capsuleListObj,selectEgoIDs) returns an
indicator of whether each ID in selectEgoIDs exists.

Examples

Create and Modify Capsule-Based Ego Bodies

Add ego bodies to an environment using the dynamicCapsuleList object. Modify the properties of
the ego bodies. Remove an ego body from the environment. Visualize the states of all objects in the
environment at different timestamps.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for the object paths.

capsuleList = dynamicCapsuleList;
numSteps = capsuleList.MaxNumSteps;

Add Ego Bodies

Specify the states for the two ego bodies as a linear path from x = 0 m to x = 100 m. The two ego
bodies are separated by 5 m in opposite directions on the y-axis.

egoState = linspace(0,1,numSteps)'.*[100 0 0];
egoState1 = egoState+[0 5 0];
egoState2 = egoState+[0 -5 0];

Generate default poses and geometric structures for the two ego bodies using ego IDs.

[egoIDs,egoPoseStruct] = egoPose(capsuleList,[1 2]);
[egoIDs,egoGeomStruct] = egoGeometry(capsuleList,egoIDs);

Update Ego Bodies

Assign the states to the ego bodies.
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egoPoseStruct(1).States = egoState1;
egoPoseStruct(2).States = egoState2;

Increase the radius of the first ego body to 2 m.

egoGeomStruct(1).Geometry.Radius = 2;

update the ego bodies using the updateEgoPose and updateEgoGeometry object functions.

updateEgoPose(capsuleList,egoIDs,egoPoseStruct);
updateEgoGeometry(capsuleList,egoIDs,egoGeomStruct);

Visualize the ego bodies.

show(capsuleList,'TimeStep',1:numSteps);
axis equal

Remove Ego Body

Remove the first ego body from the capsule list by specifying its ID.

removeEgo(capsuleList,1);

Visualize the ego bodies again.

show(capsuleList,'TimeStep',1:numSteps);
axis equal

 egoGeometry

2-263



Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

selectEgoIDs — Ego body IDs
vector of positive integers

Ego body IDs, specified as a vector of positive integers. The function returns the ego IDs and
geometry parameters for only the ego bodies specified in this vector.

Output Arguments
egoIDs — IDs of ego bodies
vector of positive integers

IDs of ego bodies, returned as a vector of positive integers.

geomStruct — Geometry parameters for ego bodies
structure | structure array

Geometry parameters for ego bodies, returned as a structure or structure array where each structure
contains the fields from the structure in the Geometry field of the associated ego body. The fields of
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this structure depend on whether you are using a dynamicCapsuleList or
dynamicCapsuleList3D object.

status — Indication of ego body existence
N-element column vector

Indication of ego body existence, returned as a N-element column vector of ones, zeros, and negative
ones. Each value indicates whether the associated body exists (1), updated (0), or a duplicate (-1). If
you specify the same ego body ID more than once in the selectEgoIDs argument, then the function
marks all instances of that ID after the first as duplicates and ignores them.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoPose | obstacleGeometry | obstaclePose |
removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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egoPose
Poses of ego bodies

Syntax
[egoIDs,poseStruct] = egoPose(capsuleListObj)
[egoIDs,poseStruct] = egoPose(capsuleListObj,selectEgoIDs)
[egoIDs,poseStruct,status] = egoPose(capsuleListObj,selectEgoIDs)

Description
[egoIDs,poseStruct] = egoPose(capsuleListObj) returns the ego ID and the states for each
ego body in the specified capsule list.

[egoIDs,poseStruct] = egoPose(capsuleListObj,selectEgoIDs) specifies which ego
bodies to return the ID and states for.

[egoIDs,poseStruct,status] = egoPose(capsuleListObj,selectEgoIDs) returns an
indicator of whether each ID in selectEgoIDs exists.

Examples

Create and Modify Capsule-Based Ego Bodies

Add ego bodies to an environment using the dynamicCapsuleList object. Modify the properties of
the ego bodies. Remove an ego body from the environment. Visualize the states of all objects in the
environment at different timestamps.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for the object paths.

capsuleList = dynamicCapsuleList;
numSteps = capsuleList.MaxNumSteps;

Add Ego Bodies

Specify the states for the two ego bodies as a linear path from x = 0 m to x = 100 m. The two ego
bodies are separated by 5 m in opposite directions on the y-axis.

egoState = linspace(0,1,numSteps)'.*[100 0 0];
egoState1 = egoState+[0 5 0];
egoState2 = egoState+[0 -5 0];

Generate default poses and geometric structures for the two ego bodies using ego IDs.

[egoIDs,egoPoseStruct] = egoPose(capsuleList,[1 2]);
[egoIDs,egoGeomStruct] = egoGeometry(capsuleList,egoIDs);

Update Ego Bodies

Assign the states to the ego bodies.

2 Classes

2-266



egoPoseStruct(1).States = egoState1;
egoPoseStruct(2).States = egoState2;

Increase the radius of the first ego body to 2 m.

egoGeomStruct(1).Geometry.Radius = 2;

update the ego bodies using the updateEgoPose and updateEgoGeometry object functions.

updateEgoPose(capsuleList,egoIDs,egoPoseStruct);
updateEgoGeometry(capsuleList,egoIDs,egoGeomStruct);

Visualize the ego bodies.

show(capsuleList,'TimeStep',1:numSteps);
axis equal

Remove Ego Body

Remove the first ego body from the capsule list by specifying its ID.

removeEgo(capsuleList,1);

Visualize the ego bodies again.

show(capsuleList,'TimeStep',1:numSteps);
axis equal
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Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

selectEgoIDs — Ego body IDs
vector of positive integers

Ego body IDs, specified as a vector of positive integers. The function returns the ego IDs and states
for only the ego bodies specified in this vector.

Output Arguments
egoIDs — IDs of ego bodies
vector of positive integers

IDs of ego bodies, returned as a vector of positive integers.

poseStruct — States for ego bodies
structure | structure array
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States for ego bodies, returned as a structure or structure array. Each structure contains a matrix of
states for each ego body. The state matrix size depends on whether you are using a
dynamicCapsuleList or dynamicCapsuleList3D object.
Data Types: struct

status — Indication of ego body existence
N-element column vector

Indication of ego body existence, returned as a N-element column vector of ones, zeros, and negative
ones. Each value indicates whether the associated body exists (1), updated (0), or a duplicate (-1). If
you specify the same ego body ID more than once in the selectEgoIDs argument, then the function
marks all instances of that ID after the first as duplicates and ignores them.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | obstaclePose | removeEgo |
removeObstacle | show | updateEgoGeometry | updateEgoPose | updateObstacleGeometry |
updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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obstacleGeometry
Geometric properties of obstacles

Syntax
[obstacleIDs,geomStruct] = obstacleGeometry(capsuleListObj)
[obstacleIDs,geomStruct] = obstacleGeometry(capsuleListObj,selectObstacleIDs)
[obstacleIDs,geomStruct,status] = obstacleGeometry(capsuleListObj,
selectObstacleIDs)

Description
[obstacleIDs,geomStruct] = obstacleGeometry(capsuleListObj) returns the obstacle ID
and the geometry parameters for each obstacle in the capsule list.

[obstacleIDs,geomStruct] = obstacleGeometry(capsuleListObj,selectObstacleIDs)
specifies which obstacle to return the ID and geometry parameters for.

[obstacleIDs,geomStruct,status] = obstacleGeometry(capsuleListObj,
selectObstacleIDs) returns an indicator of whether each ID in selectobstacleIDs exists.

Examples

Create and Modify Capsule-Based Obstacles

Add obstacles to an environment using the dynamicCapsuleList object. Modify the properties of
the obstacles. Remove an obstacle from the environment. Visualize the states of all objects in the
environment at different timestamps.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for the object paths.

capsuleList = dynamicCapsuleList;
numSteps = capsuleList.MaxNumSteps;

Add Obstacles

Specify the states for the two obstacles as a linear path from x = 0 m to x = 100 m. The two obstacles
are separated by 10 m in opposite directions on the y-axis.

obsState = linspace(0,1,numSteps)'.*[100 0 0];
obsState1 = obsState+[0 10 0];
obsState2 = obsState+[0 -10 0];

Generate default poses and geometric structures for the two obstacles using obstacle IDs.

[obsIDs,obsPoseStruct] = obstaclePose(capsuleList,[1 2]);
[obsIDs,obsGeomStruct] = obstacleGeometry(capsuleList,obsIDs);
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Update Obstacles

Assign the states to the obstacles.

obsPoseStruct(1).States = obsState1;
obsPoseStruct(2).States = obsState2;

Increase the radius of the first obstacle to 2 m.

obsGeomStruct(1).Geometry.Radius = 2;

update the obstacles using the updateObstaclePose and updateObstacleGeometry object
functions.

updateObstaclePose(capsuleList,obsIDs,obsPoseStruct);
updateObstacleGeometry(capsuleList,obsIDs,obsGeomStruct);

Visualize the obstacles.

show(capsuleList,'TimeStep',1:numSteps);
axis equal

Remove Obstacles

Remove the first obstacle from the capsule list by specifying its ID.

removeObstacle(capsuleList,1);

Visualize the obstacles again.

 obstacleGeometry

2-271



show(capsuleList,'TimeStep',1:numSteps);
axis equal

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

selectObstacleIDs — Obstacle IDs
vector of positive integers

Obstacle IDs, specified as a vector of positive integers. The function returns the obstacle IDs and
geometry parameters for only the obstacles specified in this vector.

Output Arguments
obstacleIDs — IDs of obstacles
vector of positive integers

IDs of obstacles, returned as a vector of positive integers.

geomStruct — Geometry parameters for obstacles
structure | structure array
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Geometry parameters for obstacles, returned as a structure or structure array where each structure
contains the fields from the structure in the Geometry field of the associated obstacle. The fields of
this structure depend on whether you are using a dynamicCapsuleList or
dynamicCapsuleList3D object.

status — Indication of obstacle existence
vector of ones, zeros, and negative ones

Indication of obstacle existence, returned as a N-element column vector of ones, zeros, and negative
ones. Each value indicates whether the associated obstacle exists (1), updated (0), or a duplicate
(-1). If you specify the same ego body ID more than once in the selectObstacleIDs argument,
then the function marks all instances of that ID after the first as duplicates and ignores them.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstaclePose |
removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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obstaclePose
Poses of obstacles

Syntax
[obstacleIDs,poseStruct] = obstaclePose(capsuleListObj)
[obstacleIDs,poseStruct] = obstaclePose(capsuleListObj,selectObstacleIDs)
[obstacleIDs,poseStruct,status] = obstaclePose(capsuleListObj,
selectObstacleIDs)

Description
[obstacleIDs,poseStruct] = obstaclePose(capsuleListObj) returns the obstacle ID and
states for each obstacle in the specified capsule list.

[obstacleIDs,poseStruct] = obstaclePose(capsuleListObj,selectObstacleIDs)
specifies which obstacles to return the ID and states for.

[obstacleIDs,poseStruct,status] = obstaclePose(capsuleListObj,
selectObstacleIDs) returns an indicator of whether each ID in selectObstacleIDs exists.

Examples

Create and Modify Capsule-Based Obstacles

Add obstacles to an environment using the dynamicCapsuleList object. Modify the properties of
the obstacles. Remove an obstacle from the environment. Visualize the states of all objects in the
environment at different timestamps.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for the object paths.

capsuleList = dynamicCapsuleList;
numSteps = capsuleList.MaxNumSteps;

Add Obstacles

Specify the states for the two obstacles as a linear path from x = 0 m to x = 100 m. The two obstacles
are separated by 10 m in opposite directions on the y-axis.

obsState = linspace(0,1,numSteps)'.*[100 0 0];
obsState1 = obsState+[0 10 0];
obsState2 = obsState+[0 -10 0];

Generate default poses and geometric structures for the two obstacles using obstacle IDs.

[obsIDs,obsPoseStruct] = obstaclePose(capsuleList,[1 2]);
[obsIDs,obsGeomStruct] = obstacleGeometry(capsuleList,obsIDs);
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Update Obstacles

Assign the states to the obstacles.

obsPoseStruct(1).States = obsState1;
obsPoseStruct(2).States = obsState2;

Increase the radius of the first obstacle to 2 m.

obsGeomStruct(1).Geometry.Radius = 2;

update the obstacles using the updateObstaclePose and updateObstacleGeometry object
functions.

updateObstaclePose(capsuleList,obsIDs,obsPoseStruct);
updateObstacleGeometry(capsuleList,obsIDs,obsGeomStruct);

Visualize the obstacles.

show(capsuleList,'TimeStep',1:numSteps);
axis equal

Remove Obstacles

Remove the first obstacle from the capsule list by specifying its ID.

removeObstacle(capsuleList,1);

Visualize the obstacles again.
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show(capsuleList,'TimeStep',1:numSteps);
axis equal

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

selectObstacleIDs — Obstacle IDs
vector of positive integers

Obstacle IDs, specified as a vector of positive integers. The function returns the obstacle IDs and
states for only the obstacles specified in this vector.

Output Arguments
obstacleIDs — IDs of obstacles
vector of positive integers

IDs of obstacles, specified as a vector of positive integers.

poseStruct — States for ego bodies
structure | structure array
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States for obstacles, returned as a structure or structure array. Each structure contains a matrix of
states for each obstacle. The state matrix size depends on whether you are using a
dynamicCapsuleList or dynamicCapsuleList3D object.
Data Types: struct

status — Indication of obstacle existence
N-element column vector

Indication of obstacle existence, returned as a N-element column vector of ones, zeros, and negative
ones. Each value indicates whether the associated obstacle exists (1), updated (0), or a duplicate
(-1). If you specify the same obstacle ID more than once in the selectObstacleIDs argument, then
the function marks all instances of that ID after the first as duplicates and ignores them.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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removeEgo
Remove ego bodies from capsule list

Syntax
removeEgo(capsuleListObj,egoIDs)
status = removeEgo(capsuleListObj,egoIDs)

Description
removeEgo(capsuleListObj,egoIDs) removes ego bodies with the specified IDs from the
dynamic capsule list.

status = removeEgo(capsuleListObj,egoIDs) additionally returns an indicator of whether an
ego body is removed, not found, or a duplicate.

Examples

Create and Modify Capsule-Based Ego Bodies

Add ego bodies to an environment using the dynamicCapsuleList object. Modify the properties of
the ego bodies. Remove an ego body from the environment. Visualize the states of all objects in the
environment at different timestamps.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for the object paths.

capsuleList = dynamicCapsuleList;
numSteps = capsuleList.MaxNumSteps;

Add Ego Bodies

Specify the states for the two ego bodies as a linear path from x = 0 m to x = 100 m. The two ego
bodies are separated by 5 m in opposite directions on the y-axis.

egoState = linspace(0,1,numSteps)'.*[100 0 0];
egoState1 = egoState+[0 5 0];
egoState2 = egoState+[0 -5 0];

Generate default poses and geometric structures for the two ego bodies using ego IDs.

[egoIDs,egoPoseStruct] = egoPose(capsuleList,[1 2]);
[egoIDs,egoGeomStruct] = egoGeometry(capsuleList,egoIDs);

Update Ego Bodies

Assign the states to the ego bodies.

egoPoseStruct(1).States = egoState1;
egoPoseStruct(2).States = egoState2;
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Increase the radius of the first ego body to 2 m.

egoGeomStruct(1).Geometry.Radius = 2;

update the ego bodies using the updateEgoPose and updateEgoGeometry object functions.

updateEgoPose(capsuleList,egoIDs,egoPoseStruct);
updateEgoGeometry(capsuleList,egoIDs,egoGeomStruct);

Visualize the ego bodies.

show(capsuleList,'TimeStep',1:numSteps);
axis equal

Remove Ego Body

Remove the first ego body from the capsule list by specifying its ID.

removeEgo(capsuleList,1);

Visualize the ego bodies again.

show(capsuleList,'TimeStep',1:numSteps);
axis equal
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Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

egoIDs — IDs of ego bodies
vector of positive integers

IDs of ego bodies to remove, specified as a vector of positive integers.

Output Arguments
status — Result of removing ego bodies
N-element column vector

Result of removing ego bodies, specified as N-element column vector of ones, zeros, and negative
ones. N is the number of ego bodies specified in the egoIDs argument. Each value indicates whether
the body is removed (1), not found (0), or a duplicate (-1). If you specify the same ego ID multiple
times in the egoIDs input argument, then all entries besides the last are marked as a duplicate.
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Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”

 removeEgo

2-281



removeObstacle
Remove obstacles from capsule list

Syntax
removeObstacle(capsuleListObj,obstacleIDs)
status = removeObstacle(capsuleListObj,obstacleIDs)

Description
removeObstacle(capsuleListObj,obstacleIDs) removes obstacles with the specified IDs from
the dynamic capsule list.

status = removeObstacle(capsuleListObj,obstacleIDs) additionally returns an indicator
of whether an obstacles is removed, not found, or a duplicate.

Examples

Create and Modify Capsule-Based Obstacles

Add obstacles to an environment using the dynamicCapsuleList object. Modify the properties of
the obstacles. Remove an obstacle from the environment. Visualize the states of all objects in the
environment at different timestamps.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for the object paths.

capsuleList = dynamicCapsuleList;
numSteps = capsuleList.MaxNumSteps;

Add Obstacles

Specify the states for the two obstacles as a linear path from x = 0 m to x = 100 m. The two obstacles
are separated by 10 m in opposite directions on the y-axis.

obsState = linspace(0,1,numSteps)'.*[100 0 0];
obsState1 = obsState+[0 10 0];
obsState2 = obsState+[0 -10 0];

Generate default poses and geometric structures for the two obstacles using obstacle IDs.

[obsIDs,obsPoseStruct] = obstaclePose(capsuleList,[1 2]);
[obsIDs,obsGeomStruct] = obstacleGeometry(capsuleList,obsIDs);

Update Obstacles

Assign the states to the obstacles.

obsPoseStruct(1).States = obsState1;
obsPoseStruct(2).States = obsState2;
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Increase the radius of the first obstacle to 2 m.

obsGeomStruct(1).Geometry.Radius = 2;

update the obstacles using the updateObstaclePose and updateObstacleGeometry object
functions.

updateObstaclePose(capsuleList,obsIDs,obsPoseStruct);
updateObstacleGeometry(capsuleList,obsIDs,obsGeomStruct);

Visualize the obstacles.

show(capsuleList,'TimeStep',1:numSteps);
axis equal

Remove Obstacles

Remove the first obstacle from the capsule list by specifying its ID.

removeObstacle(capsuleList,1);

Visualize the obstacles again.

show(capsuleList,'TimeStep',1:numSteps);
axis equal
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Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

obstacleIDs — IDs of obstacles
vector of positive integers

IDs of obstacles to remove, specified as a vector of positive integers.

Output Arguments
status — Result of removing obstacles
N-element column vector

Result of removing obstacles, specified as N-element column vector of ones, zeros, and negative ones.
N is the number of obstacles specified in the obstacleIDs argument. Each value indicates whether
the obstacle is removed (1), not found (0), or a duplicate (-1). If you specify the same obstacle ID
multiple times in the obstacleIDs input argument, then all entries besides the last are marked as a
duplicate.
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Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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show
Display ego bodies and obstacles in environment

Syntax
ax = show(capsuleListObj)
ax = show(capsuleListObj,Name,Value)

Description
ax = show(capsuleListObj) displays the initial state of all ego bodies and obstacles in the
specified capsule list, and returns the axes handle of the plot.

ax = show(capsuleListObj,Name,Value) specifies options using name-value pair arguments on
page 2-290. For example, 'FastUpdate',true enables fast updates to an existing plot.

Examples

Build Ego Body Paths and Check for Collisions with Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0m to x =
100m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(3));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis.. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0];
obsState2 = states + [0 -5 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduces the radius of the first obstacle to 0.5 m, and
change the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y 
     zeros(numSteps,1)]; % theta

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle, which the
display highlights in red. Notice that collisions between the obstacles are not checked.

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])
xlabel("X (m)")
ylabel("Y (m)")
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Programmatically check for collisions by using the checkCollision object function. The function
returns a vector of logical values that indicates the status of each time step. The vector is transposed
for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)]; % theta
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updateEgoPose(obsList,1,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FastUpdate',true enables the option for fast updates in an existing plot.

Parent — Parent axes to plot on
gca (default) | Axes handle

Parent axes to plot on, specified as the comma-separated pair consisting of 'Parent' and an Axes
handle.
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FastUpdate — Perform fast update to existing plot
false or 0 (default) | true or 1

Perform a fast update to an existing plot, specified as the comma-separated pair consisting of
'FastUpdate' and a logical 0 (false) or 1 (true). You must use the show object function to
initially display your capsule list before you can specify it with this argument.
Data Types: logical

TimeStep — Time steps to display
1 (default) | numeric vector

Time steps to display, specified as the comma-separated pair consisting of 'TimeStep' and numeric
vector of values in the range [1, N], where N is the value of the MaxNumSteps property of the object
specified in the capsuleListObj argument. Each time step corresponds to a row of the state matrix
for each ego body and obstacle.

ShowCollisions — Check for and highlight collisions in display
false or 0 (default) | true or 1

Check for and highlight collisions in the display, specified as the comma-separated pair consisting of
'ShowCollisions' and a logical 0 (false) or 1 (true).
Data Types: logical

EgoIDs — Ego IDs to display
vector of positive integers

Ego IDs to display, specified as the comma-separated pair consisting of 'EgoIDs' and a vector of
positive integers. By default, the object function displays all ego bodies.

ObstacleIDs — Obstacle IDs to display
vector of positive integers

Obstacle IDs to display, specified as the comma-separated pair consisting of 'ObstacleIDs' and a
vector of positive integers. By default, the function displays all obstacles.

Output Arguments
ax — Parent axes of dynamic capsule list plot
Axes handle

Parent axes of the dynamic capsule list plot, returned as anAxes handle.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 show

2-291



See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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updateEgoGeometry
Update geometric properties of ego bodies

Syntax
updateEgoGeometry(capsuleListObj,egoIDs,geomStruct)
status = updateEgoGeometry(capsuleListObj,egoIDs,geomStruct)

Description
updateEgoGeometry(capsuleListObj,egoIDs,geomStruct) updates geometry parameters for
the specified ego bodies in the capsule list. If a specified ego ID does not already exist, the function
adds a new ego body with that ID to the list.

status = updateEgoGeometry(capsuleListObj,egoIDs,geomStruct) additionally returns
an indicator of whether an ego body is added, updated, or a duplicate.

Examples

Create and Modify Capsule-Based Ego Bodies

Add ego bodies to an environment using the dynamicCapsuleList object. Modify the properties of
the ego bodies. Remove an ego body from the environment. Visualize the states of all objects in the
environment at different timestamps.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for the object paths.

capsuleList = dynamicCapsuleList;
numSteps = capsuleList.MaxNumSteps;

Add Ego Bodies

Specify the states for the two ego bodies as a linear path from x = 0 m to x = 100 m. The two ego
bodies are separated by 5 m in opposite directions on the y-axis.

egoState = linspace(0,1,numSteps)'.*[100 0 0];
egoState1 = egoState+[0 5 0];
egoState2 = egoState+[0 -5 0];

Generate default poses and geometric structures for the two ego bodies using ego IDs.

[egoIDs,egoPoseStruct] = egoPose(capsuleList,[1 2]);
[egoIDs,egoGeomStruct] = egoGeometry(capsuleList,egoIDs);

Update Ego Bodies

Assign the states to the ego bodies.

egoPoseStruct(1).States = egoState1;
egoPoseStruct(2).States = egoState2;
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Increase the radius of the first ego body to 2 m.

egoGeomStruct(1).Geometry.Radius = 2;

update the ego bodies using the updateEgoPose and updateEgoGeometry object functions.

updateEgoPose(capsuleList,egoIDs,egoPoseStruct);
updateEgoGeometry(capsuleList,egoIDs,egoGeomStruct);

Visualize the ego bodies.

show(capsuleList,'TimeStep',1:numSteps);
axis equal

Remove Ego Body

Remove the first ego body from the capsule list by specifying its ID.

removeEgo(capsuleList,1);

Visualize the ego bodies again.

show(capsuleList,'TimeStep',1:numSteps);
axis equal
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Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

egoIDs — IDs of ego bodies to update
vector of positive integers

IDs of ego bodies to update, specified as a vector of positive integers.

geomStruct — Geometry parameters for ego bodies
structure | structure array

Geometry parameters for ego bodies, specified as a structure or structure array, where each
structure contains the fields of the structure in the Geometry field of the ego body to be updated.
The fields of this structure depend on whether you are using a dynamicCapsuleList or
dynamicCapsuleList3D object.
Data Types: struct

Output Arguments
status — Result of updating ego bodies
N-element column vector
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Result of updating ego bodies, specified as N-element column vector of ones, zeros, and negative
ones. N is the number of ego bodies specified in the egoIDs argument. Each value indicates whether
the body is removed (1), not found (0), or a duplicate (-1). If you specify the same ego ID multiple
times in the egoIDs input argument, then all entries besides the last are marked as a duplicate.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | show | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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updateEgoPose
Update states of ego bodies

Syntax
updateEgoPose(capsuleListObj,egoIDs,poseStruct)
status = updateEgoPose(capsuleListObj,egoIDs,poseStruct)

Description
updateEgoPose(capsuleListObj,egoIDs,poseStruct) updates the states of the specified ego
bodies in the capsule list. If a specified ego ID does not already exist, the function adds a new ego
body with that ID to the list.

status = updateEgoPose(capsuleListObj,egoIDs,poseStruct) returns an indicator of
whether an ego body is added, updated, or a duplicate.

Examples

Build Ego Body Paths and Check for Collisions with Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0m to x =
100m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(3));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis.. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0];
obsState2 = states + [0 -5 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])

2 Classes

2-298



Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduces the radius of the first obstacle to 0.5 m, and
change the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y 
     zeros(numSteps,1)]; % theta

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle, which the
display highlights in red. Notice that collisions between the obstacles are not checked.

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])
xlabel("X (m)")
ylabel("Y (m)")
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Programmatically check for collisions by using the checkCollision object function. The function
returns a vector of logical values that indicates the status of each time step. The vector is transposed
for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)]; % theta

2 Classes

2-300



updateEgoPose(obsList,1,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

egoIDs — IDs of ego bodies to update
vector of positive integers

IDs of ego bodies to update, specified as a vector of positive integers.

poseStruct — States for ego bodies
structure | structure array

States for ego bodies, specified as a structure array or structure array, where each structure contains
the fields of the structure in the Geometry field of the ego body to be updated. Each element of the
structure array contains a matrix of states for each ego body. The state matrix size depends on
whether you are using a dynamicCapsuleList or dynamicCapsuleList3D object.
Data Types: struct
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Output Arguments
status — Result of updating ego bodies
N-element column vector

Result of updating ego bodies, specified as N-element column vector of ones, zeros, and negative
ones. N is the number of ego bodies specified in the egoIDs argument. Each value indicates whether
the body is updated (1), not found (0), or a duplicate (-1). If you specify the same ego ID multiple
times in the egoIDs input argument, then all entries besides the last are marked as a duplicate.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | show | updateEgoGeometry |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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updateObstacleGeometry
Update geometric properties of obstacles

Syntax
updateObstacleGeometry(capsuleListObj,obstacleIDs,geomStruct)
status = updateObstacleGeometry(capsuleListObj,obstacleIDs,geomStruct)

Description
updateObstacleGeometry(capsuleListObj,obstacleIDs,geomStruct) updates geometry
parameters for the specified obstacles in the capsule list. If a specified obstacle ID does not already
exist, the function adds a new obstacle with that ID to the list.

status = updateObstacleGeometry(capsuleListObj,obstacleIDs,geomStruct) returns
an indicator of whether an obstacle is added, updated, or a duplicate.

Examples

Build Ego Body Paths and Check for Collisions with Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0m to x =
100m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(3));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis.. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0];
obsState2 = states + [0 -5 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduces the radius of the first obstacle to 0.5 m, and
change the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y 
     zeros(numSteps,1)]; % theta

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle, which the
display highlights in red. Notice that collisions between the obstacles are not checked.

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])
xlabel("X (m)")
ylabel("Y (m)")
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Programmatically check for collisions by using the checkCollision object function. The function
returns a vector of logical values that indicates the status of each time step. The vector is transposed
for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)]; % theta
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updateEgoPose(obsList,1,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

obstacleIDs — IDs of obstacles to update
vector of positive integers

IDs of obstacles to update, specified as a vector of positive integers.

geomStruct — Geometry parameters for ego bodies
structure | structure array

Geometry parameters for ego bodies, specified as a structure or structure array, where each
structure contains the fields of the structure in the Geometry field of the obstacle to be updated.. The
fields of this structure depend on whether you are using a dynamicCapsuleList or
dynamicCapsuleList3D object.
Data Types: struct
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Output Arguments
status — Result of updating obstacles
N-element column vector

Result of updating obstacles, specified as N-element column vector of ones, zeros, and negative ones.
N is the number of obstacles specified in the obstacleIDs argument. Each value indicates whether
the obstacle is removed (1), not found (0), or a duplicate (-1). If you specify the same obstacle ID
multiple times in the obstacleIDs input argument, then all entries besides the last are marked as a
duplicate.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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updateObstaclePose
Update states of obstacles

Syntax
updateObstaclePose(capsuleListObj,obstacleIDs,poseStruct)
status = updateObstaclePose(capsuleListObj,obstacleIDs,poseStruct)

Description
updateObstaclePose(capsuleListObj,obstacleIDs,poseStruct) updates the states of the
specified obstacles in the capsule list. If a specified obstacle ID does not already exist, the function
adds a new ego body with that ID to the list.

status = updateObstaclePose(capsuleListObj,obstacleIDs,poseStruct) returns an
indicator of whether an obstacle is added, updated, or a duplicate.

Examples

Build Ego Body Paths and Check for Collisions with Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0m to x =
100m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(3));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis.. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0];
obsState2 = states + [0 -5 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

show(obsList,"TimeStep",[1:numSteps]);
ylim([-20 20])
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduces the radius of the first obstacle to 0.5 m, and
change the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y 
     zeros(numSteps,1)]; % theta

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle, which the
display highlights in red. Notice that collisions between the obstacles are not checked.

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])
xlabel("X (m)")
ylabel("Y (m)")
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Programmatically check for collisions by using the checkCollision object function. The function
returns a vector of logical values that indicates the status of each time step. The vector is transposed
for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)]; % theta
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updateEgoPose(obsList,1,egoCapsule1);

show(obsList,"TimeStep",[1:numSteps],"ShowCollisions",1);
ylim([-20 20])

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList object | dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList or dynamicCapsuleList3D object.

obstacleIDs — IDs of obstacles to update
vector of positive integers

IDs of obstacles to update, specified as a vector of positive integers.

poseStruct — States for obstacles
structure | structure array

States for ego bodies, specified as a structure or structure array, where each structure contains the
fields of the structure in the Geometry field of the obstacle to be updated. Each element of the
structure array contains a matrix of states for each ego body. The state matrix size depends on
whether you are using a dynamicCapsuleList or dynamicCapsuleList3D object.
Data Types: struct
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Output Arguments
status — Result of updating obstacles
N-element column vector

Result of updating obstacles, specified as N-element column vector of ones, zeros, and negative ones.
N is the number of obstacles specified in the obstacleIDs argument. Each value indicates whether
the obstacle is removed (1), not found (0), or a duplicate (-1). If you specify the same obstacle ID
multiple times in the obstacleIDs input argument, then all entries besides the last are marked as a
duplicate.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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dynamicCapsuleList3D
Dynamic capsule-based obstacle list

Description
The dynamicCapsuleList3D object manages two lists of capsule-based collision objects in 3-D
space. Collision objects are separated into two lists, ego bodies and obstacles. For ego bodies and
obstacles in 2-D, see the dynamicCapsuleList object.

Each collision object in the two lists has three key elements:

• ID –– Integer that identifies each object, stored in the EgoIDs property for ego bodies and the
ObstacleIDs property for obstacles.

• States –– Location and orientation of the object as an M-by-6 matrix, where each row is of form [x
y z qW qX qY qZ], and M is the number of states along the path of the object in the world
frame. The list of states assumes each state is separated by a fixed time interval. xyz-positions are
in meters, and the orientation is a four-element quaternion vector. The default local origin is
located at the center of the left hemisphere of the capsule.

• Geometry –– Size of the capsule-based object based on the specified length and radius. The radius
applies to the spherical ends, and the length applies to the cylinder length. To shift the capsule
geometry and local origin relative to the default origin point, specify a 4-by-4 transform relative to
the local frame of the capsule. To keep the default transform, specify eye(4).

Use the object functions to dynamically add, remove, and update the geometries and states of the
various objects in your environment. To add an ego body, see the addEgo object function. To add an
obstacle, see the addObstacle object function.
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After specifying all the object paths, validate the ego-body paths and check for collisions with
obstacles at every step using the checkCollision object function. The function only checks if an
ego body collides with an obstacle, ignoring collisions between only obstacles or only ego bodies.

Creation
Syntax
obstacleList = dynamicCapsuleList3D

Description

obstacleList = dynamicCapsuleList3D creates a dynamic capsule-based obstacle list with no
ego bodies or obstacles. To begin building an obstacle list, use the addEgo or addObstacle object
functions.

Properties
MaxNumSteps — Maximum number of time steps in obstacle list
31 (default) | positive integer

Maximum number of time steps in the obstacle list, specified as a positive integer. The number of
steps determines to the maximum length of the States field for a specific ego body or obstacle.
Data Types: double

EgoIDs — List of IDs for ego bodies
vector of positive integers

This property is read-only.

List of identifiers for ego bodies, returned as a vector of positive integers.
Data Types: double

ObstacleIDs — IDs for obstacles
vector of positive integers

This property is read-only.

List of identifiers for obstacles, returned as a vector of positive integers.
Data Types: double

NumObstacles — Number of obstacles in list
integer

This property is read-only.

Number of obstacles in list, returned as an integer.
Data Types: double

NumEgos — Number of ego bodies in list
integer
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This property is read-only.

Number of ego bodies in list, returned as an integer.
Data Types: double

Object Functions
addEgo Add ego bodies to 3D capsule list
addObstacle Add obstacles to 3-D capsule list
checkCollision Check for collisions between ego bodies and obstacles
egoGeometry Geometric properties of ego bodies
egoPose Poses of ego bodies
obstacleGeometry Geometric properties of obstacles
obstaclePose Poses of obstacles
removeEgo Remove ego bodies from capsule list
removeObstacle Remove obstacles from capsule list
show Display ego bodies and obstacles in environment
updateEgoGeometry Update geometric properties of ego bodies
updateEgoPose Update states of ego bodies
updateObstacleGeometry Update geometric properties of obstacles
updateObstaclePose Update states of obstacles

Examples

Build 3-D Ego Body Paths and Check for Collisions with 3-D Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList3D object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList3D object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList3D;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0 m to x =
100 m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(4));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];
states = [states ones(numSteps,2) zeros(numSteps,2)];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",1:numSteps);
ylim([-20 20])
zlim([-5 20])
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view(-45,25)
hold on

Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0 0 0 0 0];
obsState2 = states + [0 -5 0 0 0 0 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

cla
show(obsList,"TimeStep",1:numSteps);
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduce the radius of the first obstacle to 0.5 m, and change
the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y
     zeros(numSteps,1) ... % z
     ones(numSteps,2) zeros(numSteps,2)]; % quaternion                               % quaternion

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle occur, which
the display highlights in red. Notice that collisions between the obstacles are not checked.

cla
show(obsList,"TimeStep",1:numSteps,"ShowCollisions",1);
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Programmatically check for collisions bu using the checkCollision object function. The function
returns a vector of logical values that indicates the collision status at each time step. The vector is
transposed for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)... % z
    ones(numSteps,2) zeros(numSteps,2)]; %quaternion                                  % quaternion
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updateEgoPose(obsList,1,egoCapsule1);

cla
show(obsList,"TimeStep",1:numSteps,"ShowCollisions",1);

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dynamicCapsuleList

Functions
addEgo | addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose
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Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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addEgo
Add ego bodies to 3D capsule list

Syntax
addEgo(capsuleListObj,egoStruct)
status = addEgo(capsuleListObj,egoStruct)

Description
addEgo(capsuleListObj,egoStruct) adds one or more ego bodies to the 3-D dynamic capsule
list with the specified ID, state, and geometry values given in egoStruct.

status = addEgo(capsuleListObj,egoStruct) additionally returns an indicator of whether
each specified ego body was added, updated, or a duplicate.

Examples

Build 3-D Ego Body Paths and Check for Collisions with 3-D Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList3D object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList3D object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList3D;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0 m to x =
100 m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(4));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];
states = [states ones(numSteps,2) zeros(numSteps,2)];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",1:numSteps);
ylim([-20 20])
zlim([-5 20])
view(-45,25)
hold on
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0 0 0 0 0];
obsState2 = states + [0 -5 0 0 0 0 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

cla
show(obsList,"TimeStep",1:numSteps);
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduce the radius of the first obstacle to 0.5 m, and change
the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y
     zeros(numSteps,1) ... % z
     ones(numSteps,2) zeros(numSteps,2)]; % quaternion                               % quaternion

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle occur, which
the display highlights in red. Notice that collisions between the obstacles are not checked.

cla
show(obsList,"TimeStep",1:numSteps,"ShowCollisions",1);
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Programmatically check for collisions bu using the checkCollision object function. The function
returns a vector of logical values that indicates the collision status at each time step. The vector is
transposed for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)... % z
    ones(numSteps,2) zeros(numSteps,2)]; %quaternion                                  % quaternion
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updateEgoPose(obsList,1,egoCapsule1);

cla
show(obsList,"TimeStep",1:numSteps,"ShowCollisions",1);

Input Arguments
capsuleListObj — Dynamic capsule list
dynamicCapsuleList3D object

Dynamic capsule list, specified as a dynamicCapsuleList3D object.

egoStruct — Ego body parameters
structure | structure array

Ego body parameters, specified as an N-element structure or a structure array, where N is the
number of added ego bodies. The fields of each structure define the ID, geometry, and states of an
ego body:

• ID –– Integer that identifies each object. Stored in the EgoIDs property of the
dynamicCapsuleList3D object specified by the capsuleListObj argument.

• States –– Location and orientation of the object as an M-by-6 matrix, where each row is of form
[x y z qW qX qY qZ], and M is the number of states along the path of the object in the world
frame. The list of states assumes each state is separated by a fixed time interval. xyz-positions are
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in meters, and the orientation is a four-element quaternion vector. The default local origin is
located at the center of the left hemisphere of the capsule.

• Geometry –– Structure with fields Length, Radius, and FixedTransform. These fields define
the size of the capsule-based object using the specified length for the cylinder and hemisphere
radius for the end caps. To shift the capsule geometry from the default origin, specify the
FixedTransform field as a fixed transform relative to the local frame of the capsule. To keep the
default capsule origin, specify the transform as eye(4).

Output Arguments
status — Result of adding ego bodies
N-element column vector

Result of adding ego bodies, returned as a N-element column vector of ones, zeros, and negative
ones. N is the number of ego bodies specified in the egoStruct argument. Each value indicates
whether the associated body is added (1), updated (0), or a duplicate (-1). While adding ego bodies, if
multiple structures with the same body ID are found in the structure array egoStruct, then the
function marks the previous entry as duplicate and ignores it.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addObstacle | checkCollision | egoGeometry | egoPose | obstacleGeometry |
obstaclePose | removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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addObstacle
Add obstacles to 3-D capsule list

Syntax
addObstacle(capsuleListObj,obstacleStruct)
status = addObstacle(capsuleListObj,obstacleStruct)

Description
addObstacle(capsuleListObj,obstacleStruct) adds one or more obstacles to the 3-D
dynamic capsule list with the specified ID, state, and geometry values given in obstacleStruct.

status = addObstacle(capsuleListObj,obstacleStruct) additionally returns an indicator
of whether each specified obstacle was added, updated, or a duplicate.

Examples

Build 3-D Ego Body Paths and Check for Collisions with 3-D Obstacles

Build an ego body path and maintain obstacle states using the dynamicCapsuleList3D object.
Visualize the states of all objects in the environment at different timestamps. Validate the path of the
ego body by checking for collisions with obstacles in the environment.

Create the dynamicCapsuleList3D object. Extract the maximum number of steps to use as the
number of time stamps for your object paths.

obsList = dynamicCapsuleList3D;
numSteps = obsList.MaxNumSteps;

Add Ego Body

Define an ego body by specifying the ID, geometry, and state together in a structure. The capsule
geometry has a length of 3 m and radius of 1 m. Specify the state as a linear path from x = 0 m to x =
100 m.

egoID1 = 1;
geom = struct("Length",3,"Radius",1,"FixedTransform",eye(4));
states = linspace(0,1,obsList.MaxNumSteps)'.*[100 0 0];
states = [states ones(numSteps,2) zeros(numSteps,2)];

egoCapsule1 = struct('ID',egoID1,'States',states,'Geometry',geom);
addEgo(obsList,egoCapsule1);

show(obsList,"TimeStep",1:numSteps);
ylim([-20 20])
zlim([-5 20])
view(-45,25)
hold on
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Add Obstacles

Specify states for two obstacles that are separated from the ego body by 5 m in opposite directions on
the y-axis. Assume the obstacles have the same geometry geom as the ego body.

obsState1 = states + [0 5 0 0 0 0 0];
obsState2 = states + [0 -5 0 0 0 0 0];

obsCapsule1 = struct('ID',1,'States',obsState1,'Geometry',geom);
obsCapsule2 = struct('ID',2,'States',obsState2,'Geometry',geom);

addObstacle(obsList,obsCapsule1);
addObstacle(obsList,obsCapsule2);

cla
show(obsList,"TimeStep",1:numSteps);
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Update Obstacles

Alter your obstacle locations and geometry dimensions over time. Use the previously generated
structure, modify the fields, and update the obstacles using the updateObstacleGeometry and
updateObstaclePose object functions. Reduce the radius of the first obstacle to 0.5 m, and change
the path to move it towards the ego body.

obsCapsule1.Geometry.Radius = 0.5;

obsCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
     linspace(5,-4,numSteps)' ... % y
     zeros(numSteps,1) ... % z
     ones(numSteps,2) zeros(numSteps,2)]; % quaternion                               % quaternion

updateObstacleGeometry(obsList,1,obsCapsule1);
updateObstaclePose(obsList,1,obsCapsule1);

Check for Collisions

Visualize the new paths. Show where collisions between the ego body and an obstacle occur, which
the display highlights in red. Notice that collisions between the obstacles are not checked.

cla
show(obsList,"TimeStep",1:numSteps,"ShowCollisions",1);

2 Classes

2-332



Programmatically check for collisions bu using the checkCollision object function. The function
returns a vector of logical values that indicates the collision status at each time step. The vector is
transposed for display purposes.

collisions = checkCollision(obsList)'

collisions = 1x31 logical array

   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0

To validate paths with a large number of steps, use the any function on the vector of collision values.

if any(collisions)
    disp("Collision detected.")
end

Collision detected.

Update Ego Path

Specify a new path for the ego body. Visualize the paths again, displaying collisions.

egoCapsule1.States = ...
    [linspace(0,100,numSteps)' ... % x
    3*sin(linspace(0,2*pi,numSteps))' ... % y
    zeros(numSteps,1)... % z
    ones(numSteps,2) zeros(numSteps,2)]; %quaternion                                  % quaternion
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updateEgoPose(obsList,1,egoCapsule1);

cla
show(obsList,"TimeStep",1:numSteps,"ShowCollisions",1);

Input Arguments
capsuleListObj — Dynamic capsule-list
dynamicCapsuleList3D object

Dynamic capsule-list, specified as a dynamicCapsuleList3D object.

Output Arguments
obstacleStruct — Obstacle parameters
structure | structure array

Obstacle parameters, specified as an N-element structure or a structure array, where N is the number
of added ego bodies. The fields of each structure define the ID, geometry, and states of an obstacle:

• ID –– Integer that identifies each object. Stored in the ObstacleIDs property of the
dynamicCapsuleList3D object specified by the capsuleListObj argument.

• States –– Location and orientation of the object as an M-by-6 matrix, where each row is of form
[x y z qW qX qY qZ], and M is the number of states along the path of the object in the world

2 Classes

2-334



frame. The list of states assumes each state is separated by a fixed time interval. xyz-positions are
in meters, and the orientation is a four-element quaternion vector. The default local origin is
located at the center of the left hemisphere of the capsule.

• Geometry –– Structure with fields Length, Radius, and FixedTransform. These fields define
the size of the capsule-based object using the specified length for the cylinder and hemisphere
radius for the end caps. To shift the capsule geometry from the default origin, specify the
FixedTransform field as a fixed transform relative to the local frame of the capsule. To keep the
default capsule origin, specify the transform as eye(4).

status — Result of adding obstacles
N-element column vector

Result of adding obstacles, returned as a N-element column vector of ones, zeros, and negative ones.
N is the number of obstacles specified in the obstacleStruct argument. Each value indicates
whether the associated body is added (1), updated (0), or a duplicate (-1). While adding obstacles, if
multiple structures with the same body ID are found in the structure array obstaclesStruct, then
the function marks the previous entry as duplicate and ignores it.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
dynamicCapsuleList | dynamicCapsuleList3D

Functions
addEgo | checkCollision | egoGeometry | egoPose | obstacleGeometry | obstaclePose |
removeEgo | removeObstacle | show | updateEgoGeometry | updateEgoPose |
updateObstacleGeometry | updateObstaclePose

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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ekfSLAM
Perform simultaneous localization and mapping using extended Kalman filter

Description
The ekfSLAM object performs simultaneous localization and mapping (SLAM) using an extended
Kalman filter (EKF). It takes in observed landmarks from the environment and compares them with
known landmarks to find associations and new landmarks. Use the associations to correct the state
and state covariance. The new landmarks are augmented in the state vector.

Creation

Syntax
slamObj = ekfSLAM
slamObj = ekfSLAM(Name,Value)
slamObj = ekfSLAM('MaxNumLandmark',N,Name,Value)
slamObj = ekfSLAM('MaxNumLandmark',N,‘MaxNumPoseStored’,M,Name,Value)

Description

slamObj = ekfSLAM creates an EKF SLAM object with default properties.

slamObj = ekfSLAM(Name,Value) sets properties using one or more name-value pair arguments
in addition to any combination of input arguments from previous syntaxes. Any unspecified properties
have default values.

slamObj = ekfSLAM('MaxNumLandmark',N,Name,Value) specifies an upper bound on the
number of landmarks N allowed in the state vector when generating code. This limit on the number of
landmarks applies only when generating code.

slamObj = ekfSLAM('MaxNumLandmark',N,‘MaxNumPoseStored’,M,Name,Value) specifies
the maximum size of the pose history M along with the maximum number of landmarks N in the state
vector while generating code. These limits apply only when generating code.

Properties
You cannot change the value of the properties State, StateCovariance, StateTransitionFcn, and
MaxNumLandmark after the object is created. Set the value of these properties as a default or while
creating the object.

State — State vector
[0; 0; 0] (default) | M-element column vector

State vector, specified as an M-element column vector.
Data Types: single | double
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StateCovariance — State estimation error covariance
eye(3) (default) | M-by-M matrix

State estimation error covariance, specified as an M-by-M matrix. M is the number of states in the
state vector.
Data Types: single | double

StateTransitionFcn — State transition function
nav.algs.velocityMotionModel (default) | function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k-1. The function can take additional input parameters,
such as control inputs or time step size.

The function also calculates the Jacobians with respect to the current pose and controller input. If not
specified, the Jacobians are computed using numerical differencing at each call to the predict
function. This computation can increase processing time and numerical inaccuracy.

The function considers nonadditive process noise, and should have this signature:

[pose(k),jacPose,jacControl] =
StateTransitionFcn(pose(k-1),controlInput,parameters)

• pose(k) is the estimated pose at time k.
• jacPose is the Jacobian of StateTransitionFcn with respect to pose(k-1).
• jacControl is the Jacobian of StateTransitionFcn with respect to controlInput.
• controlInput is the input for propagating the state.
• parameters are any additional arguments required by the state transition function.

Data Types: function_handle

MeasurementFcn — Measurement function
nav.algs.rangeBearingMeasurement (default) | function handle

Measurement function, specified as a function handle. This function calculates an N-element
measurement vector for an M-element state vector.

The function also calculates the Jacobians with respect to the current pose and landmark position. If
not specified, the Jacobians are computed using numerical differencing at each call to the correct
function. This computation can increase processing time and numerical inaccuracy.

The function considers additive measurement noise, and should have this signature:

[measurements(k),jacPose,jacLandmarks] = MeasurementFcn(pose(k),landmarks)

• pose(k) is the estimated pose at time k.
• measurements(k) is the estimated measurement at time k.
• landmarks are the positions of the landmarks.
• jacPose is the Jacobian of MeasurementFcn with respect to pose(k).
• jacLandmarks is the Jacobian of MeasurementFcn with respect to landmarks.

Data Types: function_handle
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InverseMeasurementFcn — Inverse measurement function
nav.algs.rangeBearingInverseMeasurement (default) | function handle

Inverse measurement function, specified as a function handle. This function calculates the landmark
position as an M-element state vector for an N-element measurement vector.

The function also calculates the Jacobians with respect to the current pose and measurement. If not
specified, the Jacobians are computed using numerical differencing at each call to the correct
function. This computation can increase processing time and numerical inaccuracy.

The function should have this signature:

[landmarks(k),jacPose,jacMeasurements] =
InverseMeasurementFcn(pose(k),measurements)

• pose(k) is the estimated pose at time k.
• landmarks(k) is the landmark position at time k.
• measurements are the observed landmarks at time k.
• jacPose is the Jacobian of InverseMeasurementFcn with respect to pose(k).
• jacMeasurements is the Jacobian of InverseMeasurementFcn with respect to measurements.

Data Types: function_handle

DataAssociationFcn — Data association function
nav.algs.associateMaxLikelihood (default) | function handle

Data association function, specified as a function handle. This function associates the measurements
with the landmarks already available in the state vector. The function may take additional input
parameters.

The function should have this signature:

[associations,newLandmarks] =
DataAssociationFcn(knownLandmarks,knownLandmarksCovariance,observedLandmarks,
observedLandmarksCovariance,parameters)

• knownLandmarks are known landmarks in the map.
• knownLandmarksCovariance is the covariance of knownLandmarks.
• observedLandmarks are the observed landmarks in the environment.
• observedLandmarksCovariance is the covariance of observedLandmarks.
• parameters are any additional arguments required.
• associations is a list of associations from knownLandmarks to observedLandmarks.
• newLandmarks are the indices of observedLandmarks that qualify as new landmarks.

Data Types: function_handle

ProcessNoise — Process noise covariance
eye(2) (default) | W-by-W matrix

Process noise covariance, specified as a W-by-W matrix. W is the number of process noise terms.
Data Types: single | double
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MaxAssociationRange — Maximum range for landmarks to be checked for association
inf (default) | positive integer

Maximum range for the landmarks to be checked for association, specified as a positive integer.
Data Types: single | double

MaxNumLandmark — Maximum number of landmarks in state vector
inf (default) | positive integer

Maximum number of landmarks in the state vector, specified as a positive integer.
Data Types: single | double

MaxNumPoseStored — Maximum size of pose history
inf (default) | positive integer

Maximum size of pose history, specified as a positive integer.
Data Types: single | double

Object Functions
copy Create deep copy of EKF SLAM object
correct Correct state and state error covariance
landmarkInfo Retrieve landmark information
poseHistory Retrieve corrected and predicted pose history
predict Predict state and state error covariance
removeLandmark Remove landmark from state vector
reset Reset state and state estimation error covariance

Examples

Perform Landmark SLAM Using Extended Kalman Filter

Load a race track data set that contains the initial vehicle state, initial vehicle state covariance,
process noise covariance, control input, time step size, measurement, measurement covariance, and
validation gate values.

load("racetrackDataset.mat","initialState","initialStateCovariance", ...
     "processNoise","controllerInputs","timeStep", ...
     "measurements","measCovar","validationGate");

Create an ekfSLAM object with initial state, initial state covariance, and process noise.

ekfSlamObj = ekfSLAM("State",initialState, ...
                     "StateCovariance",initialStateCovariance, ...
                     "ProcessNoise",processNoise);

Initialize a variable to store the pose.

storedPose = nan(size(controllerInputs,1)+1,3);
storedPose(1,:) = ekfSlamObj.State(1:3);
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Predict the state using the control input and time step size for the state transition function. Then,
correct the state using the data of the observed landmarks, measurement covariance, and validation
gate for the data association function.

for count = 1:size(controllerInputs,1)
    % Predict the state
    predict(ekfSlamObj,controllerInputs(count,:),timeStep);
 
    % Get the landmarks in the environment
    observedLandmarks = measurements{count};
 
    % Correct the state
    if ~isempty(observedLandmarks)
        correct(ekfSlamObj,observedLandmarks, ...
                measCovar,validationGate);
    end
  
    % Log the estimated pose
    storedPose(count+1,:) = ekfSlamObj.State(1:3);
end

Visualize the created map.

fig = figure;
figAx = axes(fig);
axis equal
grid minor
hold on
plot(figAx,storedPose(:,1),storedPose(:,2),"g.-")
landmarks = reshape(ekfSlamObj.State(4:end),2,[])';
plot(figAx,landmarks(:,1),landmarks(:,2),"m+")
plot(figAx,storedPose(1,1),storedPose(1,2),"k*")
plot(figAx,storedPose(end,1),storedPose(end,2),"rd")
legend("Robot trajectory","Landmarks","Start","End")
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Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
lidarSLAM

Functions
copy | correct | landmarkInfo | poseHistory | predict | removeLandmark | reset

Topics
“EKF-Based Landmark SLAM”
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copy
Create deep copy of EKF SLAM object

Syntax
newSlamObj = copy(slamObj)

Description
newSlamObj = copy(slamObj) creates a deep copy of slamObj with the same properties. Any
changes made to newSlamObj are not reflected in slamObj.

Examples

Remove Landmark from ekfSLAM Object

Specify the initial vehicle state.

initialState = [1; -2; 0.1];

Specify the initial landmark positions.

landmarkPosition = [15.8495; -12.9496;
                    25.2455; -15.4705;
                    37.5880;   3.1023;
                    16.5690;   2.7466];

Specify the initial vehicle state covariance.

initialStateCovar = diag([0.1*ones(1,3) 1.1*ones(1,8)]);

Create an ekfSLAM object with initial state and initial state covariance.

ekfSlamObj = ekfSLAM('State',[initialState; landmarkPosition], ...
                     'StateCovariance',initialStateCovar);
landmarkInfo(ekfSlamObj)

ans=4×3 table
    landmark number    landmark state index    landmark position
    _______________    ____________________    _________________

           1                  4     5           15.85    -12.95 
           2                  6     7          25.245    -15.47 
           3                  8     9          37.588    3.1023 
           4                 10    11          16.569    2.7466 

Create a deep copy of the ekfSLAM object.

newEkfSlamObj = copy(ekfSlamObj);

Specify the landmark number to be removed.
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removeLandmark(newEkfSlamObj,3);
landmarkInfo(newEkfSlamObj)

ans=3×3 table
    landmark number    landmark state index    landmark position
    _______________    ____________________    _________________

           1                  4    5            15.85    -12.95 
           2                  6    7           25.245    -15.47 
           3                  8    9           16.569    2.7466 

Input Arguments
slamObj — EKF SLAM object
ekfSLAM object

EKF SLAM object, specified as an ekfSLAM object.

Output Arguments
newSlamObj — Copy of EKF SLAM object
ekfSLAM object

Copy of the EKF SLAM object, returned as an ekfSLAM object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
ekfSLAM | lidarSLAM

Functions
correct | landmarkInfo | poseHistory | predict | removeLandmark | reset
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correct
Correct state and state error covariance

Syntax
[associations,newLandmark] = correct(slamObj,measurement,
measurementCovariance)
[associations,newLandmark] = correct(slamObj,measurement,
measurementCovariance,varargin)

Description
[associations,newLandmark] = correct(slamObj,measurement,
measurementCovariance) corrects the state and its associated state covariance based on the
measurement and measurementCovariance at the current time step. correct uses the data
association function specified in the DataAssociationFcn property of the ekfSLAM object, slamObj, to
associate the measurement to landmarks and extract new landmarks from the measurement.

The correct function uses these associations to correct the state and associated state covariance,
then augments the state with new landmarks.

[associations,newLandmark] = correct(slamObj,measurement,
measurementCovariance,varargin) passes all additional arguments specified in varargin to
the underlying DataAssociationFcn property of slamObj.

The first four inputs to the DataAssociationFcn property are the landmark position, landmark
position covariance, measurement, and measurement covariance, followed by all arguments in
varargin.

Examples

Perform Landmark SLAM Using Extended Kalman Filter

Load a race track data set that contains the initial vehicle state, initial vehicle state covariance,
process noise covariance, control input, time step size, measurement, measurement covariance, and
validation gate values.

load("racetrackDataset.mat","initialState","initialStateCovariance", ...
     "processNoise","controllerInputs","timeStep", ...
     "measurements","measCovar","validationGate");

Create an ekfSLAM object with initial state, initial state covariance, and process noise.

ekfSlamObj = ekfSLAM("State",initialState, ...
                     "StateCovariance",initialStateCovariance, ...
                     "ProcessNoise",processNoise);

Initialize a variable to store the pose.
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storedPose = nan(size(controllerInputs,1)+1,3);
storedPose(1,:) = ekfSlamObj.State(1:3);

Predict the state using the control input and time step size for the state transition function. Then,
correct the state using the data of the observed landmarks, measurement covariance, and validation
gate for the data association function.

for count = 1:size(controllerInputs,1)
    % Predict the state
    predict(ekfSlamObj,controllerInputs(count,:),timeStep);
 
    % Get the landmarks in the environment
    observedLandmarks = measurements{count};
 
    % Correct the state
    if ~isempty(observedLandmarks)
        correct(ekfSlamObj,observedLandmarks, ...
                measCovar,validationGate);
    end
  
    % Log the estimated pose
    storedPose(count+1,:) = ekfSlamObj.State(1:3);
end

Visualize the created map.

fig = figure;
figAx = axes(fig);
axis equal
grid minor
hold on
plot(figAx,storedPose(:,1),storedPose(:,2),"g.-")
landmarks = reshape(ekfSlamObj.State(4:end),2,[])';
plot(figAx,landmarks(:,1),landmarks(:,2),"m+")
plot(figAx,storedPose(1,1),storedPose(1,2),"k*")
plot(figAx,storedPose(end,1),storedPose(end,2),"rd")
legend("Robot trajectory","Landmarks","Start","End")
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Input Arguments
slamObj — EKF SLAM object
ekfSLAM object

EKF SLAM object, specified as an ekfSLAM object.

measurement — Measurements of landmarks in environment
N-by-K matrix

Measurements of the landmarks in the environment, specified as an N-by-K matrix. K is the
dimension of the measurement. N is the number of measurements.
Data Types: single | double

measurementCovariance — Covariance of measurements
K-element vector | N*K-by-N*K matrix

Covariance of the measurements, specified as a K-element vector or N*K-by-N*K matrix. K is the
dimension of the measurement. N is the number of measurements. When specified as a vector, the
same covariance value is used for all measurements.
Data Types: single | double

varargin — Variable-length input argument list
comma-separated list
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Variable-length input argument list, specified as a comma-separated list. This input is passed directly
into the DataAssociationFcn property of slamObj. When you call:

correct(slamObj,measurement,measurementCovariance,arg1,arg2)

MATLAB essentially calls the dataAssociationFcn as:

dataAssociationFcn(knownLandmarks,knownLandmarksCovariance, ... 
measurement,measurementCovariance,arg1,arg2)

Output Arguments
associations — List of associations of landmarks to measurements
P-by-2 matrix

List of associations of landmarks to measurements, returned as a P-by-2 matrix. P is the number of
associations. The first column of the matrix contains the indices of the associated landmarks, and the
second column contains the associated measurement indices.

newLandmark — List of indices of measurements that qualify as new landmarks
Q-element vector

List of indices of the measurements that qualify as new landmarks, returned as a Q-element vector. Q
is the number of measurements that qualify as new landmarks.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
ekfSLAM

Functions
landmarkInfo | poseHistory | predict | removeLandmark | reset
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landmarkInfo
Retrieve landmark information

Syntax
Info = landmarkInfo(slamObj)
Info = landmarkInfo(slamObj,landmarkIndex)

Description
Info = landmarkInfo(slamObj)retrieves landmark information from the ekfSLAM object as a
table that contains each landmark number along with its position and state index.

Info = landmarkInfo(slamObj,landmarkIndex) retrieves landmark information for only those
landmarks specified by landmarkIndex.

Examples

Retrieve All Landmark Information from ekfSLAM Object

Specify the initial vehicle state.

initialState = [1; -2; 0.1];

Specify the initial landmark positions.

landmarkPosition = [15.8495; -12.9496;
                    25.2455; -15.4705;
                    37.5880;   3.1023;
                    16.5690;   2.7466];

Specify the initial vehicle state covariance.

initialStateCovar = diag([0.1*ones(1,3) 1.1*ones(1,8)]);

Create an ekfSLAM object with initial state and initial state covariance.

ekfSlamObj = ekfSLAM('State',[initialState; landmarkPosition], ...
                     'StateCovariance',initialStateCovar)

ekfSlamObj = 
  ekfSLAM with properties:

                 State: [11x1 double]                    
       StateCovariance: [11x11 double]                   
        MaxNumLandmark: Inf                              
    StateTransitionFcn: @nav.algs.velocityMotionModel    
          ProcessNoise: [2x2 double]                     

           MeasurementFcn: @nav.algs.rangeBearingMeasurement           
    InverseMeasurementFcn: @nav.algs.rangeBearingInverseMeasurement    
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     DataAssociationFcn: @nav.algs.associateMaxLikelihood    
    MaxAssociationRange: Inf                                 

Get the information for all the landmarks.

info = landmarkInfo(ekfSlamObj)

info=4×3 table
    landmark number    landmark state index    landmark position
    _______________    ____________________    _________________

           1                  4     5           15.85    -12.95 
           2                  6     7          25.245    -15.47 
           3                  8     9          37.588    3.1023 
           4                 10    11          16.569    2.7466 

Input Arguments
slamObj — EKF SLAM object
ekfSLAM object

EKF SLAM object, specified as an ekfSLAM object.

landmarkIndex — Indices of landmarks for which to retrieve information
N-element column vector | N-by-2 matrix

Indices of landmarks for which to retrieve information, specified as an N-element column vector of
landmark numbers in the state vector or an N-by-2 matrix of exact positions of landmarks in the state
vector. N is the number of landmarks.
Data Types: single | double

Output Arguments
Info — Landmark information
table

Landmark information, returned as a table.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Classes

2-350



See Also
Objects
ekfSLAM

Functions
correct | poseHistory | predict | removeLandmark | reset
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poseHistory
Retrieve corrected and predicted pose history

Syntax
[correctedPose,predictedPose] = poseHistory(slamObj)

Description
[correctedPose,predictedPose] = poseHistory(slamObj) retrieves the corrected and
predicted pose history up to the current pose.

Note To use this function during code generation, you must specify the MaxNumPoseStored
property of the ekfSLAM object. Otherwise, this function returns an error.

Examples

Retrieve Pose History from ekfSLAM Object

Specify the initial vehicle state.

initialState = [1; -2; 0.1];

Specify the initial landmark positions.

landmarkPosition = [15.8495; -12.9496;
                    25.2455; -15.4705;
                    37.5880;   3.1023;
                    16.5690;   2.7466];

Specify the initial vehicle state covariance.

initialStateCovar = diag([0.1*ones(1,3) 1.1*ones(1,8)]);

Create an ekfSLAM object with initial state and initial state covariance.

ekfSlamObj = ekfSLAM('State',[initialState; landmarkPosition], ...
                     'StateCovariance',initialStateCovar);

Specify the control input and time step size for the state transition function.

velocity = [1 0];
timeStep = 0.25;

Call the predict function.

predict(ekfSlamObj,velocity,timeStep);

Specify the measurement and measurement covariance for the data association function.

2 Classes

2-352



measurement = [18.4500 -0.7354; 
               27.7362 -0.6071;
               36.9421  0.0386; 
               16.2765  0.1959];
measureCovar = [0.1^2 (1.0*pi/180)^2];

Call the correct function.

validationGate = 5.991;
associations = correct(ekfSlamObj,measurement, ...
                       measureCovar,validationGate);

Get the pose history.

[corrPose,predPose] = poseHistory(ekfSlamObj)

corrPose = 1×3

    1.1609   -1.9736    0.0981

predPose = 1×3

    1.2488   -1.9750    0.1000

Input Arguments
slamObj — EKF SLAM object
ekfSLAM object

EKF SLAM object, specified as an ekfSLAM object.

Output Arguments
correctedPose — Corrected poses
M-by-3 matrix

Corrected poses, returned as an M-by-3 matrix with rows of the form [X Y Yaw]. X and Y specify the
position in meters. Yaw specifies the orientation in radians.

predictedPose — Predicted poses
M-by-3 matrix

Predicted poses, returned as an M-by-3 matrix with rows of the form [X Y Yaw]. X and Y specify the
position in meters. Yaw specifies the orientation in radians.

Version History
Introduced in R2021b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
ekfSLAM

Functions
correct | landmarkInfo | predict | removeLandmark | reset

2 Classes

2-354



predict
Predict state and state error covariance

Syntax
predict(slamObj,controlInput)
predict(slamObj,controlInput,varargin)

Description
predict(slamObj,controlInput) predicts the state and state error covariance. predict uses
the StateTransitionFcn property of the ekfSLAM object, slamObj, and the controller input
controlInput to predict the state.

predict(slamObj,controlInput,varargin) passes all additional arguments specified in
varargin to the underlying StateTransitionFcn property of slamObj.

The first input to StateTransitionFcn is the pose from the previous time step, followed by all user-
defined arguments in varargin.

Examples

Perform Landmark SLAM Using Extended Kalman Filter

Load a race track data set that contains the initial vehicle state, initial vehicle state covariance,
process noise covariance, control input, time step size, measurement, measurement covariance, and
validation gate values.

load("racetrackDataset.mat","initialState","initialStateCovariance", ...
     "processNoise","controllerInputs","timeStep", ...
     "measurements","measCovar","validationGate");

Create an ekfSLAM object with initial state, initial state covariance, and process noise.

ekfSlamObj = ekfSLAM("State",initialState, ...
                     "StateCovariance",initialStateCovariance, ...
                     "ProcessNoise",processNoise);

Initialize a variable to store the pose.

storedPose = nan(size(controllerInputs,1)+1,3);
storedPose(1,:) = ekfSlamObj.State(1:3);

Predict the state using the control input and time step size for the state transition function. Then,
correct the state using the data of the observed landmarks, measurement covariance, and validation
gate for the data association function.

for count = 1:size(controllerInputs,1)
    % Predict the state
    predict(ekfSlamObj,controllerInputs(count,:),timeStep);
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    % Get the landmarks in the environment
    observedLandmarks = measurements{count};
 
    % Correct the state
    if ~isempty(observedLandmarks)
        correct(ekfSlamObj,observedLandmarks, ...
                measCovar,validationGate);
    end
  
    % Log the estimated pose
    storedPose(count+1,:) = ekfSlamObj.State(1:3);
end

Visualize the created map.

fig = figure;
figAx = axes(fig);
axis equal
grid minor
hold on
plot(figAx,storedPose(:,1),storedPose(:,2),"g.-")
landmarks = reshape(ekfSlamObj.State(4:end),2,[])';
plot(figAx,landmarks(:,1),landmarks(:,2),"m+")
plot(figAx,storedPose(1,1),storedPose(1,2),"k*")
plot(figAx,storedPose(end,1),storedPose(end,2),"rd")
legend("Robot trajectory","Landmarks","Start","End")
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Input Arguments
slamObj — EKF SLAM object
ekfSLAM object

EKF SLAM object, specified as a ekfSLAM object.

controlInput — Controller input required to propagate state
N-element vector

Controller input required to propagate the state from initial value to final value, specified as an N-
element vector.

Note The dimension of the process noise must be equal to the number of elements in
controlInput.

Data Types: single | double

varargin — Variable-length input argument list
comma-separated list

Variable-length input argument list, specified as a comma-separated list. This input is passed directly
into the StateTransitionFcn property of slamObj to evolve the state. When you call:

predict(slamObj,controlInput,arg1,arg2)

MATLAB essentially calls the stateTransitionFcn as:

stateTransitionFcn(pose(k-1),controlInput,arg1,arg2)

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
ekfSLAM

Functions
correct | landmarkInfo | poseHistory | removeLandmark | reset
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removeLandmark
Remove landmark from state vector

Syntax
removeLandmark(slamObj,landmarkIndex)

Description
removeLandmark(slamObj,landmarkIndex) removes the landmarks at the specified indices
landmarkIndex from the state vector, along with associated covariances from the state covariance
matrix.

Examples

Remove Landmark from ekfSLAM Object

Specify the initial vehicle state.

initialState = [1; -2; 0.1];

Specify the initial landmark positions.

landmarkPosition = [15.8495; -12.9496;
                    25.2455; -15.4705;
                    37.5880;   3.1023;
                    16.5690;   2.7466];

Specify the initial vehicle state covariance.

initialStateCovar = diag([0.1*ones(1,3) 1.1*ones(1,8)]);

Create an ekfSLAM object with initial state and initial state covariance.

ekfSlamObj = ekfSLAM('State',[initialState; landmarkPosition], ...
                     'StateCovariance',initialStateCovar);
landmarkInfo(ekfSlamObj)

ans=4×3 table
    landmark number    landmark state index    landmark position
    _______________    ____________________    _________________

           1                  4     5           15.85    -12.95 
           2                  6     7          25.245    -15.47 
           3                  8     9          37.588    3.1023 
           4                 10    11          16.569    2.7466 

Create a deep copy of the ekfSLAM object.

newEkfSlamObj = copy(ekfSlamObj);
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Specify the landmark number to be removed.

removeLandmark(newEkfSlamObj,3);
landmarkInfo(newEkfSlamObj)

ans=3×3 table
    landmark number    landmark state index    landmark position
    _______________    ____________________    _________________

           1                  4    5            15.85    -12.95 
           2                  6    7           25.245    -15.47 
           3                  8    9           16.569    2.7466 

Input Arguments
slamObj — EKF SLAM object
ekfSLAM object

EKF SLAM object, specified as an ekfSLAM object.

landmarkIndex — Indices of landmarks to remove
N-element column vector | N-by-2 matrix

Indices of the landmarks to remove, specified as an N-element column vector of landmark numbers in
the state vector or an N-by-2 matrix of the exact positions of landmarks in the state vector. N is the
number of landmarks to remove.
Data Types: single | double

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
ekfSLAM

Functions
correct | landmarkInfo | poseHistory | predict | reset
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reset
Reset state and state estimation error covariance

Syntax
reset(slamObj)

Description
reset(slamObj) resets the state and state estimation error covariance to their default values, and
resets the internal states.

Examples

Reset State and State Estimation Error Covariance in ekfSLAM Object

Specify the initial vehicle state.

initialState = [1; -2; 0.1];

Specify the initial vehicle state covariance.

initialStateCovar = 0.1*eye(3);

Create an ekfSLAM object with initial state and initial state covariance.

ekfSlamObj = ekfSLAM('State',initialState, ...
                     'StateCovariance',initialStateCovar);

Get the state and the state covariance from the ekfSLAM object.

ekfSlamObj.State

ans = 3×1

    1.0000
   -2.0000
    0.1000

ekfSlamObj.StateCovariance

ans = 3×3

    0.1000         0         0
         0    0.1000         0
         0         0    0.1000

Reset the state and state estimation error covariance to the default value.

reset(ekfSlamObj)
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Get the state and the state covariance from the ekfSLAM object.

ekfSlamObj.State

ans = 3×1

     0
     0
     0

ekfSlamObj.StateCovariance

ans = 3×3

     1     0     0
     0     1     0
     0     0     1

Input Arguments
slamObj — EKF SLAM object
ekfSLAM object

EKF SLAM object, specified as an ekfSLAM object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
ekfSLAM

Functions
correct | landmarkInfo | poseHistory | predict | removeLandmark
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factorIMU
Convert IMU readings to factor

Description
The factorIMU object converts raw IMU readings into constraints between poses, velocities, and
IMU biases for a factorGraph object.

Creation

Syntax
F = factorIMU(nodeID,GyroscopeReadings,AccelerometerReadings)
F = factorIMU(nodeID,GyroscopeReadings,AccelerometerReadings,imuparams)
F = factorIMU(nodeID,SampleRate,GyroscopeBiasNoise,AccelerometerBiasNoise,
GyroscopeNoise,AccelerometerNoise,GyroscopeReadings,AccelerometerReadings)
F = factorIMU( ___ ,Name=Value)

Description

F = factorIMU(nodeID,GyroscopeReadings,AccelerometerReadings) creates a
factorIMU object, F, with the specified node identification numbers property NodeID set to nodeID,
and with the gyroscope readings and accelerometer readings properties set to the values of their
corresponding arguments.

F = factorIMU(nodeID,GyroscopeReadings,AccelerometerReadings,imuparams)
specifies IMU parameters, such as sampling rate, gyroscope bias noise, and accelerometer bias noise,
as a factorIMUParameters object.

F = factorIMU(nodeID,SampleRate,GyroscopeBiasNoise,AccelerometerBiasNoise,
GyroscopeNoise,AccelerometerNoise,GyroscopeReadings,AccelerometerReadings)
creates a factorIMU object, F, with the specified node identification numbers property NodeID set
to nodeID, and with a sample rate, gyroscope bias noise, accelerometer bias noise, gyroscope noise,
accelerometer noise, gyroscope readings, and accelerometer readings set to their corresponding
values, respectively.

F = factorIMU( ___ ,Name=Value) specifies properties using one or more name-value arguments
in addition to all input arguments from the previous syntax.

Input Arguments

imuparams — Factor IMU parameters
factorIMUParameters object

Factor IMU parameters, specified as a factorIMUParameters object.
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Properties
NodeID — Node ID numbers
six-element row vector of integers

This property is read-only.

Node ID numbers, specified as a six-element row vector. The factorIMU object factor connects to
these nodes in the factor graph.

If there are no nodes in the factor graph with the specified ID, nodes with the specified IDs are
automatically created and added to the factor graph when this factor is added to the factor graph.

You must specify this property at object creation.

SampleRate — IMU sampling rate
numeric scalar greater than 100

This property is read-only.

IMU sampling rate, in Hz, specified as a numeric scalar greater than 100.

You must specify this property at object creation.

GyroscopeBiasNoise — Gyroscope bias noise covariance
3-by-3 matrix

This property is read-only.

Gyroscope bias noise covariance, specified as a 3-by-3 matrix.

You must specify this property at object creation.

AccelerometerBiasNoise — Accelerometer bias noise covariance
3-by-3 matrix

This property is read-only.

Accelerometer bias noise covariance, specified as a 3-by-3 matrix.

You must specify this property at object creation.

GyroscopeNoise — Gyroscope measurement noise covariance
3-by-3 matrix

This property is read-only.

Gyroscope measurement noise covariance, specified as a 3-by-3 matrix.

You must specify this property at object creation.

AccelerometerNoise — Accelerometer measurement noise covariance
3-by-3 matrix

This property is read-only.
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Accelerometer measurement noise covariance, specified as a 3-by-3 matrix.

You must specify this property at object creation.

GyroscopeReadings — Gyroscope readings
N-by-3 matrix

This property is read-only.

Gyroscope readings, specified as an N-by-3 matrix, where N is the number of readings. The specified
gyroscope readings are preintegrated into the factor. GyroscopeReadings and
AccelerometerReadings must have the same size.

You must specify this property at object creation.

AccelerometerReadings — Accelerometer readings
N-by-3 matrix

This property is read-only.

Accelerometer readings, specified as an N-by-3 matrix, where N is the number of readings. The
specified accelerometer readings are preintegrated into the factor. GyroscopeReadings and
AccelerometerReadings must have the same size.

You must specify this property at object creation.

ReferenceFrame — Reference frame for local coordinate system
"ENU" (default) | "NED"

Reference frame for the local coordinate system, specified as "ENU" (east-north-up) or "NED" (north-
east-down).
Data Types: string | char

SensorTransform — Transformation consisting of 3-D translation and rotation to transform
connecting pose nodes to initial IMU frame
se3() (default) | se3 object

Transformation consisting of 3-D translation and rotation to transform connecting pose nodes to the
initial IMU sensor reference frame, specified as an se3 object.

For example, if the connected pose nodes store camera poses in the initial camera sensor reference
frame, the sensor transform rotates and translates a pose in the initial camera sensor reference
frame to the initial IMU sensor reference frame. The initial sensor reference frame has the very first
sensor pose at its origin.

A sensor transform is unnecessary if the connecting pose nodes contain poses in the initial IMU
sensor reference frame. Otherwise, you must specify the sensor transform.

Object Functions
nodeType Get node type of node in factor graph
predict Predict pose and velocity of factor

Examples
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Add factorIMU Object to Factor Graph

Set up parameters such as the connected node IDs, sample rate, noise, and readings. Then create an
IMU factor with these parameters as arguments.

nodeID = [1,2,3,4,5,6];
sampleRate = 400; % Hz
gyroBiasNoise = 1.5e-9 * eye(3);
accelBiasNoise = diag([9.62e-9, 9.62e-9, 2.17e-8]);
gyroNoise = 6.93e-5 * eye(3);
accelNoise = 2.9e-6 * eye(3); 
gyroReadings = [ -0.0151    0.0299    0.0027
                -0.0079    0.0370   -0.0014
                -0.0320    0.0306    0.0035
                -0.0043    0.0340   -0.0066
                -0.0033    0.0331   -0.0011];
accelReadings = [   1.0666    0.0802    9.9586
                   1.1002    0.0199    9.6650
                   1.0287    0.3071   10.1864
                   0.9077   -0.2239   10.2989
                   1.2322    0.0174    9.8411];
  
f = factorIMU(nodeID, sampleRate, gyroBiasNoise, accelBiasNoise, ...
             gyroNoise, accelNoise, gyroReadings, accelReadings, ReferenceFrame="NED");

Create a default factor graph and add the factor to the graph using the addFactor function.

g = factorGraph;
addFactor(g,f);

Version History
Introduced in R2022a

References
[1] Forster, Christian, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. “On-Manifold

Preintegration for Real-Time Visual-Inertial Odometry.” IEEE Transactions on Robotics 33, no.
1 (February 2017): 1–21. https://doi.org/10.1109/TRO.2016.2597321.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph | factorIMUParameters | factorPoseSE2AndPointXY |
factorPoseSE3AndPointXYZ | factorGPS | factorTwoPoseSE2 | factorTwoPoseSE3 |
factorIMUBiasPrior | factorVelocity3Prior | factorPoseSE3Prior |
factorCameraSE3AndPointXYZ
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Functions
estimateGravityRotation | estimateGravityRotationAndPoseScale

Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
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factorIMUParameters
Factor IMU parameters

Description
Use a factorIMUParameters object to specify factor IMU parameters to a factorIMU object.

Creation
Syntax
params = factorIMUParameters
params = factorIMUParameters(Name=Value)

Description

params = factorIMUParameters returns a default factor IMU parameters object, params.

params = factorIMUParameters(Name=Value) specifies properties using one or more name-
value arguments.

Properties
SampleRate — IMU sampling rate
100 (default) | numeric scalar greater than or equal to 100

IMU sampling rate, in Hz, specified as a numeric scalar greater than or equal to 100.
Example: SampleRate=400
Data Types: single | double

GyroscopeBiasNoise — Gyroscope bias process noise covariance
eye(3) (default) | 3-by-3 matrix | three-element row vector | numeric scalar

Gyroscope bias process noise covariance, specified as a 3-by-3 matrix, three-element row vector, or
numeric scalar in (rad/s)2.
Example: GyroscopeBiasNoise=1.5e-9*eye(3)
Data Types: single | double

AccelerometerBiasNoise — Accelerometer bias process noise covariance
eye(3) (default) | 3-by-3 matrix | three-element row vector | numeric scalar

Accelerometer bias process noise covariance, specified as a 3-by-3 matrix, three-element row vector,
or numeric scalar in (m/s2)2.
Example: AccelerometerBiasNoise=diag([9.62e-9,9.62e-9,2.17e-8])
Data Types: single | double
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GyroscopeNoise — Gyroscope measurement noise covariance
eye(3) (default) | 3-by-3 matrix | three-element row vector | numeric scalar

Gyroscope measurement noise covariance, specified as a 3-by-3 matrix, three-element row vector, or
numeric scalar in (rad/s)2.
Example: GyroscopeNoise=6.93e-5*eye(3)
Data Types: single | double

AccelerometerNoise — Accelerometer measurement noise covariance
eye(3) (default) | 3-by-3 matrix | three-element row vector | numeric scalar

Accelerometer measurement noise covariance, specified as a 3-by-3 matrix, three-element row vector,
or numeric scalar in (m/s2)2.
Example: AccelerometerNoise=2.9e-6*eye(3)
Data Types: single | double

ReferenceFrame — Reference frame for local coordinate system
"ENU" (default) | "NED"

Reference frame for the local coordinate system, specified as "ENU" (east-north-up) or "NED" (north-
east-down).
Data Types: string | char

Examples

Specify IMU Parameters of factorIMU Object Using factorIMUParameters Object

Specify IMU parameters for sample rate and the gyroscope and accelerometer measurement bias and
noises.

sampleRate = 400; % Hz
gyroBiasNoise = 1.5e-9*eye(3);
accelBiasNoise = diag([9.62e-9 9.62e-9 2.17e-8]);
gyroNoise = 6.93e-5*eye(3);
accelNoise = 2.9e-6*eye(3);

Create a factorIMUParameters object using the specified IMU parameters.

imuparams = factorIMUParameters(SampleRate=sampleRate, ...
                                GyroscopeBiasNoise=gyroBiasNoise, ...
                                AccelerometerBiasNoise=accelBiasNoise, ...
                                GyroscopeNoise=gyroNoise, ...
                                AccelerometerNoise=accelNoise, ...
                                ReferenceFrame="NED");

Specify the gyroscope and accelerometer readings.

gyroReadings = [-0.0151    0.0299    0.0027
                -0.0079    0.0370   -0.0014
                -0.0320    0.0306    0.0035
                -0.0043    0.0340   -0.0066
                -0.0033    0.0331   -0.0011];
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accelReadings = [1.0666    0.0802    9.9586
                 1.1002    0.0199    9.6650
                 1.0287    0.3071   10.1864
                 0.9077   -0.2239   10.2989
                 1.2322    0.0174    9.8411];
  

Create a factorIMU object using the factorIMUParameters object and the readings.

nodeID = 1:6;
f = factorIMU(nodeID,gyroReadings,accelReadings,imuparams);

Create a default factor graph and add the factor to the graph using the addFactor function.

g = factorGraph;
addFactor(g,f);

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph | factorIMU

Functions
estimateGravityRotation | estimateGravityRotationAndPoseScale
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predict
Predict pose and velocity of factor

Syntax
[predictedpose,predictedvel] = predict(factor,prevpose,prevvel,prevbias)

Description
[predictedpose,predictedvel] = predict(factor,prevpose,prevvel,prevbias)
predicts the pose predictpose and velocity predictedvel of the factor factor based on IMU
readings and the initial pose, prevpose, velocity prevvel, and biasprevbias.

Examples

Predict Pose and Velocity of IMU Factor

Predict the next pose and velocity of an IMU factor based on the previous pose, velocity, and biases.

Set up parameters such as the connected node IDs, sample rate, noise, and readings. Then create an
IMU factor with these parameters as arguments.

nodeID = [1,2,3, 4,5,6];
sampleRate = 400; % Hz
gyroBiasNoise = 1.5e-9 * eye(3);
accelBiasNoise = diag([9.62e-9, 9.62e-9, 2.17e-8]);
gyroNoise = 6.93e-5 * eye(3);
accelNoise = 2.9e-6 * eye(3);
  
gyroReadings = [ -0.0151    0.0299    0.0027
                -0.0079    0.0370   -0.0014
                -0.0320    0.0306    0.0035
                -0.0043    0.0340   -0.0066
                -0.0033    0.0331   -0.0011];
accelReadings = [   1.0666    0.0802    9.9586
                   1.1002    0.0199    9.6650
                   1.0287    0.3071   10.1864
                   0.9077   -0.2239   10.2989
                   1.2322    0.0174    9.8411];
  
f = factorIMU(nodeID, sampleRate, gyroBiasNoise, accelBiasNoise, ...
             gyroNoise, accelNoise, gyroReadings, accelReadings, ReferenceFrame="NED");

Predict Pose and Velocity

Set up previous pose, velocity and biases measurements to use to predict the next pose and velocity.

prevpose = rand(1,7);
prevvel = rand(1,3);
prevaccelbias = rand(1,3);
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prevgyrobias = rand(1,3);
prevbiases = [prevgyrobias,prevaccelbias]

prevbiases = 1×6

    0.4854    0.8003    0.1419    0.1576    0.9706    0.9572

Use the predict function and the previous measurements to predict the next pose and velocity.

[predictedpose,predictedvel] = predict(f,prevpose,prevvel,prevbiases)

predictedpose = 1×7

    0.8220    0.9170    0.1383    0.6307    0.7048    0.1055    0.3071

predictedvel = 1×3

    0.6202    0.8395    0.8509

Input Arguments
factor — IMU factor
factorIMU object

IMU factor, specified as a factorIMU object.

prevpose — Previous pose of factor
seven-element vector

Previous pose of the factor, specified as a seven-element vector. The pose consists of the 3-D position
and orientation quaternion of the factor of the form [x y z w qx qy qz].

prevvel — Previous 3-D velocity
three-element vector

Previous 3-D velocity, specified as a three-element vector of the form [vx vy vz].

prevbias — Previous 3-D biases of gyroscope and accelerometer
six-element vector

Previous 3-D biases of the gyroscope and accelerometer, specified as a six-element vector of the form
[gx gy gz ax ay az].

Output Arguments
predictedpose — Predicted pose
seven-element vector

Predicted 3-D position and orientation quaternion, returned as a seven-element vector of the form [x
y z w qx qy qz]..

predictedvel — Predicted velocity
three-element vector
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predicted 3-D velocity, returned as a three-element vector of the form [vx vy vz].

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
factorIMU | factorGraph

Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
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factorCameraSE3AndPointXYZ
Factor relating SE(3) camera pose and 3-D point

Description
The factorCameraSE3AndPointXYZ object describes the visual projection factor relating the poses
of a pinhole camera in the SE(3) state space and 3-D landmark points. You can add this object as a
factor to a factorGraph object.

Creation

Syntax
F = factorCameraSE3AndPointXYZ(nodeID,cameraIntrinsicMatrix)
F = factorCameraSE3AndPointXYZ( ___ ,Name=Value)

Description

F = factorCameraSE3AndPointXYZ(nodeID,cameraIntrinsicMatrix) creates a
factorCameraSE3AndPointXYZ object, F, with the specified node ID pairs property NodeID set to
nodeID, and the property K set to cameraIntrinsicMatrix. The factor object supports the
construction of multiple factors with different node ID pairs at the same time.

F = factorCameraSE3AndPointXYZ( ___ ,Name=Value) specifies properties using one or more
name-value arguments in addition to the arguments from the previous syntax.

Properties
NodeID — Node ID pairs
N-by-2 matrix of nonnegative integers

This property is read-only.

Node ID pairs, specified as an N-by-2 matrix of nonnegative integers. N is the number of factors.
Each row represents a factor that connects to nodes of types POSE_SE3 and POINT_XYZ at the
specified node IDs in the factor graph. The rows are of the form [cameraPoseID landmarkID], where
cameraPoseID is the camera pose node ID, and landmarkID is the landmark node ID.

If a factor in this factorCameraSE3AndPointXYZ object specifies a node that does not exist in the
factor graph with the specified ID, a node of the required type with that ID is automatically created
and adds it to the factor graph when you add the factor to the factor graph.

You must specify this property at object creation.
Data Types: double

K — Camera intrinsic matrix
3-by-3 matrix | 3-by-3-by-N array
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This property is read-only.

Camera intrinsic matrix, specified as a 3-by-3 matrix or 3-by-3-by-N array. N is the number of factors.
When specified as a 3-by-3 matrix, the same camera intrinsic matrix applies to all the factors. The 3-
by-3 matrix has the format

fx 0 cx
0 f y cy
0 0 1

.

The coordinates [cx, cy] represent the principal point of the camera, in pixels. The coordinates [fx ,fy]
represent the focal length of the camera, in pixels.

Note This property is equivalent to the property K of the cameraIntrinsics object from Computer
Vision Toolbox.

You must specify this property at object creation.
Data Types: double

Measurement — Measured image point position
[0 0] (default) | two-element row vector | N-by-2 matrix

Measured image point position, specified as a two-element row vector or N-by-2 matrix. N is the
number of factors. Each row represents a 2-D image point observation [x y] of a specified 3-D point in
a specified camera frame.
Data Types: single | double

Information — Information matrix associated with measurement
eye(2) (default) | 2-by-2 matrix | 2-by-2-by-N array

Information matrix associated with the uncertainty of the measurement, specified as a 2-by-2 matrix
or 2-by-2-by-N array. N is the number of factors. When specified as a 2-by-2 matrix, the same
information matrix applies to all the factors.
Data Types: single | double

SensorTransform — Transformation consisting of 3-D translation and rotation to transform
connecting pose nodes to the initial camera frame
se3() (default) | se3 object

Transformation consisting of 3-D translation and rotation to transform connecting pose nodes to the
initial camera sensor reference frame, specified as an se3 object.

For example, if the connected pose nodes store IMU poses in the initial IMU sensor reference frame,
the sensor transform rotates and translates a pose in the initial IMU sensor reference frame to the
initial camera sensor reference frame. The initial sensor reference frame has the very first sensor
pose at its origin.

A sensor transform is unnecessary if the connecting pose nodes contain poses in the initial camera
sensor reference frame. Otherwise, you must specify the sensor transform.
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Object Functions
nodeType Get node type of node in factor graph

Examples

Create factorCameraSE3AndPointXYZ Object and Add It to factorGraph Object

Create a factorGraph object.

G = factorGraph;

Generate a new unique node ID to represent a camera pose node.

camId = generateNodeID(G,1);

Generate two new unique IDs to represent 3-D points.

pointIds = generateNodeID(G,2);

Specify a camera intrinsic matrix.

focalLength    = [800 800]; % specified in units of pixels
principalPoint = [320 240]; % in pixels [x, y]
cameraIntrinsicMatrix = [focalLength(1) 0 principalPoint(1); ...
                         0 focalLength(2) principalPoint(2); ...
                         0 0 1];

camMeasurements = [240 115; ... % first factor measurement
                   100 315];    % second factor measurement

Create a factorCameraSE3AndPointXYZ object that specifies two factors. The first factor connects
the camera pose node and the first point node. The second factor connects the camera pose node and
the second point node.

fCam = factorCameraSE3AndPointXYZ([camId pointIds(1); camId pointIds(2)], ...
                                  cameraIntrinsicMatrix, ...
                                  Measurement=camMeasurements);

Adding the factor object to the factor graph adds the nodes with IDs camId and pointIds to the
factor graph, connecting them as specified by the factors.

addFactor(G,fCam);

Node camId is of type "POSE_SE3". Nodes pointIds are of type "POINT_XYZ", and both connect
to the camera node.

nodeType(G,camId)

ans = 
"POSE_SE3"

nodeType(G,pointIds(1))

ans = 
"POINT_XYZ"

nodeType(G,pointIds(2))
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ans = 
"POINT_XYZ"

Version History
Introduced in R2023a

See Also
Objects
factorGraph | factorIMU | factorGPS | factorTwoPoseSE2 | factorTwoPoseSE3 |
factorPoseSE2AndPointXY | factorPoseSE3AndPointXYZ | factorIMUBiasPrior |
factorPoseSE3Prior | factorVelocity3Prior

Functions
estimateGravityRotation | estimateGravityRotationAndPoseScale
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factorGPS
Factor for GPS measurement

Description
The factorGPS object adds a constraint to a node in a factorGraph by using a GPS position
measurement.

Creation

Syntax
F = factorGPS(NodeID)
F = factorGPS(NodeID,Name=Value)

Description

F = factorGPS(NodeID) returns a factorGPS object, F, with the node identification number set
to NodeID. The GPS factor adds a constraint to the corresponding factor graph node by using a GPS
position measurement.

F = factorGPS(NodeID,Name=Value) specifies properties using one or more name-value
arguments. For example, factorGPS(1,VDOP=1) sets the VDOP property of the factorGPS object
to 1.

Properties
NodeID — Node ID number
nonnegative integer

This property is read-only.

Node ID number, specified as a nonnegative integer. The factorGPS object factor connects to this
node in the factor graph.

If there is no node in the factor graph with the specified ID, a node with that ID is automatically
created and added to the factor graph when this factor is added to the factor graph.

You must specify this property at object creation.

Location — Geodetic position measurement
[0 0 0] (default) | three-element row vector

Geodetic position measurement, specified as a three-element row vector of geodetic coordinates in
the form (latitude longitude altitude). Latitude and longitude are in degrees and altitude is in
meters.
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HDOP — Horizontal dilution of precision
1 (default) | positive scalar

Horizontal dilution of precision, specified as a positive scalar.

VDOP — Vertical dilution of precision
2 (default) | positive scalar

Vertical dilution of precision, specified as a positive scalar.

ReferenceLocation — Origin of local coordinate system
[0 0 0] (default) | 3-element row vector

Origin of the local coordinate system, specified as a three-element row vector of geodetic coordinates
in the form (latitude longitude altitude). Latitude and longitude are in degrees and altitude is
in meters.

Altitude is the height above the reference ellipsoid mode, WGS84.

ReferenceFrame — Reference frame for local coordinate system
"ENU" (default) | "NED"

Reference frame for the local coordinate system, specified as "ENU" (east-north-up) or "NED" (north-
east-down).
Data Types: string | char

Object Functions
nodeType Get node type of node in factor graph

Examples

Add factorGPS Object to Factor Graph

Set up parameters such as the connected node ID, and reference location. Then create a GPS factor
with these parameters as arguments, and set the reference frame to "NED".

id = 1;
loc = [5 5 1000];
hdop = 1.5;
vdop = 2.4;
refloc = [0 0 100];
f = factorGPS(id,Location=loc,HDOP=hdop,VDOP=vdop,ReferenceLocation=refloc,ReferenceFrame="NED");

Create a default factor graph and add the factor to the graph using the addFactor function.

g = factorGraph;
addFactor(g,f);

Version History
Introduced in R2022a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph | factorPoseSE2AndPointXY | factorPoseSE3AndPointXYZ | factorIMU |
factorTwoPoseSE2 | factorTwoPoseSE3 | factorIMUBiasPrior | factorVelocity3Prior |
factorPoseSE3Prior | factorCameraSE3AndPointXYZ

Functions
importFactorGraph

Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
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factorPoseSE2AndPointXY
Factor relating SE(2) position and 2-D point

Description
The factorPoseSE2AndPointXY object contains factors that each describe the relationship
between a position in the SE(2) state space and a 2-D landmark point. You can use this object to add
one or more factors to a factorGraph object.

Creation

Syntax
F = factorPoseSE2AndPointXY(nodeID)
F = factorPoseSE2AndPointXY( ___ ,Name=Value)

Description

F = factorPoseSE2AndPointXY(nodeID) creates a factorPoseSE2AndPointXY object, F, with
the node identification numbers property NodeID set to nodeID.

F = factorPoseSE2AndPointXY( ___ ,Name=Value) specifies properties using one or more
name-value arguments in addition to the argument from the previous syntax. For example,
factorPoseSE2AndPointXY([1 2],Measurement=[1 5]) sets the Measurement property of
the factorPoseSE2AndPointXY object to [1 5].

Properties
NodeID — Node ID numbers
N-by-2 matrix of nonnegative integers

This property is read-only.

Node ID numbers, specified as an N-by-2 matrix of nonnegative integers, where N is the total number
of desired factors. Each row represents a factor connecting a node of type, POSE_SE2 to a node of
type POINT_XY in the form [PoseID PointID], where PoseID is the ID of the POSE_SE2 node and
PointID is the ID of the POINT_XY node in the factor graph.

If a factor in the factorPoseSE2AndPointXY object specifies an ID that does not correspond to a
node in the factor graph, the factor graph automatically creates a node of the required type with that
ID and adds it to the factor graph when adding the factor to the factor graph.

You must specify this property at object creation.

Measurement — Measured relative position
zeros(N,2) (default) | N-by-2 matrix

2 Classes

2-380



Measured relative position between the current position and landmark point, specified as an N-by-2
matrix where each row is of the form [dx dy], in meters. N is the total number of factors, and dx and
dy are the change in position in x and y, respectively.

Information — Information matrix associated with uncertainty of measurements
eye(2) (default) | 2-by-2 matrix | 2-by-2-by-N array

Information matrix associated with the uncertainty of the measurements, specified as a 2-by-2 matrix
or a 2-by-2-by-N array. N is the total number of factors specified by the factorPoseSE2AndPointXY
object. Each information matrix corresponds to the measurements of the corresponding node in
NodeID.

If you specify this property as a 2-by-2 matrix when NodeID contains more than one row, the
information matrix corresponds to all measurements in Measurement.

This information matrix is the inverse of the covariance matrix, where the covariance matrix is of the
form:

σ(x, x) σ(x, y)
σ(y, x) σ(y, y)

Each element indicates the covariance between two variables. For example, σ(x,y) is the covariance
between x and y.

Object Functions
nodeType Get node type of node in factor graph

Examples

Estimate Position Using Landmark Factors

Create a matrix of positions of the landmarks to use for localization, and the real positions of the
robot to compare your factor graph estimate against. Use the
exampleHelperPlotPositionsAndLandmarks helper function to visualize the landmark points
and the real path of the robot..

landmarks = [0 -3  0;
             3  4  0;
             7  1  0];
realpos = [0  0  0;
           2 -2  0;
           5  3  0;
           10 2  0];
exampleHelperPlotPositionsAndLandmarks(realpos,landmarks)
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Create Robot Pose Nodes

Create a factor graph, and add a prior factor to loosely fix the start pose of the robot by providing an
estimate pose.

fg = factorGraph;
rng(1)
pf = factorPoseSE3Prior(0);

Generate node IDs to use to create three factorTwoPoseSE3 relative pose factors that relate four
robot poses. To simulate sensor readings for the measurements of each factor, take the difference
between a consecutive pair of ground truth positions, add noise, and append a quaternion of zero to
provide a rotation of zero. Then add the prior factor and the pose factors to the factor graph.

zeroQuat = [1 0 0 0];
rpfIDs = generateNodeID(fg,3,"factorTwoPoseSE3")

rpfIDs = 3×2

     0     1
     1     2
     2     3

rpfmeasure = [(diff(realpos) + 0.1*rand(3)) repmat(zeroQuat,3,1)];
rpf = factorTwoPoseSE3(rpfIDs,Measurement=rpfmeasure);
addFactor(fg,pf);
addFactor(fg,rpf);
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Create Landmark Factors

Generate node IDs to create three factorPoseSE3AndXYZ landmark factor objects that relate to the
pose nodes. The first and second pose nodes observe the first landmark point so they should connect
to that landmark with a factor. The second and third pose nodes observe the second landmark. The
third and fourth pose nodes observe the third landmark.

landmarkIDs = generateNodeID(fg,3)'

landmarkIDs = 3×1

     4
     5
     6

The landmark factors used here are for 3-D state space but the process is identical for landmark
factors for 2-D state space. Add some random number to the relative position between the landmark
and the ground truth position to simulate real sensor measurements. Then create the landmark
factors and add them to the factor graph.

lmf1measure = [landmarks(1,:) - realpos(1:2,:)] + 0.5*rand(1,3);
lmf2measure = [landmarks(2,:) - realpos(2:3,:)] + 0.5*rand(1,3);
lmf3measure = [landmarks(3,:) - realpos(3:4,:)] + 0.5*rand(1,3);
lmf1 = factorPoseSE3AndPointXYZ([[0 1]' repmat(landmarkIDs(1),2,1)],Measurement=lmf1measure);
lmf2 = factorPoseSE3AndPointXYZ([[1 2]' repmat(landmarkIDs(2),2,1)],Measurement=lmf2measure);
lmf3 = factorPoseSE3AndPointXYZ([[2 3]' repmat(landmarkIDs(3),2,1)],Measurement=lmf3measure);
addFactor(fg,lmf1);
addFactor(fg,lmf2);
addFactor(fg,lmf3);

Optimize Factor Graph

Optimize the factor graph with the default solver options. The optimization updates the states of all
nodes in the factor graph, so the positions of vehicle and the landmarks update.

fgso = factorGraphSolverOptions;
optimize(fg,fgso)

ans = struct with fields:
             InitialCost: 72.6129
               FinalCost: 0.0011
      NumSuccessfulSteps: 4
    NumUnsuccessfulSteps: 0
               TotalTime: 0.0026
         TerminationType: 0
        IsSolutionUsable: 1

Visualize and Compare Results

Get and store the updated node states for the vehicle and landmarks and plot the results, comparing
the factor graph estimate of the robot path to the known ground truth of the robot.

poseIDs = nodeIDs(fg,NodeType="POSE_SE3");
fgposopt = nodeState(fg,poseIDs)

fgposopt = 4×7
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    0.0000    0.0000    0.0000    1.0000    0.0000   -0.0000    0.0000
    2.0278   -1.9778    0.0173    1.0000    0.0018   -0.0034    0.0014
    5.0684    3.0500    0.0871    0.9999   -0.0010   -0.0072    0.0089
   10.0844    2.1475    0.1972    0.9999    0.0006   -0.0121    0.0100

fglmopt = nodeState(fg,landmarkIDs);
exampleHelperPlotPositionsAndLandmarks(realpos,landmarks,fgposopt,fglmopt)

Version History
Introduced in R2022b

R2023a: Specify multiple factors

The NodeID, Measurement, and Information properties now accept additional rows to specify
multiple factors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
factorGraph | factorPoseSE3AndPointXYZ | factorGPS | factorIMU | factorTwoPoseSE2 |
factorTwoPoseSE3 | factorIMUBiasPrior | factorVelocity3Prior | factorPoseSE3Prior |
factorCameraSE3AndPointXYZ
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factorPoseSE3AndPointXYZ
Factor relating SE(3) position and 3-D point

Description
The factorPoseSE3AndPointXYZ object contains factors that each describe the relationship
between a position in the SE(3) state space and a 3-D landmark point. You can use this object to add
one or more factors to a factorGraph object.

Creation

Syntax
F = factorPoseSE3AndPointXYZ(nodeID)
F = factorPoseSE3AndPointXYZ( ___ ,Name=Value)

Description

F = factorPoseSE3AndPointXYZ(nodeID) creates a factorPoseSE3AndPointXYZ object, F,
with the node identification numbers property, NodeID, set to nodeID.

F = factorPoseSE3AndPointXYZ( ___ ,Name=Value) specifies properties using one or more
name-value arguments in addition to the argument from the previous syntax. For example,
factorPoseSE3AndPointXYZ([1 2],Measurement=[1 2 3]) sets the Measurement property
of the factorPoseSE3AndPointXYZ object to [1 2 3].

Properties
NodeID — Node ID numbers
N-by-2 matrix of nonnegative integers

This property is read-only.

Node ID numbers, specified as an N-by-2 matrix of nonnegative integers, where N is the total number
of desired factors. Each row represents a factor connecting a node of type, POSE_SE3 to a node of
type POINT_XYZ in the form [PoseID PointID], where PoseID is the ID of the POSE_SE3 node and
PointID is the ID of the POINT_XYZ node in the factor graph.

If a factor in the factorPoseSE3AndPointXYZ object specifies an ID that does not correspond to a
node in the factor graph, the factor graph automatically creates a node of the required type with that
ID and adds it to the factor graph when adding the factor to the factor graph.

You must specify this property at object creation.

Measurement — Measured relative position
zeros(N,3) (default) | N-by-3 matrix
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Measured relative position between current position and landmark point, specified as an N-by-3
matrix where each row is of the form [dx dy dz], in meters. N is the total number of factors, and dx,
dy, and dz are the change in position in x, y, and z, respectively.

Information — Information matrix associated with uncertainty of measurements
eye(3) (default) | 3-by-3 matrix | 3-by-3-by-N array

Information matrix associated with the uncertainty of the measurements, specified as a 3-by-3 matrix
or a 3-by-3-by-N array. N is the total number of factors specified by the
factorPoseSE3AndPointXYZ object. Each information matrix corresponds to the measurements of
the corresponding node in NodeID.

If you specify this property as a 3-by-3 matrix when NodeID contains more than one row, the
information matrix corresponds to all measurements in Measurement.

This information matrix is the inverse of the covariance matrix, where the covariance matrix is of the
form:

σ(x, x) σ(x, y) σ(x, z)
σ(y, x) σ(y, y) σ(y, z)
σ(z, x) σ(y, x) σ(z, z)

Each element indicates the covariance between two variables. For example, σ(x,y) is the covariance
between x and y.

Object Functions
nodeType Get node type of node in factor graph

Examples

Estimate Position Using Landmark Factors

Create a matrix of positions of the landmarks to use for localization, and the real positions of the
robot to compare your factor graph estimate against. Use the
exampleHelperPlotPositionsAndLandmarks helper function to visualize the landmark points
and the real path of the robot..

landmarks = [0 -3  0;
             3  4  0;
             7  1  0];
realpos = [0  0  0;
           2 -2  0;
           5  3  0;
           10 2  0];
exampleHelperPlotPositionsAndLandmarks(realpos,landmarks)
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Create Robot Pose Nodes

Create a factor graph, and add a prior factor to loosely fix the start pose of the robot by providing an
estimate pose.

fg = factorGraph;
rng(1)
pf = factorPoseSE3Prior(0);

Generate node IDs to use to create three factorTwoPoseSE3 relative pose factors that relate four
robot poses. To simulate sensor readings for the measurements of each factor, take the difference
between a consecutive pair of ground truth positions, add noise, and append a quaternion of zero to
provide a rotation of zero. Then add the prior factor and the pose factors to the factor graph.

zeroQuat = [1 0 0 0];
rpfIDs = generateNodeID(fg,3,"factorTwoPoseSE3")

rpfIDs = 3×2

     0     1
     1     2
     2     3

rpfmeasure = [(diff(realpos) + 0.1*rand(3)) repmat(zeroQuat,3,1)];
rpf = factorTwoPoseSE3(rpfIDs,Measurement=rpfmeasure);
addFactor(fg,pf);
addFactor(fg,rpf);
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Create Landmark Factors

Generate node IDs to create three factorPoseSE3AndXYZ landmark factor objects that relate to the
pose nodes. The first and second pose nodes observe the first landmark point so they should connect
to that landmark with a factor. The second and third pose nodes observe the second landmark. The
third and fourth pose nodes observe the third landmark.

landmarkIDs = generateNodeID(fg,3)'

landmarkIDs = 3×1

     4
     5
     6

The landmark factors used here are for 3-D state space but the process is identical for landmark
factors for 2-D state space. Add some random number to the relative position between the landmark
and the ground truth position to simulate real sensor measurements. Then create the landmark
factors and add them to the factor graph.

lmf1measure = [landmarks(1,:) - realpos(1:2,:)] + 0.5*rand(1,3);
lmf2measure = [landmarks(2,:) - realpos(2:3,:)] + 0.5*rand(1,3);
lmf3measure = [landmarks(3,:) - realpos(3:4,:)] + 0.5*rand(1,3);
lmf1 = factorPoseSE3AndPointXYZ([[0 1]' repmat(landmarkIDs(1),2,1)],Measurement=lmf1measure);
lmf2 = factorPoseSE3AndPointXYZ([[1 2]' repmat(landmarkIDs(2),2,1)],Measurement=lmf2measure);
lmf3 = factorPoseSE3AndPointXYZ([[2 3]' repmat(landmarkIDs(3),2,1)],Measurement=lmf3measure);
addFactor(fg,lmf1);
addFactor(fg,lmf2);
addFactor(fg,lmf3);

Optimize Factor Graph

Optimize the factor graph with the default solver options. The optimization updates the states of all
nodes in the factor graph, so the positions of vehicle and the landmarks update.

fgso = factorGraphSolverOptions;
optimize(fg,fgso)

ans = struct with fields:
             InitialCost: 72.6129
               FinalCost: 0.0011
      NumSuccessfulSteps: 4
    NumUnsuccessfulSteps: 0
               TotalTime: 0.0026
         TerminationType: 0
        IsSolutionUsable: 1

Visualize and Compare Results

Get and store the updated node states for the vehicle and landmarks and plot the results, comparing
the factor graph estimate of the robot path to the known ground truth of the robot.

poseIDs = nodeIDs(fg,NodeType="POSE_SE3");
fgposopt = nodeState(fg,poseIDs)

fgposopt = 4×7
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    0.0000    0.0000    0.0000    1.0000    0.0000   -0.0000    0.0000
    2.0278   -1.9778    0.0173    1.0000    0.0018   -0.0034    0.0014
    5.0684    3.0500    0.0871    0.9999   -0.0010   -0.0072    0.0089
   10.0844    2.1475    0.1972    0.9999    0.0006   -0.0121    0.0100

fglmopt = nodeState(fg,landmarkIDs);
exampleHelperPlotPositionsAndLandmarks(realpos,landmarks,fgposopt,fglmopt)

Version History
Introduced in R2022b

R2023a: Specify multiple factors

The NodeID, Measurement, and Information properties now accept additional rows to specify
multiple factors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
factorGraph | factorPoseSE2AndPointXY | factorGPS | factorIMU | factorTwoPoseSE2 |
factorTwoPoseSE3 | factorIMUBiasPrior | factorVelocity3Prior | factorPoseSE3Prior |
factorCameraSE3AndPointXYZ

Topics
“Landmark SLAM Using AprilTag Markers”
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factorTwoPoseSE2
Factor relating two SE(2) poses

Description
The factorTwoPoseSE2 object contains factors that relate pairs of poses in the SE(2) state space for
a factorGraph object.

Creation

Syntax
F = factorTwoPoseSE2(nodeID)
F = factorTwoPoseSE2(nodeID,Name=Value)

Description

F = factorTwoPoseSE2(nodeID) creates a factorTwoPoseSE2 object, F, with the node
identification numbers property NodeID set to nodeID.

F = factorTwoPoseSE2(nodeID,Name=Value) specifies properties using one or more name-
value arguments. For example, factorTwoPoseSE2([1 2],Measurement=[1 5 7]) sets the
Measurement property of the factorTwoPoseSE2 object to [1 5 7].

Properties
NodeID — Node ID numbers
N-by-2 matrix of nonnegative integers

This property is read-only.

Node ID numbers, specified as an N-by-2 matrix of nonnegative integers, where N is the total number
of desired factors. Each row represents a factor that connects to two nodes of type POSE_SE2 at the
specified node IDs in the factor graph. The rows are of the form [PoseID PoseID].

If a factor in the factorTwoPoseSE2 object specifies an ID that does not correspond to a node in the
factor graph, the factor graph automatically creates a node of the required type with that ID and adds
it to the factor graph when adding the factor to the factor graph.

You must specify this property at object creation.

Measurement — Measured relative pose
zeros(N,3) (default) | N-by-3 matrix

Measured relative pose, specified as a N-by-3 matrix, where each row is of the form [dx dy dtheta]. N
is the total number of factors. dx and dy are the change in position in x and y, respectively, and dtheta
is the angle between the two positions.
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Information — Information matrix associated with measurements
eye(3) (default) | 3-by-3 matrix | 3-by-3-N array

Information matrix associated with the measurement, specified as a 3-by-3 matrix or a 3-by-3-N
matrix. N is the total number of factors specified by this factorTwoPoseSE2 object. Each
information matrix corresponds to the measurements of the specified nodes in NodeIDs.

If you specify this property as a 3-by-3 matrix when NodeID contains more than one row, the
information matrix corresponds to all measurements in Measurement.

Object Functions
nodeType Get node type of node in factor graph

Examples

Add FactorTwoPoseSE2 Object to Factor Graph

Create measurement vector, information matrix, and a node ID number vector. Create a
factorTwoPoseSE2 object, specifying the node IDs, measurement, and information as arguments.

nodeID = [1 2];
measure = [5 5 pi/2];
info = rand(3,3);
f = factorTwoPoseSE2(nodeID,Measurement=measure,Information=info);

Create a default factor graph and add the factor to the graph using the addFactor function.

g = factorGraph;
addFactor(g,f);

Version History
Introduced in R2022a

R2023a: Specify multiple factors

The NodeID, Measurement, and Information properties now accept additional rows to specify
multiple factors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
factorGraph | factorPoseSE2AndPointXY | factorPoseSE3AndPointXYZ | factorGPS |
factorIMU | factorTwoPoseSE3 | factorIMUBiasPrior | factorVelocity3Prior |
factorPoseSE3Prior | factorCameraSE3AndPointXYZ
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factorTwoPoseSE3
Factor relating two SE(3) poses

Description
The factorTwoPoseSE3 object contains factors that relate pairs of poses in the SE(3) state space for
a factorGraph object.

Creation
Syntax
F = factorTwoPoseSE3(nodeID)
F = factorTwoPoseSE3(nodeID,Name=Value)

Description

F = factorTwoPoseSE3(nodeID) creates a factorTwoPoseSE3 object, F, with the node
identification numbers property NodeID set to nodeID.

F = factorTwoPoseSE3(nodeID,Name=Value) specifies properties using one or more name-
value arguments. For example, factorTwoPoseSE3([1 2],Measurement=[1 2 3 4 5 6 7])
sets the Measurement property of the factorTwoPoseSE3 object to [1 2 3 4 5 6 7].

Properties
NodeID — Node ID numbers
N-by-2 matrix of nonnegative integers

This property is read-only.

Node ID numbers, specified as an N-by-2 matrix of nonnegative integers, where N is the total number
of desired factors. Each row represents a factor that connects to two nodes of type, POSE_SE3, at the
specified node IDs in the factor graph. The rows are of the form [PoseID PoseID].

If a factor in the factorTwoPoseSE3 object specifies an ID that does not correspond to a node in the
factor graph, the factor graph automatically creates a node of the required type with that ID and adds
it to the factor graph when adding the factor to the factor graph.

You must specify this property at object creation.

Measurement — Measured relative pose
[zeros(N,3) ones(N,1) zeros(N,3)] (default) | N-by-7 matrix

Measured relative pose, specified as a N-by-7 matrix, where each row is of the form [dx dy dz dqw
dqx dqy dqz]. N is the total number of factors. dx, dy, and dz are the change in position in x, y, and z
respectively. dqw, dqx, dqy, and dqz are the change in quaternion rotation in w, x, y, and z,
respectively.
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When you optimize the factor graph that this factor belongs to, the optimize function normalizes
the quaternion measurement of the factor before the optimization.

Information — Information matrices associated with measurements
eye(6) (default) | 6-by-6 matrix | 6-by-6-by-N array

Information matrices associated with the measurements, specified as a 6-by-6 matrix or a 6-by-6-by-N
array. N is the total number of factors specified by the factorTwoPoseSE3 object. Each information
matrix corresponds to the measurements of the corresponding node in NodeID.

If you specify this property as a 6-by-6 matrix when NodeID contains more than one row, the
information matrix corresponds to all measurements in Measurement.

Object Functions
nodeType Get node type of node in factor graph

Examples

Add factorTwoPoseSE3 Object to Factor Graph

Create a two pose SE(3) state space factor with the connected node IDs set to 1 and 2.

f = factorTwoPoseSE3([1 2]);

Create a default factor graph and add the factor to the graph using the addFactor function.

g = factorGraph;
addFactor(g,f);

Version History
Introduced in R2022a

R2023a: Specify multiple factors

The NodeID, Measurement, and Information properties now accept additional rows to specify
multiple factors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph | factorPoseSE2AndPointXY | factorPoseSE3AndPointXYZ |
factorTwoPoseSE2 | factorIMU | factorGPS | factorIMUBiasPrior |
factorVelocity3Prior | factorPoseSE3Prior | factorCameraSE3AndPointXYZ
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Topics
“Landmark SLAM Using AprilTag Markers”
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factorIMUBiasPrior
Prior factor for IMU bias

Description
The factorIMUBiasPrior object is a factor that has prior information for an IMU bias for a
factorGraph object.

Creation
Syntax
F = factorIMUBiasPrior(nodeID)
F = factorIMUBiasPrior(nodeID,Name=Value)

Description

F = factorIMUBiasPrior(nodeID) creates a factorIMUBiasPrior object, F, with the node
identification numbers property NodeID set to nodeID

F = factorIMUBiasPrior(nodeID,Name=Value) specifies properties using one or more name-
value arguments. For example, factorIMUBiasPrior(1,Measurement=[1 2 3 1 2 3]) sets the
Measurement property of the factorIMUBiasPrior object to [1 2 3 1 2 3].

Properties
NodeID — Node ID numbers
N-element column vector of nonnegative integers

This property is read-only.

Node ID numbers, specified as an N-element vector of nonnegative integers, where N is the total
number of desired factors. Each element represents a factor that connects to a node of type
IMU_BIAS in the factor graph using the specified node ID.

If a factor in the factorIMUBiasPrior object specifies ID that does not correspond to a node in the
factor graph, the factor graph automatically creates an IMU_BIAS type node with that ID and adds it
to the factor graph when adding the factor to the factor graph.

You must specify this property at object creation.

Measurement — Measured prior IMU bias
zeros(N,6) (default) | N-by-6 matrix

Measured prior IMU bias, specified as an N-by-6 matrix where each row is in the form [GyroBias,
AccelBias]. N is the total number of factors, and GyroBias and AccelBias are three-element row
vectors of the gyroscope bias and acceleration bias in radians per second and meters per second,
respectively.
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Information — Information matrices associated with measurements
eye(6) (default) | 6-by-6 matrix | 6-by-6-by-N array

Information matrices associated with the measurements, specified as a 6-by-6 matrix or a 6-by-6-by-N
array. N is the total number of factors specified by the factorIMUBiasPrior object. Each
information matrix corresponds to the measurements of the corresponding node in NodeID.

If you specify this property as a 6-by-6 matrix when NodeID contains more than one element, the
information matrix corresponds to all measurements in Measurement.

Object Functions
nodeType Get node type of node in factor graph

Examples

Add factorIMUBiasPrior Object to Factor Graph

Create an IMU bias prior factor with a node ID of 1.

f = factorIMUBiasPrior(1);

Create a default factor graph and add the factor to the graph using the addFactor function.

g = factorGraph;
addFactor(g,f);

Version History
Introduced in R2022a

R2023a: Specify multiple factors

The NodeID, Measurement, and Information properties now accept additional rows to specify
multiple factors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph | factorPoseSE2AndPointXY | factorPoseSE3AndPointXYZ | factorIMU |
factorGPS | factorTwoPoseSE2 | factorTwoPoseSE3 | factorVelocity3Prior |
factorPoseSE3Prior | factorCameraSE3AndPointXYZ

Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
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factorVelocity3Prior
Prior factor for 3-D velocity

Description
The factorVelocity3Prior object is a factor that has information for a prior velocity in 3-D for a
factorGraph object.

Creation

Syntax
F = factorVelocity3Prior(nodeID)
F = factorVelocity3Prior(nodeID,Name=Value)

Description

F = factorVelocity3Prior(nodeID) creates a factorVelocity3Prior object, F, with the
node identification numbers property NodeID set to nodeID.

F = factorVelocity3Prior(nodeID,Name=Value) specifies properties using one or more
name-value arguments. For example, factorVelocity3Prior(1,Measurement=[1 5 7]) sets
the Measurement property of the factorVelocity3Prior object to [1 5 7].

Properties
NodeID — Node ID numbers
N-element column vector of nonnegative integers

This property is read-only.

Node ID numbers, specified as an N-element vector of nonnegative integers, where N is the total
number of desired factors. Each element represents a factor that connects to a node of type VEL3 in
the factor graph using the specified node ID.

If a factor in the factorVelocity3Prior object specifies ID that does not correspond to a node in
the factor graph, the factor graph automatically creates an VEL3 type node with that ID and adds it to
the factor graph when adding the factor to the factor graph.

You must specify this property at object creation.

Measurement — Measured prior velocity
zeros(N,3) (default) | N-by-3 matrix

Measured prior velocity, specified as an N-by-3 matrix, where each row is of the form [xz yz vz]. N is
the total number of factors. xz, yz, and vz are the velocity of the x, y, and z positions, respectively.
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Information — Information matrix associated with measurements
eye(3) (default) | 3-by-3 matrix | 3-by-3-N array

Information matrix associated with the measurement, specified as a 3-by-3 matrix or a 3-by-3-N
matrix. N is the total number of factors specified by this factorVelocity3Prior object. Each
information matrix corresponds to the measurements of the specified nodes in NodeIDs.

If you specify this property as a 3-by-3 matrix when NodeID contains more than one element, the
information matrix corresponds to all measurements in Measurement.

Object Functions
nodeType Get node type of node in factor graph

Examples

Add factorVelocity3Prior Object to Factor Graph

Create a velocity prior factor with a node ID of 1.

f = factorVelocity3Prior(1);

Create a default factor graph and add the factor to the graph using the addFactor function.

g = factorGraph;
addFactor(g,f);

Version History
Introduced in R2022a

R2023a: Specify multiple factors

The NodeID, Measurement, and Information properties now accept additional rows to specify
multiple factors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph | factorPoseSE2AndPointXY | factorPoseSE3AndPointXYZ |
factorTwoPoseSE2 | factorTwoPoseSE3 | factorIMU | factorGPS | factorIMUBiasPrior |
factorPoseSE3Prior | factorCameraSE3AndPointXYZ

Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
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factorPoseSE3Prior
Full-state prior factor for SE(3) pose

Description
The factorPoseSE3Prior object is a full-state prior factor for an SE(3) state space pose for a
factorGraph object.

Creation
Syntax
F = factorPoseSE3Prior(nodeID)
F = factorPoseSE3Prior(nodeID,Name=Value)

Description

F = factorPoseSE3Prior(nodeID) creates a factorPoseSE3Prior object, F, with the node
identification numbers property NodeID set to nodeID.

F = factorPoseSE3Prior(nodeID,Name=Value) specifies properties using one or more name-
value arguments. For example, factorPoseSE3Prior(1,Measurement=[1 2 3 4 5 6 7]) sets
the Measurement property of the factorPoseSE3Prior object to [1 2 3 4 5 6 7].

Properties
NodeID — Node ID numbers
N-element column vector of nonnegative integers

This property is read-only.

Node ID numbers, specified as an N-element vector of nonnegative integers, where N is the total
number of desired factors. Each element represents a factor that connects to a node of type
POSE_SE3 in the factor graph using the specified node ID.

If a factor in the factorPoseSE3Prior object specifies ID that does not correspond to a node in the
factor graph, the factor graph automatically creates an POSE_SE3 type node with that ID and adds it
to the factor graph when adding the factor to the factor graph.

You must specify this property at object creation.

Measurement — Measured absolute SE(3) prior pose in local coordinates
[zeros(N,3) ones(N,1) zeros(N,3)] (default) | N-by-7 matrix

Measured absolute SE(3) prior pose in local coordinates, specified as an N-by-7 matrix, where each
row is of the form [x y z qw qx qy qz]. N is the total number of factors. x, y, and z are the change in
position in x, y, and z respectively. qw, qx, qy, and qz are the change in quaternion rotation in w, x, y,
and z, respectively.
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The specified quaternion is expected to be normalized.

Information — Information matrices associated with measurements
eye(6) (default) | 6-by-6 matrix | 6-by-6-by-N array

Information matrices associated with the measurements, specified as a 6-by-6 matrix or a 6-by-6-by-N
array. N is the total number of factors specified by the factorPoseSE3Prior object. Each
information matrix corresponds to the measurements of the corresponding node in NodeID.

If you specify this property as a 6-by-6 matrix when NodeID contains more than one element, the
information matrix corresponds to all measurements in Measurement.

Object Functions
nodeType Get node type of node in factor graph

Examples

Add factorPoseSE3Prior Object to Factor Graph

Create a prior SE(3) pose factor with a node ID of 1.

f = factorPoseSE3Prior(1);

Create a default factor graph and add the factor to the graph using the addFactor function.

g = factorGraph;
addFactor(g,f);

Version History
Introduced in R2022a

R2023a: Specify multiple factors

The NodeID, Measurement, and Information properties now accept additional rows to specify
multiple factors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph | factorPoseSE2AndPointXY | factorPoseSE3AndPointXYZ |
factorTwoPoseSE2 | factorTwoPoseSE3 | factorIMU | factorGPS | factorIMUBiasPrior |
factorVelocity3Prior | factorCameraSE3AndPointXYZ
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Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
“Landmark SLAM Using AprilTag Markers”
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factorGraph
Bipartite graph of factors and nodes

Description
A factorGraph object stores a bipartite graph consisting of factors connected to variable nodes. The
nodes represent the unknown random variables in an estimation problem such as robot poses, and
the factors represent probabilistic constraints on those nodes, derived from measurements or prior
knowledge. During optimization, the factor graph uses all the factors and current node states to
update the node states.

To use the factor graph:

1 Create an empty factorGraph object.
2 For each desired factor type.

a Generate node IDs using the generateNodeID object function.
b Define factors with the desired node IDs, using any of the supported factor objects:

• factorGPS
• factorIMU
• factorCameraSE3AndPointXYZ
• factorPoseSE2AndPointXY
• factorPoseSE3AndPointXYZ
• factorTwoPoseSE2
• factorTwoPoseSE3
• factorIMUBiasPrior
• factorPoseSE3Prior
• factorVelocity3Prior

c Add factors to the factor graph using the addFactor object function. If there is no node in
the factor graph with the specified ID, a node with that ID is automatically created and
added to the factor graph when this factor is added to the factor graph. If there is a node in
the factor graph with the specified ID, ensure that adding the new factor does not cause a
node type mismatch. For more information, see “Tips” on page 2-411.

3 Check if all the nodes in the factor graph are connected to at least one other node using the
isConnected object function.

4 Create a factorGraphSolverOptions object to specify factor graph solver options.
5 Optimize the factor graph using the optimize object function with the desired factor graph

solver options.
6 Extract factor graph node data such as node IDs and node states using the nodeIDs and

nodeState object functions.
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Creation

Syntax
graph = factorGraph

Description

graph = factorGraph creates an empty factorGraph object.

Properties
NumNodes — Number of nodes in factor graph
nonnegative integer

This property is read-only.

Number of nodes in the factor graph, specified as a positive integer. NumNodes has a value of 0 when
the factor graph is empty and NumNodes increases each time you add a factor that specifies new node
IDs to the factor graph.

The nodes in the factor graph can be any of these types:

• "POSE_SE2" — Pose in SE(2) state space
• "POSE_SE3" — Pose in SE(3) state space
• "VEL3" — 3-D velocity
• "POINT_XY" — 2-D point
• "POINT_XYZ" — 3-D point
• "IMU_BIAS" — IMU gyroscope and accelerometer bias

To check the node type of a node in the graph, use the nodeType function.

Note The node type is set by the factor graph when the factor object that specifies the node is added
to the factor graph. You can not change the node type of a node after it has been added to the graph.

NumFactors — Number of factors in factor graph
nonnegative integer

This property is read-only.

Number of factors in the factor graph, specified as a positive integer. NumFactors has a value of 0
when the factor graph is empty and NumFactors increases each time you add a factor to the factor
graph.

You can use addfactor to add any of these factor objects to the factor graph:
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Purpose Factor Objects
Relate poses to sensor measurements • factorGPS — Connect SE(3) pose node

("POSE_SE3") to a GPS measurement.
• factorIMU — Connect two SE(3) pose nodes

("POSE_SE3"), two 3-D velocity nodes
("VEL3"), and two IMU bias nodes
("IMU_BIAS") using an IMU measurement.

Relate poses to landmark positions • factorCameraSE3AndPointXYZ — Connect
the SE(3) pose node of a pinhole camera
("POSE_SE3") to 3-D landmark nodes
("Point_XYZ") using relative pose
measurements.

• factorPoseSE2AndPointXY — Connect a
SE(2) pose node ("POSE_SE2") to 2-D
landmark nodes ("Point_XY") using relative
pose measurements.

• factorPoseSE3AndPointXYZ — Connect a
SE(3) pose node ("POSE_SE3") to 3-D
landmark nodes ("Point_XYZ") using
relative pose measurements.

Relate two poses to each other • factorTwoPoseSE2 — Connect pairs of
SE(2) pose nodes ("POSE_SE2") with relative
poses using relative pose measurements.

• factorTwoPoseSE3 — Connect pairs of
SE(3) pose nodes ("POSE_SE3") with relative
poses using relative pose measurements.

Relate poses or velocities to a prior-known
measurements

• factorIMUBiasPrior — Connect SE(3) pose
nodes ("POSE_SE3"), 3-D velocity nodes
("VEL3"), and IMU bias nodes ("IMU_BIAS")
to prior-known IMU measurements.

• factorPoseSE3Prior — Connect SE(3) pose
nodes ("POSE_SE3") to prior-known SE(3)
pose measurements.

• factorVelocity3Prior — Connect 3-D
velocity node ("VEL_3") to prior-known SE(3)
velocity measurements.

Object Functions
addFactor Add factor to factor graph
fixNode Fix or free nodes in factor graph
generateNodeID Generate new node IDs
hasNode Check if node ID exists in factor graph
isConnected Check if factor graph is connected
isNodeFixed Check if node is fixed
nodeIDs Get node IDs in factor graph
nodeState Get or set node state in factor graph
nodeType Get node type of node in factor graph
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optimize Optimize factor graph

Examples

Estimate Position Using Landmark Factors

Create a matrix of positions of the landmarks to use for localization, and the real positions of the
robot to compare your factor graph estimate against. Use the
exampleHelperPlotPositionsAndLandmarks helper function to visualize the landmark points
and the real path of the robot..

landmarks = [0 -3  0;
             3  4  0;
             7  1  0];
realpos = [0  0  0;
           2 -2  0;
           5  3  0;
           10 2  0];
exampleHelperPlotPositionsAndLandmarks(realpos,landmarks)

Create Robot Pose Nodes

Create a factor graph, and add a prior factor to loosely fix the start pose of the robot by providing an
estimate pose.
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fg = factorGraph;
rng(1)
pf = factorPoseSE3Prior(0);

Generate node IDs to use to create three factorTwoPoseSE3 relative pose factors that relate four
robot poses. To simulate sensor readings for the measurements of each factor, take the difference
between a consecutive pair of ground truth positions, add noise, and append a quaternion of zero to
provide a rotation of zero. Then add the prior factor and the pose factors to the factor graph.

zeroQuat = [1 0 0 0];
rpfIDs = generateNodeID(fg,3,"factorTwoPoseSE3")

rpfIDs = 3×2

     0     1
     1     2
     2     3

rpfmeasure = [(diff(realpos) + 0.1*rand(3)) repmat(zeroQuat,3,1)];
rpf = factorTwoPoseSE3(rpfIDs,Measurement=rpfmeasure);
addFactor(fg,pf);
addFactor(fg,rpf);

Create Landmark Factors

Generate node IDs to create three factorPoseSE3AndXYZ landmark factor objects that relate to the
pose nodes. The first and second pose nodes observe the first landmark point so they should connect
to that landmark with a factor. The second and third pose nodes observe the second landmark. The
third and fourth pose nodes observe the third landmark.

landmarkIDs = generateNodeID(fg,3)'

landmarkIDs = 3×1

     4
     5
     6

The landmark factors used here are for 3-D state space but the process is identical for landmark
factors for 2-D state space. Add some random number to the relative position between the landmark
and the ground truth position to simulate real sensor measurements. Then create the landmark
factors and add them to the factor graph.

lmf1measure = [landmarks(1,:) - realpos(1:2,:)] + 0.5*rand(1,3);
lmf2measure = [landmarks(2,:) - realpos(2:3,:)] + 0.5*rand(1,3);
lmf3measure = [landmarks(3,:) - realpos(3:4,:)] + 0.5*rand(1,3);
lmf1 = factorPoseSE3AndPointXYZ([[0 1]' repmat(landmarkIDs(1),2,1)],Measurement=lmf1measure);
lmf2 = factorPoseSE3AndPointXYZ([[1 2]' repmat(landmarkIDs(2),2,1)],Measurement=lmf2measure);
lmf3 = factorPoseSE3AndPointXYZ([[2 3]' repmat(landmarkIDs(3),2,1)],Measurement=lmf3measure);
addFactor(fg,lmf1);
addFactor(fg,lmf2);
addFactor(fg,lmf3);
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Optimize Factor Graph

Optimize the factor graph with the default solver options. The optimization updates the states of all
nodes in the factor graph, so the positions of vehicle and the landmarks update.

fgso = factorGraphSolverOptions;
optimize(fg,fgso)

ans = struct with fields:
             InitialCost: 72.6129
               FinalCost: 0.0011
      NumSuccessfulSteps: 4
    NumUnsuccessfulSteps: 0
               TotalTime: 0.0026
         TerminationType: 0
        IsSolutionUsable: 1

Visualize and Compare Results

Get and store the updated node states for the vehicle and landmarks and plot the results, comparing
the factor graph estimate of the robot path to the known ground truth of the robot.

poseIDs = nodeIDs(fg,NodeType="POSE_SE3");
fgposopt = nodeState(fg,poseIDs)

fgposopt = 4×7

    0.0000    0.0000    0.0000    1.0000    0.0000   -0.0000    0.0000
    2.0278   -1.9778    0.0173    1.0000    0.0018   -0.0034    0.0014
    5.0684    3.0500    0.0871    0.9999   -0.0010   -0.0072    0.0089
   10.0844    2.1475    0.1972    0.9999    0.0006   -0.0121    0.0100

fglmopt = nodeState(fg,landmarkIDs);
exampleHelperPlotPositionsAndLandmarks(realpos,landmarks,fgposopt,fglmopt)
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Tips
• To specify multiple factors and nodes at once for a specific factor type, use the generateNodeID

function and specify the number of factors and the factor type. See the generateNodeID function
for more details.

poseIDPairs = generateNodeID(fg,3,"factorTwoPoseSE2");
ftpse2 = factorTwoPoseSE2(poseIDPairs);

• If you constructed a factor graph containing SE(2) robot poses, you can get the states of all the
pose nodes by first using the nodeIDs function and specifying the node type as "POSE_SE2".
Then use the nodeState function with those node IDs to get the node states of the robot pose
nodes.

poseIDs = nodeIDs(fg,NodeType="POSE_SE2");
poseStates = nodeState(fg,poseIDs);

• Check the types of nodes that each factor creates or connects to before adding factors to the
factor graph to avoid node type mismatch errors. These are the node types that the NodeID
property of each factor object specifies and connects to:

Factor Object Expected Node Types of Specified Node
IDs

factorGPS ["POSE_SE3"]
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Factor Object Expected Node Types of Specified Node
IDs

factorIMU ["POSE_SE3","VEL3","IMU_BIAS","POSE
_SE3","VEL3","IMU_BIAS"]

factorCameraSE3AndPointXYZ ["POSE_SE3","POINT_XYZ"]
factorPoseSE2AndPointXY ["POSE_SE2","POINT_XY"]
factorPoseSE3AndPointXYZ ["POSE_SE3","POINT_XYZ"]
factorTwoPoseSE2 ["POSE_SE2","POSE_SE2"]
factorTwoPoseSE3 ["POSE_SE3","POSE_SE3"]
factorIMUBiasPrior ["IMU_BIAS"]
factorPoseSE3Prior ["POSE_SE3"]
factorVelocity3Prior ["VEL_3"]

For example, factorPoseSE2AndPointXY([1 2]) creates a 2-D landmark factor connecting to
node IDs 1 and 2. If you try to add that factor to a factor graph that already contains nodes 1 and
2, the factor expects nodes 1 and 2 to be of types "POSE_SE2" and "POINT_XY", respectively.

Version History
Introduced in R2022a

References
[1] Dellaert, Frank. Factor graphs and GTSAM: A Hands-On Introduction. Georgia: Georgia Tech,

September, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraphSolverOptions

Functions
importFactorGraph | estimateGravityDirection |
estimateGravityDirectionAndPoseScale

Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
“Landmark SLAM Using AprilTag Markers”
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addFactor
Add factor to factor graph

Syntax
factorIDs = addFactor(graph,factor)
factorIDs = addFactor(graph,factor,groupID)

Description
factorIDs = addFactor(graph,factor) adds one or more factors, factor, to the specified
factorGraph object graph and returns the IDs factorIDs of the added factors.

If adding the factors results in an invalid node, then addFactor returns an error, and indicates the
invalid nodes.

Note addFactor supports only single-factor addition for the factorIMU and factorGPS objects.

factorIDs = addFactor(graph,factor,groupID) adds a factor to the factor graph with group
ID groupID. Node IDs of the same group can be retrieved by group ID using nodeIDs function.

Input Arguments
graph — Factor graph to add factor to
factorGraph object

Factor graph to add factor to, specified as a factorGraph object.

factor — Factors to add to factor graph
valid factor object

Factors to add to the factor graph, specified as a valid factor object.

A valid factor object must be one of these objects, and the object must not create any invalid nodes
when added to the factor graph:

• factorGPS
• factorIMU
• factorCameraSE3AndPointXYZ
• factorPoseSE2AndPointXY
• factorPoseSE3AndPointXYZ
• factorTwoPoseSE2
• factorTwoPoseSE3
• factorIMUBiasPrior
• factorPoseSE3Prior
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• factorVelocity3Prior

With the exception of factorGPS and factorIMU, you can simultaneously add multiple factors to
the factor graph using any one of the listed factor objects. factorGPS and factorIMU support only
single-factor addition.

If the specified factor object creates any invalid nodes, then addFactor adds none of the factors
from the factor object.

groupID — Group IDs for nodes of added factor
nonnegative integer | two-element row vector of nonnegative integers | N-element column vector of
nonnegative integers | N-by-2 matrix of nonnegative integers

Group IDs for nodes of the added factor, specified as any of these options:

groupID Size Grouping Behavior
nonnegative integer Assigns all nodes to one group.

For example, if you add a factor object that has a

NodeID value of 
1 2
3 4

 with a groupID value of 1,

addFactor adds nodes 1, 2, 3, and 4 to group 1.
two-element row vector of nonnegative integers Specify groups for each column of nodes.

For example, if you add a factor object that has a

NodeID value of 
1 2
3 4

 with a groupID value of

1 2 , addFactor adds nodes 1 and 3 to group 1
and adds nodes 2 and 4 to group 2.

The behavior for IMU factors is different. If you
add an IMU factor with a NodeID value of
1 2 3 4 5 6  and groupID set to 1 2 ,
addFactor adds nodes 1, 2, and 3 to group 1
and nodes 4, 5, and 6 to group 2.

N-element column vector of nonnegative integers Group nodes by factor, where N is the total
number of factors specified by the NodeID
property of factor.

For example, if you add a factor object that has a

NodeID value of 
1 2
3 4

 with a groupID value of

1
2

, addFactor adds nodes 1 and 2 to group 1

and adds nodes 3 and 4 to group 2.
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groupID Size Grouping Behavior
N-by-2 matrix of nonnegative integers Add nodes in NodeID to the group specified at its

corresponding index in groupID, where N is the
total number of rows of the NodeID property of
factor.

For example, if you add a factor object that has a

NodeID value of 
1 2
3 4

 with a groupID value of

1 2
3 1

, addFactor add nodes 1 and 4 into group

1, adds node 2 to group 2, and adds node 3 to
group 3.

Note When adding a factorIMU or factorGPS object to a factor graph, groupID accepts only
these values:

• factorIMU — Nonnegative integer or a two-element row vector of nonnegative integers.
• factorGPS — Nonnegative integer

Adding nodes to groups enables you to query node IDs by group by specifying the GroupID name-
value argument of the nodeIDs function.

Output Arguments
factorIDs — Factor IDs of added factors
N-element row vector of nonnegative integers

Factor IDs of the added factors, returned as an N-element row vector of nonnegative integers. N is
the total number of factors added.

The function returns this argument only when it successfully adds the factors to the factor graph. If
adding the factors results in an invalid node, then addFactor adds none of the factors from the
factor object.

Version History
Introduced in R2022a

R2023a: Specify group IDs for added factors

addFactor now supports specifying groups to add nodes of added factors to by group ID.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
factorGraph | factorTwoPoseSE2 | factorTwoPoseSE3 | factorPoseSE3Prior |
factorVelocity3Prior | factorIMUBiasPrior | factorGPS | factorIMU

Functions
nodeIDs

Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
“Landmark SLAM Using AprilTag Markers”
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fixNode
Fix or free nodes in factor graph

Syntax
fixNode(graph,nodeIDs)
fixNode(graph,nodeIDs,flag)

Description
fixNode(graph,nodeIDs) fixes the nodes at the specified IDs, nodeIDs during optimization.

fixNode(graph,nodeIDs,flag) specifies whether to fix or free the node at the specified IDs,
nodeIDs.

Input Arguments
graph — Factor graph containing nodes to fix
factorGraph object

Factor graph containing nodes to fix, specified as a factorGraph object.

nodeIDs — IDs of nodes to fix or free
N-element row vector of nonnegative integers

IDs of the nodes to fix or free within the factor graph, specified as an N-element row vector of
nonnegative integers. N is the total number of nodes to fix or free.

flag — New fix status of node
true or 1 (default) | false or 0

New fix status of the node, specified as a logical 1 (true) or 0 (false). If specified as true, the
function fixes the node. If specified as false, the function frees the node during optimization.

Version History
Introduced in R2022a

R2023a: Fix or free multiple nodes at a time

fixNode now supports fixing or freeing more than one node at a time by specifying nodeIDs as a
vector of node IDs.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
factorGraph
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generateNodeID
Generate new node IDs

Syntax
IDs = generateNodeID(graph,numNodes)
IDs = generateNodeID(graph,nodeMatrixSize)
IDs = generateNodeID(graph,numFactors,factorType)

Description
IDs = generateNodeID(graph,numNodes) generates the specified number numNodes new node
IDs IDs to use when creating new factors to add to the factor graph graph.

The first node ID in IDs is 0 if there are no nodes in graph, otherwise the first node ID in IDs is
equal to graph.NumNodes + 1.

IDs = generateNodeID(graph,nodeMatrixSize) specifies the number of new node IDs to
generate as the number of elements in a matrix with the specified dimensions nodeMatrixSize. The
IDs increment in row-major order.

For example, generateNodeID(graph,[3 2]) creates new node IDs as a matrix in this format.

ID1 ID2
ID3 ID4
ID5 ID6

IDs = generateNodeID(graph,numFactors,factorType) generates new node IDs for the
specified number of factors numFactors. The size of the generated node IDs and how the IDs
increment depends on the number of factors and the factor type factorType

Note The generateNodeID can only generate node IDs for creating one factor using this syntax for
the factorIMU and factorGPS objects. To use this syntax to generate node IDs for the factorIMU
and factorGPS objects, numFactors must be 1.

Examples

Generate Node IDs by Specifying Number of Nodes

Create a factor graph and generate ten node IDs.

fg = factorGraph;
nids = generateNodeID(fg,10)

nids = 1×10

     0     1     2     3     4     5     6     7     8     9
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Generate Node IDs by Specifying Node Matrix Size

Create a factor graph and generate a 4-by-2 node ID matrix.

fg = factorGraph;
nids = generateNodeID(fg,[4 2])

nids = 4×2

     0     1
     2     3
     4     5
     6     7

Generate Node IDs by Specifying Factor Type

Create a factor graph and generate node IDs to specify four factors in a
factorPoseSE3AndPointXYZ object.

fg = factorGraph;
poseAndLandmarkIDs = generateNodeID(fg,4,"factorPoseSE3AndPointXYZ")

poseAndLandmarkIDs = 4×2

     0     1
     0     2
     0     3
     0     4

Note that for landmark factors, the goal is to connect one pose to multiple landmarks. So for
"factorPoseSE3AndPointXYZ" factor type, the first column is constant because it represents the
single pose node, and the second column increments because it represents multiple landmarks nodes.

Create and add the factor object to the factor graph to create the factors.

poseAndLandmarkFactors = factorPoseSE3AndPointXYZ(poseAndLandmarkIDs);
addFactor(fg,poseAndLandmarkFactors);

Generate node IDs to create a factorTwoPoseSE2 object with three factors. Because the last node
ID of the factor graph is 4, the new node IDs start at five.

poseIDs = generateNodeID(fg,3,"factorTwoPoseSE2")

poseIDs = 3×2

     5     6
     6     7
     7     8

Note that "factorTwoPoseSE2" factor type, the goal is create a chain of connected poses, meaning
that each row should be connected to the row before and after it. So for every row after the first row,

2 Classes

2-420



the first element is the second node ID of the previous row. This ensures that each node connects to
the nodes immediately before and after it in sequence.

Create and add the factorTwoPoseSE2 object to the factor graph.

twoPoseFactors = factorTwoPoseSE2(poseIDs);
addFactor(fg,twoPoseFactors);

Input Arguments
graph — Factor graph to generate nodes for
factorGraph object

Factor graph to generate nodes for, specified as a factorGraph object.

The NumNodes property of graph determines what the first generated node ID of the IDs output is.
The first node ID in IDs is 0 if there are no nodes in graph, otherwise the first node ID in IDs is
equal to graph.NumNodes + 1.

numNodes — Number of nodes
nonnegative integer

Number of node IDs to generate, specified as a nonnegative integer.
Example: generateNodeID(fg,3) generates three node IDs as a row vector in the form [NodeID1
NodeID2 NodeID3]

nodeMatrixSize — Generated node ID matrix size
two-element vector of nonnegative integers

Generated node ID matrix size, specified as a two-element vector of nonnegative integers. The first
element specifies the number of rows and the second element specifies the number of columns in the
node ID matrix.
Example: generateNodeID(fg,[3 2]) generates two node IDs for three factors in the form
[NodeID1 NodeID2; NodeID3 NodeID4; NodeID5 NodeID6]

numFactors — Number of factors to generate IDs for
nonnegative integer

Number of factors to generate node IDs for, specified as a nonnegative integer.

If factorType is either "factorGPS" or "factorIMU", then numFactors must be specified as 1.
Example: generateNodeID(fg,1,"factorPoseSE2AndPointXY") creates a set of two node IDs
in the form [SE2PoseNodeID LandmarkNodeID] for one factor.

factorType — Factor type for which to generate node IDs
string scalar | character vector

Factor type for which to generate node IDs, specified as one of these options:

• "factorCameraSE3AndPointXYZ" — factorCameraSE3AndPointXYZ
• "factorIMUBiasPrior" — factorIMUBiasPrior
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• "factorPoseSE2AndPointXY" — factorPoseSE2AndPointXY
• "factorPoseSE3AndPointXYZ" — factorPoseSE3AndPointXYZ
• "factorPoseSE3Prior" — factorPoseSE3Prior
• "factorTwoPoseSE2" — factorTwoPoseSE2
• "factorTwoPoseSE3" — factorTwoPoseSE3
• "factorVelocity3Prior" — factorVelocity3Prior

The generateNodeID function supports only generating node IDs to create a single factor for these
options:

• "factorGPS" — factorGPS
• "factorIMU" — factorIMU

If factorType is either "factorGPS" or "factorIMU", then the numFactors argument must be
specified as 1.

The format of the node IDs corresponds to the format of the NodeID property for that factor object.
For example, if you specify "factorTwoPoseSE2", the function outputs node IDs of the form
[SE2Pose1NodeID SE2Pose2NodeID].
Example: generateNodeID(fg,1,"factorPoseSE2AndPointXY") creates a set of two node IDs
in the form [SE2PoseNodeID LandmarkNodeID]
Data Types: char | string

Output Arguments
IDs — Generated node IDs
N-element row vector | M-by-N matrix

Generated node IDs, returned as one of these options depending on which input arguments you
specify:

1 numNodes — N-element row vector, where N is equal to numNodes, and increments with each
new node ID.

2 nodeMatrixSize — M-by-N matrix, where M and N are equal to the first and second elements
of nodeMatrixSize, respectively. The node IDs increment in row-major order.

For example, if you specify generateNodeID(fg,[3 2]) with no existing nodes in the factor
graph fg, the function generates a node ID matrix in this format.

ID1 ID2
ID3 ID4
ID5 ID6

3 numFactors and factorType — M-by-N matrix, where M is equal to numFactors, and N is the
number of node IDs generated per factor depending on the value of factorType:
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factorType IDs Format
• "factorCameraAndPointXYZ"
• "factorPoseSE2AndPointXY"
• "factorPoseSE3AndPointXYZ"

N-by-2 matrix of node IDs, where N is equal to
numFactors. The first column contains the first
node ID for every row, and the second column
contains unique node IDs that increment down
the second column.

ID1 ID2
ID1 ID3

⋮ ⋮
ID1 IDN

• "factorTwoPoseSE2"
• "factorTwoPoseSE3"

N-by-2 matrix, where N is equal to numFactors.
Each row represents a pair of consecutive nodes.
For every row after the first row, the first element
is the second node ID of the previous row. This
ensures that each node connects to the nodes
immediately before and after it in sequence.

ID1 ID2
ID2 ID3

⋮ ⋮
IDN IDN + 1

• "factorIMUBiasPrior"
• "factorPoseSE3Prior"
• "factorVelocity3Prior"

N-element column vector, where N is equal to
numFactors.

ID1
ID2

⋮
IDN

The first node ID in IDs is 0 if there are no nodes in graph, otherwise the first node ID in IDs is
equal to graph.NumNodes + 1.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
factorGraph | nodeIDs
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hasNode
Check if node ID exists in factor graph

Syntax
nodeExist = hasNode(graph,nodeID)

Description
nodeExist = hasNode(graph,nodeID) checks if a node with the specified ID nodeID exists in
the factor graph graph.

Input Arguments
graph — Factor graph
factorGraph object

Factor graph, specified as a factorGraph object.

nodeID — ID of node to check
nonnegative integer

ID of node to check, specified as a nonnegative integer.

Output Arguments
nodeExist — Node exists in the factor graph
false or 0 | true or 1

Node exists in the factor graph, returned as a logical 0 (false) or 1 (true). The function returns 0 if
the node does not exist, and 1 if it does exist.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph
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isConnected
Check if factor graph is connected

Syntax
connected = isConnected(graph)

Description
connected = isConnected(graph) returns a logical flag indicating whether the specified
factorGraph object graph, contains nodes that all have at least one connection.

Input Arguments
graph — Factor graph
factorGraph object

Factor object, specified as a factorGraph object.

Output Arguments
connected — Graph is connected in factor graph
false or 0 | true or 1

Graph is connected in factor graph, returned as 1 (true) if the factorGraph has a single connected
component and 0 or false if it does not have a single connected component.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph
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isNodeFixed
Check if node is fixed

Syntax
isFixed = isNodeFixed(graph,nodeID)

Description
isFixed = isNodeFixed(graph,nodeID) returns a logical flag indicating whether the node with
the specified nodeID in the factor graph, graph is fixed or not fixed during optimization.

Input Arguments
graph — Factor graph
factorGraph object

Factor graph, specified as a factorGraph object.

nodeID — Node ID of existing node
nonnegative integer

Node ID of an existing node, specified as a nonnegative integer.

Output Arguments
isFixed — Fix status of node
true or 1 | false or 0

Fix status of the node, returned as a logical 1 (true) or 0 (false). The function returns true when
the node is fixed, and returns false when the node is free.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph
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nodeIDs
Get node IDs in factor graph

Syntax
ids = nodeIDs(graph)
ids = nodeIDs(graph,Name=Value)

Description
ids = nodeIDs(graph) gets all node IDs, ids, currently in the factor graph graph.

ids = nodeIDs(graph,Name=Value) specifies options using one or more name-value arguments.

Input Arguments
graph — Factor graph
factorGraph object

Factor graph, specified as a factorGraph object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: nodeIDs(fg,GroupID=1) retrieves all of the node IDs of factor graph fg that are
associated with group 1.

NodeType — Node type of desired nodes in factor graph
string scalar | character vector

Node type of the desired nodes in the factor graph, specified as one of these options:

• "POSE_SE2" — Pose in SE(2) state space
• "POSE_SE3" — Pose in SE(3) state space
• "VEL3" — 3-D velocity
• "POINT_XY" — 2-D point
• "POINT_XYZ" — 3-D point
• "IMU_BIAS" — IMU gyroscope and accelerometer bias

Example: nodeIDs(fg,NodeType="POSE_SE2") retrieves all of the node IDs of nodes that are of
node type POSE_SE2.
Data Types: char | string

FactorType — Factor type that nodes relate to in factor graph
string scalar | character vector
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Factor type that the nodes relate to in the factor graph, specified as one of these options:

• "factorIMU" — factorIMU
• "factorGPS" — factorGPS
• "factorCameraSE3AndPointXYZ" — factorCameraSE3AndPointXYZ
• "factorPoseSE2AndPointXY" — factorPoseSE2AndPointXY
• "factorPoseSE3AndPointXYZ" — factorPoseSE3AndPointXYZ
• "factorTwoPoseSE2" — factorTwoPoseSE2
• "factorTwoPoseSE3" — factorTwoPoseSE3
• "factorIMUBiasPrior" — factorIMUBiasPrior
• "factorPoseSE3Prior" — factorPoseSE3Prior
• "factorVelocity3Prior" — factorVelocity3Prior

Example: nodeIDs(fg,FactorType="factorTwoPoseSE2") retrieves all of the node IDs of nodes
that relate to factors of type factorTwoPoseSE2.
Data Types: char | string

GroupID — Group ID of desired nodes
nonnegative integer | N-element row vector of nonnegative integers

Group ID of desired nodes, specified as a nonnegative integer or N-element row vector of
nonnegative integers. N is the number of groups.

If GroupID is an N-element row vector of nonnegative integers, there must be no duplicate group IDs
in the vector.

To add nodes to a group, specify the group using the groupID argument of the addFactor function.
Example: nodeIDs(fg,GroupID=4) retrieves all of the node IDs of nodes that are in group 4.

Output Arguments
ids — Node IDs
N-element row vector

Node IDs of all nodes that fit the specified criteria within the specified factorGraph object, returned
as an N-element row vector. N is the number of returned nodes. Note that the node IDs may not be
continuous within the vector.

Version History
Introduced in R2022a

R2023a: Get node IDs that match node type, factor type, or group ID

nodeIDs now supports getting node IDs that match node type, factor type, or group ID.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
factorGraph | addFactor
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nodeState
Get or set node state in factor graph

Syntax
state = nodeState(graph,nodeIDs)

nodeState(graph,nodeIDs,newStates)

Description
state = nodeState(graph,nodeIDs) gets the state of the nodes with the specified IDs nodeIDs
in the specified factorGraph object graph.

nodeState(graph,nodeIDs,newStates) sets the state of the nodes with the specified IDs
nodeIDs in the specified factorGraph object graph to the specified states newStates.

Input Arguments
graph — Factor graph
factorGraph object

Factor graph, specified as a factorGraph object.

nodeIDs — IDs of nodes to get or set
N-element row vector of nonnegative integers

IDs of the nodes to get or set, specified as an N-element row vector of nonnegative integers. N is the
total number of nodes to get or set.

All specified node IDs must specify nodes of the same type.

newStates — New node states
M-by-N matrix

New node states, specified as an M-by-N matrix. M is the number of specified IDs and N is the
number of state elements for the specified nodes. Each row of the matrix specifies the state element
values for the corresponding element of nodeIDs.

These are the supported node types and the form of their corresponding states:

• POSE_SE2 — Pose in SE(2) state space in the form [x y theta]. x and y are the x- and y-positions,
respectively, and theta is the orientation.

• POSE_SE3 — Pose in SE(3) state space in the form [x y z qw qx qy qz]. x, y, and z are the x-, y-,
and z-positions, respectively, and qw, qx, qy, and qz represent the orientation as a quaternion.

• VEL3 — 3-D velocity in the form [vx vy vz]. vx, vy, and vz are the x-, y-, and z-velocities,
respectively.

• POINT_XY — 2-D point in the form [x y]. x and y are the x- and y-positions, respectively.
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• POINT_XYZ — 3-D point in the form [x y z]. x, y, and z are the x-, y-, and z-positions, respectively.
• IMU_BIAS — IMU gyroscope and accelerometer bias in the form [bias_gyro_x bias_gyro_y

bias_gyro_z bias_accel_x bias_accel_y bias_accel_z], where:

• bias_gyro_x, bias_gyro_y, and bias_gyro_z are the x, y, and z IMU gyroscope biases,
respectively.

• bias_accel_x, bias_accel_y, and bias_accel_z are the x, y, and z accelerometer biases,
respectively.

Output Arguments
state — State of nodes
M-by-N matrix

State of the nodes, returned as an M-by-N matrix. M is the number of IDs and N is the number of
state elements for the specified nodes.

These are the supported node types and the form of their corresponding states:

• POSE_SE2 — Pose in SE(2) state space in the form [x y theta]. x and y are the x- and y-positions,
respectively, and theta is the orientation.

• POSE_SE3 — Pose in SE(3) state space in the form [x y z qw qx qy qz]. x, y, and z are the x-, y-,
and z-positions, respectively, and qw, qx, qy, and qz represent the orientation as a quaternion.

• VEL3 — 3-D velocity in the form [vx vy vz]. vx, vy, and vz are the x-, y-, and z-velocities,
respectively.

• POINT_XY — 2-D point in the form [x y]. x and y are the x- and y-positions, respectively.
• POINT_XYZ — 3-D point in the form [x y z]. x, y, and z are the x-, y-, and z-positions, respectively.
• IMU_BIAS — IMU gyroscope and accelerometer bias in the form [bias_gyro_x bias_gyro_y

bias_gyro_z bias_accel_x bias_accel_y bias_accel_z], where:

• bias_gyro_x, bias_gyro_y, and bias_gyro_z are the x, y, and z IMU gyroscope biases,
respectively.

• bias_accel_x, bias_accel_y, and bias_accel_z are the x, y, and z accelerometer biases,
respectively.

Version History
Introduced in R2022a

R2023a: Get or set multiple nodes at one time

nodeState now supports getting and setting more than one node at a time by specifying nodeIDs as
a vector of node IDs. newStates also supports additional rows to specify states for multiple nodes at
once.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
factorGraph
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nodeType
Get node type of node in factor graph

Syntax
type = nodeType(graph,nodeID)

Description
type = nodeType(graph,nodeID) returns the type type of the specified node nodeID, in the
factor graph graph.

Input Arguments
graph — Factor graph
factorGraph object

Factor graph, specified as a factorGraph object.

nodeID — ID of node to check
nonnegative integer

ID of node to check, specified as a nonnegative integer.

Output Arguments
type — Type of node
string scalar

Type of the node, returned as one of these node types:

• "POSE_SE2" — Pose in SE(2) state space
• "POSE_SE3" — Pose in SE(3) state space
• "VEL3" — 3-D velocity
• "POINT_XY" — 2-D point
• "POINT_XYZ" — 3-D point
• "IMU_BIAS" — IMU gyroscope and accelerometer bias

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
factorGraph
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optimize
Optimize factor graph

Syntax
solnInfo = optimize(graph,solverOptions)

Description
solnInfo = optimize(graph,solverOptions) optimizes the factorGraph object graph using
the specified factor graph solver options, solverOptions, and returns the resulting solution info
solnInfo.

Examples

Create and Optimize Factor Graph with Custom Options

Create and optimize a factor graph with custom solver options.

Create Factor Graph and Solver Settings

Create a factor graph and solver options with custom settings. Set the maximum number of iterations
to 1000 and set the verbosity of the optimize output to 2.

G = factorGraph;
optns = factorGraphSolverOptions(MaxIterations=1000,VerbosityLevel=2)

optns = 
  factorGraphSolverOptions with properties:

              MaxIterations: 1000
          FunctionTolerance: 1.0000e-06
          GradientTolerance: 1.0000e-10
              StepTolerance: 1.0000e-08
             VerbosityLevel: 2
    TrustRegionStrategyType: 1

Add GPS Factor

Create a GPS factor with node identification number of 1 with NED ReferenceFrame and add it to the
factor graph.

fgps = factorGPS(1,ReferenceFrame="NED");
addFactor(G,fgps);

Optimize Factor Graph

Optimize the factor graph with the custom settings. The results of the optimization are displayed with
the level of detail depending on the VerbosityLevel.

optimize(G,optns);
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iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  0.000000e+00    0.00e+00    0.00e+00   0.00e+00   0.00e+00  1.00e+04        0    6.39e-05    1.67e-04
Terminating: Gradient tolerance reached. Gradient max norm: 0.000000e+00 <= 1.000000e-10

Solver Summary (v 2.0.0-eigen-(3.3.4)-no_lapack-eigensparse-no_openmp-no_custom_blas)

                                     Original                  Reduced
Parameter blocks                            1                        1
Parameters                                  7                        7
Effective parameters                        6                        6
Residual blocks                             1                        1
Residuals                                   3                        3

Minimizer                        TRUST_REGION

Sparse linear algebra library    EIGEN_SPARSE
Trust region strategy                  DOGLEG (TRADITIONAL)

                                        Given                     Used
Linear solver          SPARSE_NORMAL_CHOLESKY   SPARSE_NORMAL_CHOLESKY
Threads                                     1                        1
Linear solver ordering              AUTOMATIC                        1

Cost:
Initial                          0.000000e+00
Final                            0.000000e+00
Change                           0.000000e+00

Minimizer iterations                        1
Successful steps                            1
Unsuccessful steps                          0

Time (in seconds):
Preprocessor                         0.000103

  Residual only evaluation           0.000000 (0)
  Jacobian & residual evaluation     0.000041 (1)
  Linear solver                      0.000000 (0)
Minimizer                            0.006075

Postprocessor                        0.000012
Total                                0.006190

Termination:                      CONVERGENCE (Gradient tolerance reached. Gradient max norm: 0.000000e+00 <= 1.000000e-10)

Input Arguments
graph — Factor graph
factorGraph object

Factor graph, specified as a factorGraph object.

solverOptions — Solver options for factor graph
factorGraphSolverOptions object

Solver options for the factor graph, specified as a factorGraphSolverOptions object.
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Output Arguments
solnInfo — Results of optimization
structure

Results of the optimization, returned as a structure containing:

• InitialCost — Initial cost of the non-linear least squares problem formulated by the factor
graph before the optimization.

• FinalCost — Final cost of the non-linear least squares problem formulated by the factor graph
after the optimization.

Note Cost is the sum of error terms, known as residuals, where each residual is a function of a
subset of factor measurements.

• NumSuccessfulSteps — Number of iterations in which the solver decreases the cost. This value
includes the initialization iteration at 0 in addition to the minimizer iterations.

• NumUnsuccessfulSteps — Number of iterations in which the iteration is numerically invalid or
the solver does not decrease the cost.

• TotalTime — Total solver optimization time in seconds.
• TerminationType — Termination type as an integer in the range [0, 2]:

• 0 — Solver found a solution that meets convergence criterion and decreases in cost after
optimization.

• 1 — Solver could not find a solution that meets convergence criterion after running for the
maximum number of iterations.

• 2 — Solver terminated due to an error.
• IsSolutionUsable — Solution is usable if 1 (true), not usable if 0 (false).

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph | factorGraphSolverOptions

Topics
“Landmark SLAM Using AprilTag Markers”
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factorGraphSolverOptions
Solver options for factor graph

Description
The factorGraphSolverOptions object contains solver options for optimizing a factor graph.

Creation

Syntax
Options = factorGraphSolverOptions
Options = factorGraphSolverOptions(Name=Value)

Description

Options = factorGraphSolverOptions returns a default factor graph solver options object,
Options.

Options = factorGraphSolverOptions(Name=Value) specifies properties using one or more
name-value arguments. For example, factorGraphSolverOptions(MaxIterations=150) sets
the MaxIterations property of the factorGraphSolverOptions object to 150.

Properties
MaxIterations — Maximum number of solver iterations
200 (default) | positive integer

Maximum number of solver iterations, specified as a positive integer.

FunctionTolerance — Lower bound of change in cost function
1e-6 (default) | positive scalar

Lower bound of change in the cost function, specified as a positive scalar. The cost function is:

newCost − oldCost < FunctionTolerance * oldCost

All costs are greater than 0.

GradientTolerance — Lower bound of norm of gradient
1e-10 (default) | positive scalar

Lower bound of the norm of the gradient, specified as positive scalar. The norm function is:

max_norm x− [x * Oplus− g(x)] < = GradientTolerance

Oplus is the manifold version of the plus operation and g(x) is the gradient at x.
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StepTolerance — Lower bound of step size
1e-8 (default) | positive integer

Lower bound of step size of the linear solver, specified as a positive scalar. The relationship between
the step size and the step tolerance is:

deltaX < = ( x + StepTolerance) * StepTolerance

deltaX is the step size of the linear solver.

VerbosityLevel — Command line verbosity flag
0 (default) | 1 | 2

Command line verbosity flag, specified as 1, 2, or 3.

• 0 — Do not print to command line
• 1 — Print solver summary
• 2 — Print per-iteration updates and solver summary

TrustRegionStrategyType — Trust region step computation algorithm
1 (default) | 0

Trust region step computation algorithm, specified as 0 or 1.

• 0 — Levenberg Marquardt
• 1 — Dogleg

Examples

Create and Optimize Factor Graph with Custom Options

Create and optimize a factor graph with custom solver options.

Create Factor Graph and Solver Settings

Create a factor graph and solver options with custom settings. Set the maximum number of iterations
to 1000 and set the verbosity of the optimize output to 2.

G = factorGraph;
optns = factorGraphSolverOptions(MaxIterations=1000,VerbosityLevel=2)

optns = 
  factorGraphSolverOptions with properties:

              MaxIterations: 1000
          FunctionTolerance: 1.0000e-06
          GradientTolerance: 1.0000e-10
              StepTolerance: 1.0000e-08
             VerbosityLevel: 2
    TrustRegionStrategyType: 1

 factorGraphSolverOptions

2-439



Add GPS Factor

Create a GPS factor with node identification number of 1 with NED ReferenceFrame and add it to the
factor graph.

fgps = factorGPS(1,ReferenceFrame="NED");
addFactor(G,fgps);

Optimize Factor Graph

Optimize the factor graph with the custom settings. The results of the optimization are displayed with
the level of detail depending on the VerbosityLevel.

optimize(G,optns);

iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  0.000000e+00    0.00e+00    0.00e+00   0.00e+00   0.00e+00  1.00e+04        0    6.39e-05    1.67e-04
Terminating: Gradient tolerance reached. Gradient max norm: 0.000000e+00 <= 1.000000e-10

Solver Summary (v 2.0.0-eigen-(3.3.4)-no_lapack-eigensparse-no_openmp-no_custom_blas)

                                     Original                  Reduced
Parameter blocks                            1                        1
Parameters                                  7                        7
Effective parameters                        6                        6
Residual blocks                             1                        1
Residuals                                   3                        3

Minimizer                        TRUST_REGION

Sparse linear algebra library    EIGEN_SPARSE
Trust region strategy                  DOGLEG (TRADITIONAL)

                                        Given                     Used
Linear solver          SPARSE_NORMAL_CHOLESKY   SPARSE_NORMAL_CHOLESKY
Threads                                     1                        1
Linear solver ordering              AUTOMATIC                        1

Cost:
Initial                          0.000000e+00
Final                            0.000000e+00
Change                           0.000000e+00

Minimizer iterations                        1
Successful steps                            1
Unsuccessful steps                          0

Time (in seconds):
Preprocessor                         0.000103

  Residual only evaluation           0.000000 (0)
  Jacobian & residual evaluation     0.000041 (1)
  Linear solver                      0.000000 (0)
Minimizer                            0.006075

Postprocessor                        0.000012
Total                                0.006190
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Termination:                      CONVERGENCE (Gradient tolerance reached. Gradient max norm: 0.000000e+00 <= 1.000000e-10)

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
factorGraph

Functions
importFactorGraph

Topics
“Factor Graph-Based Pedestrian Localization with IMU and GPS Sensors”
“Landmark SLAM Using AprilTag Markers”
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insfilterErrorState
Estimate pose from IMU, GPS, and monocular visual odometry (MVO) data

Description
The insfilterErrorState object implements sensor fusion of IMU, GPS, and monocular visual
odometry (MVO) data to estimate pose in the NED (or ENU) reference frame. The filter uses a 17-
element state vector to track the orientation quaternion, velocity, position, IMU sensor biases, and
the MVO scaling factor. The insfilterErrorState object uses an error-state Kalman filter to
estimate these quantities.

Creation

Syntax
filter = insfilterErrorState
filter = insfilterErrorState('ReferenceFrame',RF)
filter = insfilterErrorState( ___ ,Name,Value)

Description

filter = insfilterErrorState creates an insfilterErrorState object with default property
values.

filter = insfilterErrorState('ReferenceFrame',RF) allows you to specify the reference
frame, RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The
default value is 'NED'.

filter = insfilterErrorState( ___ ,Name,Value) also allows you set properties of the
created filter using one or more name-value pairs. Enclose each property name in single quotes.

Properties
IMUSampleRate — Sample rate of IMU (Hz)
100 (default) | positive scalar

Sample rate of the inertial measurement unit (IMU) in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location units are [degrees degrees meters].
Data Types: single | double
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GyroscopeNoise — Multiplicative process noise variance from gyroscope ((rad/s)2)
[1e-6 1e-6 1e-6] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise in the x, y,
and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

GyroscopeBiasNoise — Additive process noise variance from gyroscope bias ((rad/s)2)
[1e-9 1e-9 1e-9] (default) | scalar | 3-element row vector

Additive process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar or 3-element
row vector of positive real finite numbers.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to each axis

Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from accelerometer ((m/s2)2)
[1e-4 1e-4 1e-4] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerometerBiasNoise — Additive process noise variance from accelerometer bias
((m/s2)2)
[1e-4 1e-4 1e-4] (default) | scalar | 3-element row vector

Additive process noise variance from accelerometer bias in (m/s2)2, specified as a scalar or 3-element
row vector of positive real numbers.

• If AccelerometerBiasNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to each axis.

State — State vector of Kalman filter
[1;zeros(15,1);1] (default) | 17-element column vector

State vector of the extended Kalman filter, specified as a 17-element column vector. The state values
represent:
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State Units Index
Orientation (quaternion parts) N/A 1:4
Position (NED or ENU) m 5:7
Velocity (NED or ENU) m/s 8:10
Gyroscope Bias (XYZ) rad/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16
Visual Odometry Scale (XYZ) N/A 17

The default initial state corresponds to an object at rest located at [0 0 0] in geodetic LLA
coordinates.
Data Types: single | double

StateCovariance — State error covariance for Kalman filter
ones(16) (default) | 16-by-16 matrix

State error covariance for the Kalman filter, specified as a 16-by-16-element matrix of real numbers.
The state error covariance values represent:

State Covariance Row/Column Index
δ Rotation Vector (XYZ) 1:3
δ Position (NED or ENU) 4:6
δ Velocity (NED or ENU) 7:9
δ Gyroscope Bias (XYZ) 10:12
δ Accelerometer Bias (XYZ) 13:15
δ Visual Odometry Scale (XYZ) 16

Note that because this is an error-state Kalman filter, it tracks the errors in the states. δ represents
the error in the corresponding state.
Data Types: single | double

Object Functions
predict Update states using accelerometer and gyroscope data for insfilterErrorState
correct Correct states using direct state measurements for insfilterErrorState
residual Residuals and residual covariances from direct state measurements for

insfilterErrorState
fusegps Correct states using GPS data for insfilterErrorState
residualgps Residuals and residual covariance from GPS measurements for insfilterErrorState
fusemvo Correct states using monocular visual odometry for insfilterErrorState
residualmvo Residuals and residual covariance from monocular visual odometry measurements for

insfilterErrorState
pose Current orientation and position estimate for insfilterErrorState
reset Reset internal states for insfilterErrorState
stateinfo Display state vector information for insfilterErrorState
tune Tune insfilterErrorState parameters to reduce estimation error
copy Create copy of insfilterErrorState
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Examples

Estimate Pose of Ground Vehicle

Load logged data of a ground vehicle following a circular trajectory. The .mat file contains IMU and
GPS sensor measurements and ground truth orientation and position.

load('loggedGroundVehicleCircle.mat', ...
    'imuFs','localOrigin', ...
    'initialStateCovariance', ...
    'accelData','gyroData', ...
    'gpsFs','gpsLLA','Rpos','gpsVel','Rvel', ...
    'trueOrient','truePos');

Create an INS filter to fuse IMU and GPS data using an error-state Kalman filter.

initialState = [compact(trueOrient(1)),truePos(1,:),-6.8e-3,2.5002,0,zeros(1,6),1].';
filt = insfilterErrorState;
filt.IMUSampleRate = imuFs;
filt.ReferenceLocation = localOrigin;
filt.State = initialState;
filt.StateCovariance = initialStateCovariance;

Preallocate variables for position and orientation. Allocate a variable for indexing into the GPS data.

numIMUSamples = size(accelData,1);
estOrient = ones(numIMUSamples,1,'quaternion');
estPos = zeros(numIMUSamples,3);

gpsIdx = 1;

Fuse accelerometer, gyroscope, and GPS data. The outer loop predicts the filter forward at the fastest
sample rate (the IMU sample rate).

for idx = 1:numIMUSamples

    % Use predict to estimate the filter state based on the accelData and
    % gyroData arrays.
    predict(filt,accelData(idx,:),gyroData(idx,:));
    
    % GPS data is collected at a lower sample rate than IMU data. Fuse GPS
    % data at the lower rate.
    if mod(idx, imuFs / gpsFs) == 0
        % Correct the filter states based on the GPS data.
        fusegps(filt,gpsLLA(gpsIdx,:),Rpos,gpsVel(gpsIdx,:),Rvel);
        gpsIdx = gpsIdx + 1;
    end
    
    % Log the current pose estimate
    [estPos(idx,:), estOrient(idx,:)] = pose(filt);
end

Calculate the RMS errors between the known true position and orientation and the output from the
error-state filter.

pErr = truePos - estPos;
qErr = rad2deg(dist(estOrient,trueOrient));
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pRMS = sqrt(mean(pErr.^2));
qRMS = sqrt(mean(qErr.^2));

fprintf('Position RMS Error\n');

Position RMS Error

fprintf('\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

    X: 0.40, Y: 0.24, Z: 0.05 (meters)

fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n',qRMS);

    0.30 (degrees)

Visualize the true position and the estimated position.

plot(truePos(:,1),truePos(:,2),estPos(:,1),estPos(:,2),'r:','LineWidth',2)
grid on
axis square
xlabel('N (m)')
ylabel('E (m)')
legend('Ground Truth','Estimation')
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Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterErrorState uses a 17-axis error state Kalman filter structure to estimate pose in the
NED reference frame. The state is defined as:

x =

q0
q1
q2
q3

positionN
positionE
positionD

vN
vE
vD

gyrobiasX
gyrobiasY
gyrobiasZ
accelbiasX
accelbiasY

accelbiasZ
scaleFactor

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame
rotation from the platform's current orientation to the local NED coordinate system.

• positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.
• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.
• scaleFactor –– Scale factor of the pose estimate.

Given the conventional formulation of the state transition function,

xk k− 1 = f (x k− 1 k− 1)

the predicted state estimate is:
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xk k− 1 =

q0 + Δt ∗ q1(gyrobiasX/2− gyroX/2) + Δt ∗ q2 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q3 ∗ (gyrobiasZ/2− gyroZ/2)
q1− Δt ∗ q0(gyrobiasX/2− gyroX/2) + Δt ∗ q3 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q2 ∗ (gyrobiasZ/2− gyroZ/2)
q2− Δt ∗ q3(gyrobiasX/2− gyroX/2)− Δt ∗ q0 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q1 ∗ (gyrobiasZ/2− gyroZ/2)
q3 + Δt ∗ q2(gyrobiasX/2− gyroX/2)− Δt ∗ q1 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q0 ∗ (gyrobiasZ/2− gyroZ/2)

positionN + Δt ∗ vN
positionE + Δt ∗ vE
positionD + Δt ∗ vD

vN − Δt ∗

q0 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ + gN +
q2 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q1 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ −
q3 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ

vE− Δt ∗

q0 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ + gE−
q1 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q2 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ +
q3 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ

vD− Δt ∗

q0 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ + gD +
q1 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ −
q2 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ −
q3 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ

gyrobiasX
gyrobiasY
gyrobiasZ
accelbiasX
accelbiasY
accelbiasZ

scaleFactor
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where

• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilterMARG | insfilterNonholonomic
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correct
Correct states using direct state measurements for insfilterErrorState

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance of FUSE, an insfilterErrorState object, based on the measurement
and measurement covariance. The measurement maps directly to the state specified by the indices
idx.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

idx — State vector index of measurements to correct
N-element vector of increasing integers in the range [1, 17]

State vector index of measurements to correct, specified as an N-element vector of increasing
integers in the range [1, 17].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Gyroscope Bias (XYZ) rad/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16
Visual Odometry Scale (XYZ) N/A 17

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | M-element vector | M-by-M matrix
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Covariance of measurement, specified as a scalar, M-element vector, or M-by-M matrix. If you correct
orientation (state indices 1–4), then M = numel(idx)-1. If you do not correct orientation, then M =
numel(idx).
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilter
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copy
Create copy of insfilterErrorState

Syntax
newFilter = copy(filter)

Description
newFilter = copy(filter) returns a copy of the insfilterErrorState, filter, with the
exactly same property values.

Input Arguments
filter — Filter to be copied
insfilterErrorState

Filter to be copied, specified as an insfilterErrorState object.

Output Arguments
newFilter — New copied filter
insfilterErrorState

New copied filter, returned as an insfilterErrorState object.

Version History
Introduced in R2020b

See Also
insfilterErrorState
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fusegps
Correct states using GPS data for insfilterErrorState

Syntax
[res,resCov] = fusegps(FUSE,position,positionCovariance)
[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = fusegps(FUSE,position,positionCovariance) fuses GPS position data to
correct the state estimate.

[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS position and velocity data to correct the state estimate.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
scalar | 3-element row vector | 3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s)2

scalar | 3-element row vector | 3-by-3 matrix
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Velocity measurement covariance of the GPS receiver in the local NED coordinate system in (m/s)2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-6 vector of real values in m and m/s, respectively.

resCov — Innovation residual
6-by-6 matrix of real values

Innovation residual, returned as a 6-by-6 matrix of real values.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilter
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fusemvo
Correct states using monocular visual odometry for insfilterErrorState

Syntax
[pResidual,oResidual,resCov] = fusemvo(FUSE,position,positionCovariance,ornt,
orntCovariance)

Description
[pResidual,oResidual,resCov] = fusemvo(FUSE,position,positionCovariance,ornt,
orntCovariance) fuses position and orientation data from monocular visual odometry (MVO)
measurements to correct the state and state estimation error covariance.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of camera in local NED coordinate system (m)
3-element row vector

Position of camera in the local NED coordinate system in meters, specified as a real finite 3-element
row vector.
Data Types: single | double

positionCovariance — Position measurement covariance of MVO (m2)
scalar | 3-element vector | 3-by-3 matrix

Position measurement covariance of MVO in m2, specified as a scalar, 3-element vector, or 3-by-3
matrix.
Data Types: single | double

ornt — Orientation of camera with respect to local NED coordinate system
scalar quaternion | rotation matrix

Orientation of the camera with respect to the local NED coordinate system, specified as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix is a frame rotation from the
NED coordinate system to the current camera coordinate system.
Data Types: quaternion | single | double

orntCovariance — Orientation measurement covariance of monocular visual odometry
(rad2)
scalar | 3-element vector | 3-by-3 matrix

Orientation measurement covariance of monocular visual odometry in rad2, specified as a scalar, 3-
element vector, or 3-by-3 matrix.
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Data Types: single | double

Output Arguments
pResidual — Position residual
1-by-3 vector of real values

Position residual, returned as a 1-by-3 vector of real values in m.

oResidual — Rotation vector residual
1-by-3 vector of real values

Rotation vector residual, returned as a 1-by-3 vector of real values in radians.

resCov — Residual covariance
6-by-6 matrix of real values

Residual covariance, returned as a 6-by-6 matrix of real values.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilter
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predict
Update states using accelerometer and gyroscope data for insfilterErrorState

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope data to
update the state estimate.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilter
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reset
Reset internal states for insfilterErrorState

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators of FUSE, an
insfilterErrorState object, to their default values.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilter
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residual
Residuals and residual covariances from direct state measurements for insfilterErrorState

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

idx — State vector index of measurements to correct
N-element vector of increasing integers in the range [1, 17]

State vector index of measurements to correct, specified as an N-element vector of increasing
integers in the range [1, 17].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Gyroscope Bias (XYZ) rad/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16
Visual Odometry Scale (XYZ) N/A 17

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

measurementCovariance — Covariance of measurement
N-by-N matrix

 residual

2-459



Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.

Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState
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residualgps
Residuals and residual covariance from GPS measurements for insfilterErrorState

Syntax
[res,resCov] = residualgps(FUSE,position,positionCovariance)
[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = residualgps(FUSE,position,positionCovariance) computes the
residual, res, and the residual covariance, resCov, based on the GPS position measurement and
covariance.

[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance) computes the residual, res, and the residual covariance, resCov, based on
the GPS position measurement and covariance.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix
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Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-3 vector of real values | 1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-3 vector of real values if the inputs only contain
position information, and returned as 1-by-6 vector of real values if the inputs also contain velocity
information.

resCov — Residual covariance
3-by-3 matrix of real values | 6-by-6 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values if the inputs only contain position
information, and a 6-by-6 matrix of real values if the inputs also contain velocity information.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState
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residualmvo
Residuals and residual covariance from monocular visual odometry measurements for
insfilterErrorState

Syntax
[pResidual,oResidual,resCov] = residualmvo(FUSE,position,positionCovariance,
ornt,orntCovariance)

Description
[pResidual,oResidual,resCov] = residualmvo(FUSE,position,positionCovariance,
ornt,orntCovariance) computes the residual information based on the monocular visual
odometry measurements and covariance.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of camera in local NED coordinate system (m)
3-element row vector

Position of camera in the local NED coordinate system in meters, specified as a real finite 3-element
row vector.
Data Types: single | double

positionCovariance — Position measurement covariance of MVO (m2)
scalar | 3-element vector | 3-by-3 matrix

Position measurement covariance of MVO in m2, specified as a scalar, 3-element vector, or 3-by-3
matrix.
Data Types: single | double

ornt — Orientation of camera with respect to local NED coordinate system
scalar quaternion | rotation matrix

Orientation of the camera with respect to the local NED coordinate system, specified as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix is a frame rotation from the
NED coordinate system to the current camera coordinate system.
Data Types: quaternion | single | double

orntCovariance — Orientation measurement covariance of monocular visual odometry
(rad2)
scalar | 3-element vector | 3-by-3 matrix
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Orientation measurement covariance of monocular visual odometry in rad2, specified as a scalar, 3-
element vector, or 3-by-3 matrix.
Data Types: single | double

Output Arguments
pResidual — Position residual
1-by-3 vector of real values

Position residual, returned as a 1-by-3 vector of real values in meters.

oResidual — Rotation vector residual
1-by-3 vector of real values

Rotation vector residual, returned a 1-by-3 vector of real values in radians.

resCov — Residual covariance
6-by-6 matrix of real values

Residual covariance, returned as a 6-by-6 matrix of real values.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilter

2 Classes

2-464



stateinfo
Display state vector information for insfilterErrorState

Syntax
stateinfo(FUSE)
info = stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property of FUSE, an
insfilterErrorState object, and the associated units.

info = stateinfo(FUSE) returns a structure with fields containing descriptions of the elements of
the state vector of the filter, FUSE.

Examples

State Information of insfilterErrorState

Create an insfilterErrorState object.

filter = insfilterErrorState;

Display the state information of the created filter.

stateinfo(filter)

States                            Units    Index
Orientation (quaternion parts)             1:4  
Position (NAV)                    m        5:7  
Velocity (NAV)                    m/s      8:10 
Gyroscope Bias (XYZ)              rad/s    11:13
Accelerometer Bias (XYZ)          m/s²     14:16
Visual Odometry Scale                      17   

Output the state information of the filter as a structure.

info = stateinfo(filter)

info = struct with fields:
            Orientation: [1 2 3 4]
               Position: [5 6 7]
               Velocity: [8 9 10]
          GyroscopeBias: [11 12 13]
      AccelerometerBias: [14 15 16]
    VisualOdometryScale: 17
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Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

Output Arguments
info — State information
structure

State information, returned as a structure. The field names of the structure are names of the
elements of the state vector in the filter. The values of each field are the corresponding indices of the
state vector.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilter
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pose
Current orientation and position estimate for insfilterErrorState

Syntax
[position,orientation,velocity] = pose(FUSE)
[position,orientation,velocity] = pose(FUSE,format)

Description
[position,orientation,velocity] = pose(FUSE) returns the current estimate of the pose of
the object tracked by FUSE, an insfilterErrorState object.

[position,orientation,velocity] = pose(FUSE,format) returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate expressed in the local coordinate system (m)
3-element row vector

Position estimate expressed in the local coordinate system of the filter in meters, returned as a 3-
element row vector.
Data Types: single | double

orientation — Orientation estimate expressed in the local coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate expressed in the local coordinate system of the filter, returned as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix represents a frame rotation
from the local reference frame of the filter to the body reference frame.
Data Types: single | double | quaternion
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velocity — Velocity estimate expressed in local coordinate system (m/s)
3-element row vector

Velocity estimate expressed in the local coordinate system of the filter in m/s, returned as a 3-element
row vector.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilter
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tune
Tune insfilterErrorState parameters to reduce estimation error

Syntax
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth)
tunedMeasureNoise = tune( ___ ,config)

Description
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth) adjusts the
properties of the insfilterErrorState filter object, filter, and measurement noises to reduce
the root-mean-squared (RMS) state estimation error between the fused sensor data and the ground
truth. The function also returns the tuned measurement noise, tunedMeasureNoise. The function
uses the property values in the filter and the measurement noise provided in the measureNoise
structure as the initial estimate for the optimization algorithm.

tunedMeasureNoise = tune( ___ ,config) specifies the tuning configuration based on a
tunerconfig object, config.

Examples

Tune insfilterErrorState to Optimize Pose Estimate

Load the recorded sensor data and ground truth data.

load('insfilterErrorStateTuneData.mat');

Create tables for the sensor data and the truth data.

sensorData = table(Accelerometer,Gyroscope, ...
    GPSPosition,GPSVelocity,MVOOrientation, ...
    MVOPosition);
groundTruth = table(Orientation,Position);

Create an insfilterErrorState filter object.

filter = insfilterErrorState('State',initialState, ...
    'StateCovariance',initialStateCovariance);

Create a tuner configuration object for the filter. Use the tuner noise function to obtain a set of initial
sensor noises used in the filter.

cfg = tunerconfig('insfilterErrorState','MaxIterations',40);
measNoise = tunernoise('insfilterErrorState')

measNoise = struct with fields:
    MVOOrientationNoise: 1
       MVOPositionNoise: 1
       GPSPositionNoise: 1
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       GPSVelocityNoise: 1

Tune the filter and obtain the tuned parameters.

tunedmn = tune(filter,measNoise,sensorData, ...
    groundTruth,cfg);

    Iteration    Parameter                 Metric
    _________    _________                 ______
    1            AccelerometerNoise        4.1291
    1            GyroscopeNoise            4.1291
    1            AccelerometerBiasNoise    4.1290
    1            GyroscopeBiasNoise        4.1290
    1            GPSPositionNoise          4.0213
    1            GPSVelocityNoise          4.0051
    1            MVOPositionNoise          3.9949
    1            MVOOrientationNoise       3.9886
    2            AccelerometerNoise        3.9886
    2            GyroscopeNoise            3.9886
    2            AccelerometerBiasNoise    3.9886
    2            GyroscopeBiasNoise        3.9886
    2            GPSPositionNoise          3.8381
    2            GPSVelocityNoise          3.8268
    2            MVOPositionNoise          3.8219
    2            MVOOrientationNoise       3.8035
    3            AccelerometerNoise        3.8035
    3            GyroscopeNoise            3.8035
    3            AccelerometerBiasNoise    3.8035
    3            GyroscopeBiasNoise        3.8035
    3            GPSPositionNoise          3.6299
    3            GPSVelocityNoise          3.6276
    3            MVOPositionNoise          3.6241
    3            MVOOrientationNoise       3.5911
    4            AccelerometerNoise        3.5911
    4            GyroscopeNoise            3.5911
    4            AccelerometerBiasNoise    3.5911
    4            GyroscopeBiasNoise        3.5911
    4            GPSPositionNoise          3.1728
    4            GPSVelocityNoise          3.1401
    4            MVOPositionNoise          2.7686
    4            MVOOrientationNoise       2.6632
    5            AccelerometerNoise        2.6632
    5            GyroscopeNoise            2.6632
    5            AccelerometerBiasNoise    2.6632
    5            GyroscopeBiasNoise        2.6632
    5            GPSPositionNoise          2.3242
    5            GPSVelocityNoise          2.2291
    5            MVOPositionNoise          2.2291
    5            MVOOrientationNoise       2.0904
    6            AccelerometerNoise        2.0903
    6            GyroscopeNoise            2.0903
    6            AccelerometerBiasNoise    2.0903
    6            GyroscopeBiasNoise        2.0903
    6            GPSPositionNoise          2.0903
    6            GPSVelocityNoise          2.0141
    6            MVOPositionNoise          1.9952
    6            MVOOrientationNoise       1.8497
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    7            AccelerometerNoise        1.8497
    7            GyroscopeNoise            1.8496
    7            AccelerometerBiasNoise    1.8496
    7            GyroscopeBiasNoise        1.8496
    7            GPSPositionNoise          1.8398
    7            GPSVelocityNoise          1.7528
    7            MVOPositionNoise          1.7362
    7            MVOOrientationNoise       1.5762
    8            AccelerometerNoise        1.5762
    8            GyroscopeNoise            1.5762
    8            AccelerometerBiasNoise    1.5762
    8            GyroscopeBiasNoise        1.5762
    8            GPSPositionNoise          1.5762
    8            GPSVelocityNoise          1.5107
    8            MVOPositionNoise          1.4786
    8            MVOOrientationNoise       1.3308
    9            AccelerometerNoise        1.3308
    9            GyroscopeNoise            1.3308
    9            AccelerometerBiasNoise    1.3308
    9            GyroscopeBiasNoise        1.3308
    9            GPSPositionNoise          1.3308
    9            GPSVelocityNoise          1.2934
    9            MVOPositionNoise          1.2525
    9            MVOOrientationNoise       1.1462
    10           AccelerometerNoise        1.1462
    10           GyroscopeNoise            1.1462
    10           AccelerometerBiasNoise    1.1462
    10           GyroscopeBiasNoise        1.1462
    10           GPSPositionNoise          1.1443
    10           GPSVelocityNoise          1.1332
    10           MVOPositionNoise          1.0964
    10           MVOOrientationNoise       1.0382
    11           AccelerometerNoise        1.0382
    11           GyroscopeNoise            1.0382
    11           AccelerometerBiasNoise    1.0382
    11           GyroscopeBiasNoise        1.0382
    11           GPSPositionNoise          1.0348
    11           GPSVelocityNoise          1.0348
    11           MVOPositionNoise          1.0081
    11           MVOOrientationNoise       0.9734
    12           AccelerometerNoise        0.9734
    12           GyroscopeNoise            0.9734
    12           AccelerometerBiasNoise    0.9734
    12           GyroscopeBiasNoise        0.9734
    12           GPSPositionNoise          0.9693
    12           GPSVelocityNoise          0.9682
    12           MVOPositionNoise          0.9488
    12           MVOOrientationNoise       0.9244
    13           AccelerometerNoise        0.9244
    13           GyroscopeNoise            0.9244
    13           AccelerometerBiasNoise    0.9244
    13           GyroscopeBiasNoise        0.9244
    13           GPSPositionNoise          0.9203
    13           GPSVelocityNoise          0.9199
    13           MVOPositionNoise          0.9045
    13           MVOOrientationNoise       0.8846
    14           AccelerometerNoise        0.8846
    14           GyroscopeNoise            0.8846
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    14           AccelerometerBiasNoise    0.8845
    14           GyroscopeBiasNoise        0.8845
    14           GPSPositionNoise          0.8807
    14           GPSVelocityNoise          0.8807
    14           MVOPositionNoise          0.8659
    14           MVOOrientationNoise       0.8501
    15           AccelerometerNoise        0.8501
    15           GyroscopeNoise            0.8501
    15           AccelerometerBiasNoise    0.8500
    15           GyroscopeBiasNoise        0.8500
    15           GPSPositionNoise          0.8457
    15           GPSVelocityNoise          0.8453
    15           MVOPositionNoise          0.8299
    15           MVOOrientationNoise       0.8173
    16           AccelerometerNoise        0.8173
    16           GyroscopeNoise            0.8173
    16           AccelerometerBiasNoise    0.8172
    16           GyroscopeBiasNoise        0.8172
    16           GPSPositionNoise          0.8122
    16           GPSVelocityNoise          0.8116
    16           MVOPositionNoise          0.7961
    16           MVOOrientationNoise       0.7858
    17           AccelerometerNoise        0.7858
    17           GyroscopeNoise            0.7858
    17           AccelerometerBiasNoise    0.7857
    17           GyroscopeBiasNoise        0.7857
    17           GPSPositionNoise          0.7807
    17           GPSVelocityNoise          0.7800
    17           MVOPositionNoise          0.7655
    17           MVOOrientationNoise       0.7572
    18           AccelerometerNoise        0.7572
    18           GyroscopeNoise            0.7572
    18           AccelerometerBiasNoise    0.7570
    18           GyroscopeBiasNoise        0.7570
    18           GPSPositionNoise          0.7525
    18           GPSVelocityNoise          0.7520
    18           MVOPositionNoise          0.7401
    18           MVOOrientationNoise       0.7338
    19           AccelerometerNoise        0.7337
    19           GyroscopeNoise            0.7337
    19           AccelerometerBiasNoise    0.7335
    19           GyroscopeBiasNoise        0.7335
    19           GPSPositionNoise          0.7293
    19           GPSVelocityNoise          0.7290
    19           MVOPositionNoise          0.7185
    19           MVOOrientationNoise       0.7140
    20           AccelerometerNoise        0.7138
    20           GyroscopeNoise            0.7138
    20           AccelerometerBiasNoise    0.7134
    20           GyroscopeBiasNoise        0.7134
    20           GPSPositionNoise          0.7086
    20           GPSVelocityNoise          0.7068
    20           MVOPositionNoise          0.6956
    20           MVOOrientationNoise       0.6926
    21           AccelerometerNoise        0.6922
    21           GyroscopeNoise            0.6922
    21           AccelerometerBiasNoise    0.6916
    21           GyroscopeBiasNoise        0.6916
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    21           GPSPositionNoise          0.6862
    21           GPSVelocityNoise          0.6822
    21           MVOPositionNoise          0.6682
    21           MVOOrientationNoise       0.6667
    22           AccelerometerNoise        0.6660
    22           GyroscopeNoise            0.6660
    22           AccelerometerBiasNoise    0.6650
    22           GyroscopeBiasNoise        0.6650
    22           GPSPositionNoise          0.6605
    22           GPSVelocityNoise          0.6541
    22           MVOPositionNoise          0.6372
    22           MVOOrientationNoise       0.6368
    23           AccelerometerNoise        0.6356
    23           GyroscopeNoise            0.6356
    23           AccelerometerBiasNoise    0.6344
    23           GyroscopeBiasNoise        0.6344
    23           GPSPositionNoise          0.6324
    23           GPSVelocityNoise          0.6252
    23           MVOPositionNoise          0.6087
    23           MVOOrientationNoise       0.6087
    24           AccelerometerNoise        0.6075
    24           GyroscopeNoise            0.6075
    24           AccelerometerBiasNoise    0.6068
    24           GyroscopeBiasNoise        0.6068
    24           GPSPositionNoise          0.6061
    24           GPSVelocityNoise          0.6032
    24           MVOPositionNoise          0.6032
    24           MVOOrientationNoise       0.6032
    25           AccelerometerNoise        0.6017
    25           GyroscopeNoise            0.6017
    25           AccelerometerBiasNoise    0.6012
    25           GyroscopeBiasNoise        0.6012
    25           GPSPositionNoise          0.6010
    25           GPSVelocityNoise          0.6005
    25           MVOPositionNoise          0.6005
    25           MVOOrientationNoise       0.6005
    26           AccelerometerNoise        0.5992
    26           GyroscopeNoise            0.5992
    26           AccelerometerBiasNoise    0.5987
    26           GyroscopeBiasNoise        0.5987
    26           GPSPositionNoise          0.5983
    26           GPSVelocityNoise          0.5983
    26           MVOPositionNoise          0.5983
    26           MVOOrientationNoise       0.5983
    27           AccelerometerNoise        0.5975
    27           GyroscopeNoise            0.5975
    27           AccelerometerBiasNoise    0.5974
    27           GyroscopeBiasNoise        0.5974
    27           GPSPositionNoise          0.5973
    27           GPSVelocityNoise          0.5972
    27           MVOPositionNoise          0.5971
    27           MVOOrientationNoise       0.5971
    28           AccelerometerNoise        0.5971
    28           GyroscopeNoise            0.5971
    28           AccelerometerBiasNoise    0.5970
    28           GyroscopeBiasNoise        0.5970
    28           GPSPositionNoise          0.5970
    28           GPSVelocityNoise          0.5970
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    28           MVOPositionNoise          0.5970
    28           MVOOrientationNoise       0.5970
    29           AccelerometerNoise        0.5970
    29           GyroscopeNoise            0.5970
    29           AccelerometerBiasNoise    0.5970
    29           GyroscopeBiasNoise        0.5970
    29           GPSPositionNoise          0.5970
    29           GPSVelocityNoise          0.5970
    29           MVOPositionNoise          0.5970
    29           MVOOrientationNoise       0.5970
    30           AccelerometerNoise        0.5969
    30           GyroscopeNoise            0.5969
    30           AccelerometerBiasNoise    0.5969
    30           GyroscopeBiasNoise        0.5969
    30           GPSPositionNoise          0.5969
    30           GPSVelocityNoise          0.5969
    30           MVOPositionNoise          0.5968
    30           MVOOrientationNoise       0.5968
    31           AccelerometerNoise        0.5968
    31           GyroscopeNoise            0.5968
    31           AccelerometerBiasNoise    0.5968
    31           GyroscopeBiasNoise        0.5968
    31           GPSPositionNoise          0.5968
    31           GPSVelocityNoise          0.5968
    31           MVOPositionNoise          0.5967
    31           MVOOrientationNoise       0.5967
    32           AccelerometerNoise        0.5967
    32           GyroscopeNoise            0.5967
    32           AccelerometerBiasNoise    0.5967
    32           GyroscopeBiasNoise        0.5967
    32           GPSPositionNoise          0.5967
    32           GPSVelocityNoise          0.5967
    32           MVOPositionNoise          0.5966
    32           MVOOrientationNoise       0.5966
    33           AccelerometerNoise        0.5966
    33           GyroscopeNoise            0.5966
    33           AccelerometerBiasNoise    0.5966
    33           GyroscopeBiasNoise        0.5966
    33           GPSPositionNoise          0.5966
    33           GPSVelocityNoise          0.5966
    33           MVOPositionNoise          0.5965
    33           MVOOrientationNoise       0.5965
    34           AccelerometerNoise        0.5965
    34           GyroscopeNoise            0.5965
    34           AccelerometerBiasNoise    0.5965
    34           GyroscopeBiasNoise        0.5965
    34           GPSPositionNoise          0.5965
    34           GPSVelocityNoise          0.5964
    34           MVOPositionNoise          0.5964
    34           MVOOrientationNoise       0.5964
    35           AccelerometerNoise        0.5964
    35           GyroscopeNoise            0.5964
    35           AccelerometerBiasNoise    0.5963
    35           GyroscopeBiasNoise        0.5963
    35           GPSPositionNoise          0.5963
    35           GPSVelocityNoise          0.5963
    35           MVOPositionNoise          0.5963
    35           MVOOrientationNoise       0.5963
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    36           AccelerometerNoise        0.5963
    36           GyroscopeNoise            0.5963
    36           AccelerometerBiasNoise    0.5963
    36           GyroscopeBiasNoise        0.5963
    36           GPSPositionNoise          0.5963
    36           GPSVelocityNoise          0.5963
    36           MVOPositionNoise          0.5963
    36           MVOOrientationNoise       0.5963
    37           AccelerometerNoise        0.5963
    37           GyroscopeNoise            0.5963
    37           AccelerometerBiasNoise    0.5963
    37           GyroscopeBiasNoise        0.5963
    37           GPSPositionNoise          0.5962
    37           GPSVelocityNoise          0.5962
    37           MVOPositionNoise          0.5962
    37           MVOOrientationNoise       0.5962
    38           AccelerometerNoise        0.5962
    38           GyroscopeNoise            0.5962
    38           AccelerometerBiasNoise    0.5962
    38           GyroscopeBiasNoise        0.5962
    38           GPSPositionNoise          0.5962
    38           GPSVelocityNoise          0.5961
    38           MVOPositionNoise          0.5961
    38           MVOOrientationNoise       0.5961
    39           AccelerometerNoise        0.5961
    39           GyroscopeNoise            0.5961
    39           AccelerometerBiasNoise    0.5961
    39           GyroscopeBiasNoise        0.5961
    39           GPSPositionNoise          0.5961
    39           GPSVelocityNoise          0.5960
    39           MVOPositionNoise          0.5960
    39           MVOOrientationNoise       0.5960
    40           AccelerometerNoise        0.5960
    40           GyroscopeNoise            0.5960
    40           AccelerometerBiasNoise    0.5960
    40           GyroscopeBiasNoise        0.5960
    40           GPSPositionNoise          0.5960
    40           GPSVelocityNoise          0.5959
    40           MVOPositionNoise          0.5959
    40           MVOOrientationNoise       0.5959

Fuse the sensor data using the tuned filter.

N = size(sensorData,1);
qEstTuned = quaternion.zeros(N,1);
posEstTuned = zeros(N,3);
for ii=1:N
    predict(filter, Accelerometer(ii,:),Gyroscope(ii,:));
    if all(~isnan(GPSPosition(ii,1)))
        fusegps(filter,GPSPosition(ii,:), ...
            tunedmn.GPSPositionNoise,GPSVelocity(ii,:), ...
            tunedmn.GPSVelocityNoise);
    end
    if all(~isnan(MVOPosition(ii,1)))
        fusemvo(filter,MVOPosition(ii,:),tunedmn.MVOPositionNoise, ...
            MVOOrientation{ii},tunedmn.MVOOrientationNoise);
    end
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    [posEstTuned(ii,:),qEstTuned(ii,:)] = pose(filter);
end

Compute the RMS errors.

orientationErrorTuned = rad2deg(dist(qEstTuned,Orientation));
rmsOrientationErrorTuned = sqrt(mean(orientationErrorTuned.^2))

rmsOrientationErrorTuned = 4.4999

positionErrorTuned = sqrt(sum((posEstTuned - Position).^2,2));
rmsPositionErrorTuned = sqrt(mean( positionErrorTuned.^2))

rmsPositionErrorTuned = 0.1172

Visualize the results.

figure;
t = (0:N-1)./filter.IMUSampleRate;
subplot(2,1,1)
plot(t, positionErrorTuned,'b');
title("Tuned insfilterErrorState" + newline + ...
    "Euclidean Distance Position Error")
xlabel('Time (s)');
ylabel('Position Error (meters)')
subplot(2,1,2)
plot(t, orientationErrorTuned,'b');
title("Orientation Error")
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');
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Input Arguments
filter — Filter object
insfilterErrorState object

Filter object, specified as an insfilterErrorState object.

measureNoise — Measurement noise
structure

Measurement noise, specified as a structure. The function uses the measurement noise input as the
initial guess for tuning the measurement noise. The structure must contain these fields:

Field name Description
MVOOrientationNoise Orientation measurement covariance of

monocular visual odometry, specified as a scalar,
3-element vector, or 3-by-3 matrix in rad2

MVOPositionNoise Position measurement covariance of MVO,
specified as a scalar, 3-element vector, or 3-by-3
matrix in m2

GPSPositionNoise Variance of GPS position noise, specified as a
scalar in m2
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Field name Description
GPSVelocityNoise Variance of GPS velocity noise, specified as a

scalar in (m/s)2

sensorData — Sensor data
table

Sensor data, specified as a table. In each row, the sensor data is specified as:

• Accelerometer — Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.
• Gyroscope— Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.
• MVOOrienation — Orientation of the camera with respect to the local navigation frame, specified

as a scalar quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix is a frame
rotation from the local navigation frame to the current camera coordinate system.

• MVOPosition — Position of camera in the local navigation frame, specified as a real 3-element
row vector in meters.

• GPSPosition — GPS position data, specified as a 1-by-3 vector of latitude in degrees, longitude
in degrees, and altitude in meters.

• GPSVelocity — GPS velocity data, specified as a 1-by-3 vector of scalars in m/s.

If the GPS sensor does not produce complete measurements, specify the corresponding entry for
GPSPosition and/or GPSVelocity as NaN. If you set the Cost property of the tuner configuration
input, config, to Custom, then you can use other data types for the sensorData input based on
your choice.

groundTruth — Ground truth data
table

Ground truth data, specified as a table. In each row, the table can optionally contain any of these
variables:

• Orientation — Orientation from the navigation frame to the body frame, specified as a
quaternion or a 3-by-3 rotation matrix.

• Position — Position in navigation frame, specified as a 1-by-3 vector of scalars in meters.
• Velocity — Velocity in navigation frame, specified as a 1-by-3 vector of scalars in m/s.
• AccelerometerBias — Accelerometer delta angle bias in body frame, specified as a 1-by-3

vector of scalars in m2/s.
• VisualOdometryScale — Visual odometry scale factor, specified as a scalar.

The function processes each row of the sensorData and groundTruth tables sequentially to
calculate the state estimate and RMS error from the ground truth. State variables not present in
groundTruth input are ignored for the comparison. The sensorData and the groundTruth tables
must have the same number of rows.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the groundTruth input based on your choice.

config — Tuner configuration
tunerconfig object

Tuner configuration, specified as a tunerconfig object.

2 Classes

2-478



Output Arguments
tunedMeasureNoise — Tuned measurement noise
structure

Tuned measurement noise, returned as a structure. The structure contains these fields.

Field name Description
MVOOrientationNoise Orientation measurement covariance of

monocular visual odometry, specified as a scalar,
3-element vector, or 3-by-3 matrix in rad2

MVOPositionNoise Position measurement covariance of MVO,
specified as a scalar, 3-element vector, or 3-by-3
matrix in m2

GPSPositionNoise Variance of GPS position noise, specified as a
scalar in m2

GPSVelocityNoise Variance of GPS velocity noise, specified as a
scalar in (m/s)2

Version History
Introduced in R2021a

References
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman

Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.

See Also
tunerconfig | tunernoise
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gpsSensor
GPS receiver simulation model

Description
The gpsSensor System object models data output from a Global Positioning System (GPS) receiver.
The object models the position noise as a first order Gauss Markov process, in which the sigma values
are specified in the HorizontalPositionAccuracy and the VerticalPositionAccuracy
properties. The object models the velocity noise as Gaussian noise with its sigma value specified in
the VelocityAccuracy property.

To model a GPS receiver:

1 Create the gpsSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
GPS = gpsSensor
GPS = gpsSensor('ReferenceFrame',RF)
GPS = gpsSensor( ___ ,Name,Value)

Description

GPS = gpsSensor returns a gpsSensor System object that computes a Global Positioning System
receiver reading based on a local position and velocity input signal. The default reference position in
geodetic coordinates is

• latitude: 0o N
• longitude: 0o E
• altitude: 0 m

GPS = gpsSensor('ReferenceFrame',RF) returns a gpsSensor System object that computes a
global positioning system receiver reading relative to the reference frame RF. Specify RF as 'NED'
(North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

GPS = gpsSensor( ___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Update rate of receiver (Hz)
1 (default) | positive real scalar

Update rate of the receiver in Hz, specified as a positive real scalar.
Data Types: single | double

ReferenceLocation — Origin of local navigation reference frame
[0 0 0] (default) | [latitude longitude altitude]

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location is in [degrees degrees meters]. The degree format is decimal degrees (DD).
Data Types: single | double

PositionInputFormat — Position coordinate input format
'Local' (default) | 'Geodetic'

Position coordinate input format, specified as 'Local' or 'Geodetic'.

• If you set the property as 'Local', then you need to specify the truePosition input as
Cartesian coordinates with respect to the local navigation frame whose origin is fixed and defined
by the ReferenceLcation property. Additionally, when you specify the trueVelocity input,
you need to specify it with respect to this local navigation frame.

• If you set the property as 'Geodetic', then you need to specify the truePosition input as
geodetic coordinates in latitude, longitude, and altitude. Additionally, when you specify the
trueVelocity input, you need to specify it with respect to the navigation frame (NED or ENU)
whose origin corresponds to the truePosition input. When setting the property as
'Geodetic', the gpsSensor object neglects the ReferenceLocation property.

Data Types: character vector

HorizontalPositionAccuracy — Horizontal position accuracy (m)
1.6 (default) | nonnegative real scalar

Horizontal position accuracy in meters, specified as a nonnegative real scalar. The horizontal position
accuracy specifies the standard deviation of the noise in the horizontal position measurement.

Tunable: Yes
Data Types: single | double

VerticalPositionAccuracy — Vertical position accuracy (m)
3 (default) | nonnegative real scalar

Vertical position accuracy in meters, specified as a nonnegative real scalar. The vertical position
accuracy specifies the standard deviation of the noise in the vertical position measurement.

Tunable: Yes
Data Types: single | double
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VelocityAccuracy — Velocity accuracy (m/s)
0.1 (default) | nonnegative real scalar

Velocity accuracy in meters per second, specified as a nonnegative real scalar. The velocity accuracy
specifies the standard deviation of the noise in the velocity measurement.

Tunable: Yes
Data Types: single | double

DecayFactor — Global position noise decay factor
0.999 (default) | scalar in the range [0,1]

Global position noise decay factor, specified as a scalar in the range [0,1].

A decay factor of 0 models the global position noise as a white noise process. A decay factor of 1
models the global position noise as a random walk process.

Tunable: Yes
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer
scalar.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)

Description

[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)
computes global navigation satellite system receiver readings from the position and velocity inputs.
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Input Arguments

truePosition — Position of GPS receiver in navigation coordinate system
N-by-3 matrix

Position of the GPS receiver in the navigation coordinate system, specified as a real finite N-by-3
matrix. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', specify truePosition as
Cartesian coordinates with respect to the local navigation frame whose origin is fixed at
ReferenceLocation.

• When the PositionInputFormat property is specified as 'Geodetic', specify truePosition
as geodetic coordinates in [latitude longitude altitude]. Latitude and longitude are
in meters. altitude is the height above the WGS84 ellipsoid model in meters.

Data Types: single | double

trueVelocity — Velocity of GPS receiver in navigation coordinate system (m/s)
N-by-3 matrix

Velocity of GPS receiver in the navigation coordinate system in meters per second, specified as a real
finite N-by-3 matrix. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', specify trueVelocity with
respect to the local navigation frame (NED or ENU) whose origin is fixed at
ReferenceLocation.

• When the PositionInputFormat property is specified as 'Geodetic', specify trueVelocity
with respect to the navigation frame (NED or ENU) whose origin corresponds to the
truePosition input.

Data Types: single | double

Output Arguments

position — Position in LLA coordinate system
N-by-3 matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA) coordinate system,
returned as a real finite N-by-3 array. Latitude and longitude are in degrees with North and East
being positive. Altitude is in meters.

N is the number of samples in the current frame.
Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity of the GPS receiver in the local navigation coordinate system in meters per second, returned
as a real finite N-by-3 array. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', the returned velocity is with
respect to the local navigation frame whose origin is fixed at ReferenceLocation.
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• When the PositionInputFormat property is specified as 'Geodetic', the returned velocity is
with respect to the navigation frame (NED or ENU) whose origin corresponds to the position
output.

Data Types: single | double

groundspeed — Magnitude of horizontal velocity in local navigation coordinate system
(m/s)
N-by-1 column vector

Magnitude of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
meters per second, returned as a real finite N-by-1 column vector.

N is the number of samples in the current frame.
Data Types: single | double

course — Direction of horizontal velocity in local navigation coordinate system (°)
N-by-1 column vector

Direction of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
degrees, returned as a real finite N-by-1 column of values between 0 and 360. North corresponds to
360 degrees and East corresponds to 90 degrees.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate GPS Position Measurements From Stationary Input

Create a gpsSensor System object™ to model GPS receiver data. Assume a typical one Hz sample
rate and a 1000-second simulation time. Define the reference location in terms of latitude, longitude,
and altitude (LLA) of Natick, MA (USA). Define the sensor as stationary by specifying the true
position and velocity with zeros.

fs = 1;
duration = 1000;
numSamples = duration*fs;
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refLoc = [42.2825 -71.343 53.0352];

truePosition = zeros(numSamples,3);
trueVelocity = zeros(numSamples,3);

gps = gpsSensor('SampleRate',fs,'ReferenceLocation',refLoc);

Call gps with the specified truePosition and trueVelocity to simulate receiving GPS data for a
stationary platform.

position = gps(truePosition,trueVelocity);

Plot the true position and the GPS sensor readings for position.

t = (0:(numSamples-1))/fs;

subplot(3, 1, 1)
plot(t, position(:,1), ...
     t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
     t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

subplot(3, 1, 3)
plot(t, position(:,3), ...
     t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)')
xlabel('Time (s)')
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The position readings have noise controlled by HorizontalPositionAccuracy,
VerticalPositionAccuracy, VelocityAccuracy, and DecayFactor. The DecayFactor
property controls the drift in the noise model. By default, DecayFactor is set to 0.999, which
approaches a random walk process. To observe the effect of the DecayFactor property:

1 Reset the gps object.
2 Set DecayFactor to 0.5.
3 Call gps with variables specifying a stationary position.
4 Plot the results.

The GPS position readings now oscillate around the true position.

reset(gps)
gps.DecayFactor = 0.5;
position = gps(truePosition,trueVelocity);

subplot(3, 1, 1)
plot(t, position(:,1), ...
     t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings - Decay Factor = 0.5')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
     t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')
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subplot(3, 1, 3)
plot(t, position(:,3), ...
     t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)')
xlabel('Time (s)')

Relationship Between Groundspeed and Course Accuracy

GPS receivers achieve greater course accuracy as groundspeed increases. In this example, you create
a GPS receiver simulation object and simulate the data received from a platform that is accelerating
from a stationary position.

Create a default gpsSensor System object™ to model data returned by a GPS receiver.

GPS = gpsSensor

GPS = 
  gpsSensor with properties:

                    SampleRate: 1                  Hz         
           PositionInputFormat: 'Local'                       
             ReferenceLocation: [0 0 0]            [deg deg m]
    HorizontalPositionAccuracy: 1.6                m          
      VerticalPositionAccuracy: 3                  m          
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              VelocityAccuracy: 0.1                m/s        
                  RandomStream: 'Global stream'               
                   DecayFactor: 0.999                         

Create matrices to describe the position and velocity of a platform in the NED coordinate system. The
platform begins from a stationary position and accelerates to 60 m/s North-East over 60 seconds,
then has a vertical acceleration to 2 m/s over 2 seconds, followed by a 2 m/s rate of climb for another
8 seconds. Assume a constant velocity, such that the velocity is the simple derivative of the position.

duration = 70;
numSamples = duration*GPS.SampleRate;

course = 45*ones(duration,1);
groundspeed = [(1:60)';60*ones(10,1)];

Nvelocity   = groundspeed.*sind(course);
Evelocity   = groundspeed.*cosd(course);
Dvelocity   = [zeros(60,1);-1;-2*ones(9,1)];
NEDvelocity = [Nvelocity,Evelocity,Dvelocity];

Ndistance   = cumsum(Nvelocity);
Edistance   = cumsum(Evelocity);
Ddistance   = cumsum(Dvelocity);
NEDposition = [Ndistance,Edistance,Ddistance];

Model GPS measurement data by calling the GPS object with your velocity and position matrices.

[~,~,groundspeedMeasurement,courseMeasurement] = GPS(NEDposition,NEDvelocity);

Plot the groundspeed and the difference between the true course and the course returned by the GPS
simulator.

As groundspeed increases, the accuracy of the course increases. Note that the velocity increase
during the last ten seconds has no effect, because the additional velocity is not in the ground plane.

t = (0:numSamples-1)/GPS.SampleRate;

subplot(2,1,1)
plot(t,groundspeed);
ylabel('Speed (m/s)')
title('Relationship Between Groundspeed and Course Accuracy')

subplot(2,1,2)
courseAccuracy = courseMeasurement - course;
plot(t,courseAccuracy)
xlabel('Time (s)');
ylabel('Course Accuracy (degrees)')

2 Classes

2-488



Model GPS Receiver Data

Simulate GPS data received during a trajectory from the city of Natick, MA, to Boston, MA.

Define the decimal degree latitude and longitude for the city of Natick, MA USA, and Boston, MA
USA. For simplicity, set the altitude for both locations to zero.

NatickLLA = [42.27752809999999, -71.34680909999997, 0];
BostonLLA = [42.3600825, -71.05888010000001, 0];

Define a motion that can take a platform from Natick to Boston in 20 minutes. Set the origin of the
local NED coordinate system as Natick. Create a waypointTrajectory object to output the
trajectory 10 samples at a time.

fs = 1;
duration = 60*20;

bearing = 68; % degrees
distance = 25.39e3; % meters
distanceEast = distance*sind(bearing);
distanceNorth = distance*cosd(bearing);

NatickNED = [0,0,0];
BostonNED = [distanceNorth,distanceEast,0];
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trajectory = waypointTrajectory( ...
    'Waypoints', [NatickNED;BostonNED], ...
    'TimeOfArrival',[0;duration], ...
    'SamplesPerFrame',10, ...
    'SampleRate',fs);

Create a gpsSensor object to model receiving GPS data for the platform. Set the
HorizontalPositionalAccuracy to 25 and the DecayFactor to 0.25 to emphasize the noise.
Set the ReferenceLocation to the Natick coordinates in LLA.

GPS = gpsSensor( ...
    'HorizontalPositionAccuracy',25, ...
    'DecayFactor',0.25, ...
    'SampleRate',fs, ...
    'ReferenceLocation',NatickLLA);

Open a figure and plot the position of Natick and Boston in LLA. Ignore altitude for simplicity.

In a loop, call the gpsSensor object with the ground-truth trajectory to simulate the received GPS
data. Plot the ground-truth trajectory and the model of received GPS data.

figure(1)
plot(NatickLLA(1),NatickLLA(2),'ko', ...
     BostonLLA(1),BostonLLA(2),'kx')
xlabel('Latitude (degrees)')
ylabel('Longitude (degrees)')
title('GPS Sensor Data for Natick to Boston Trajectory')
hold on

while ~isDone(trajectory)
    [truePositionNED,~,trueVelocityNED] = trajectory();
    reportedPositionLLA = GPS(truePositionNED,trueVelocityNED);

    figure(1)
    plot(reportedPositionLLA(:,1),reportedPositionLLA(:,2),'r.')
end
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As a best practice, release System objects when complete.

release(GPS)
release(trajectory)

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
imuSensor | insSensor
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Topics
“Model IMU, GPS, and INS/GPS”
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gyroparams
Gyroscope sensor parameters

Description
The gyroparams class creates a gyroscope sensor parameters object. You can use this object to
model a gyroscope when simulating an IMU with imuSensor. See the “Algorithms” on page 2-545
section of imuSensor for details of gyroparams modeling.

Creation

Syntax
params = gyroparams
params = gyroparams(Name,Value)

Description

params = gyroparams returns an ideal gyroscope sensor parameters object with default values.

params = gyroparams(Name,Value) configures gyroparams object properties using one or more
Name,Value pair arguments. Name is a property name and Value is the corresponding value. Name
must appear inside single quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Properties
MeasurementRange — Maximum sensor reading (rad/s)
Inf (default) | real positive scalar

Maximum sensor reading in rad/s, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements ((rad/s)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (rad/s)/LSB, specified as a real nonnegative scalar. Here, LSB
is the acronym for least significant bit.
Data Types: single | double

ConstantBias — Constant sensor offset bias (rad/s)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in rad/s, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double
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AxesMisalignment — Sensor axes skew (%)
diag([100 100 100]) (default) | scalar in the range [0,100] | 3-element row vector in the range
[0,100] | 3-by-3 matrix in the range [0,100]

Sensor axes skew in percentage, specified as a scalar, a 3-element row vector, or a 3-by-3 matrix with
values ranging from 0 to 100. The diagonal elements of the matrix account for the misalignment
effects for each axes. The off-diagonal elements account for the cross-axes misalignment effects. The
measured state vmeasure is obtained from the true state vtrue via the misalignment matrix as:

vmeasure = 1
100Mvtrue = 1

100

m11 m12 m13
m21 m22 m23
m31 m32 m33

vtrue

• If you specify the property as a scalar, then all the off-diagonal elements of the matrix take the
value of the specified scalar and all the diagonal elements are 100.

• If you specify the property as a vector [a b c], then m21 = m31 = a, m12 = m32 = b, and m13 = m23 =
c. All the diagonal elements are 100.

Data Types: single | double

NoiseDensity — Power spectral density of sensor noise ((rad/s)/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in (rad/s)/√Hz, specified as a real scalar or 3-element row
vector. This property corresponds to the angle random walk (ARW). Any scalar input is converted into
a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (rad/s)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in rad/s, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor ((rad/s)(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (rad/s)(√Hz), specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

TemperatureBias — Sensor bias from temperature ((rad/s)/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in ((rad/s)/℃), specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double
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TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in (%/℃), specified as a real scalar or 3-element row vector with
values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector where
each element has the input scalar value.
Data Types: single | double

AccelerationBias — Sensor bias from linear acceleration (rad/s)/(m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from linear acceleration in (rad/s)/(m/s2), specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

Examples
Generate Gyroscope Data from Stationary Inputs

Generate gyroscope data for an imuSensor object from stationary inputs.

Generate a gyroscope parameter object with a maximum sensor reading of 4.363 rad/s and a
resolution of 1.332e-4 rad/s /LSB. The constant offset bias is 0.349 rad/s. The sensor has a power

spectral density of 8.727e-4 rad/s/ Hz
. The bias from temperature is 0.349 rad/s/0C

. The bias from

temperature is 0.349 rad/s2 /0C. The scale factor error from temperature is 0.2%/0C. The sensor
axes are skewed by 2%. The sensor bias from linear acceleration is 0.178e-3 (rad/s)/(m/s2)

params = gyroparams('MeasurementRange',4.363,'Resolution',1.332e-04,'ConstantBias',0.349,'NoiseDensity',8.727e-4,'TemperatureBias',0.349,'TemperatureScaleFactor',0.02,'AxesMisalignment',2,'AccelerationBias',0.178e-3);

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object using the
gyroscope parameter object.

Fs = 100;
numSamples = 1000;
t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('accel-gyro','SampleRate', Fs, 'Gyroscope', params);

Generate gyroscope data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);
 
[~, gyroData] = imu(acc, angvel, orient);

Plot the resultant gyroscope data.

plot(t, gyroData)
title('Gyroscope')
xlabel('s')
ylabel('rad/s')
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Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
accelparams | magparams | imuSensor
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imufilter

Orientation from accelerometer and gyroscope readings

Description
The imufilter System object fuses accelerometer and gyroscope sensor data to estimate device
orientation.

To estimate device orientation:

1 Create the imufilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
FUSE = imufilter
FUSE = imufilter('ReferenceFrame',RF)
FUSE = imufilter( ___ ,Name,Value)

Description

FUSE = imufilter returns an indirect Kalman filter System object, FUSE, for fusion of
accelerometer and gyroscope data to estimate device orientation. The filter uses a nine-element state
vector to track error in the orientation estimate, the gyroscope bias estimate, and the linear
acceleration estimate.

FUSE = imufilter('ReferenceFrame',RF) returns an imufilter filter System object that
fuses accelerometer and gyroscope data to estimate device orientation relative to the reference frame
RF. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

FUSE = imufilter( ___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: FUSE = imufilter('SampleRate',200,'GyroscopeNoise',1e-6) creates a System
object, FUSE, with a 200 Hz sample rate and gyroscope noise set to 1e-6 radians per second squared.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of input sensor data (Hz)
100 (default) | positive finite scalar

Sample rate of the input sensor data in Hz, specified as a positive finite scalar.

Tunable: No
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

DecimationFactor — Decimation factor
1 (default) | positive integer scalar

Decimation factor by which to reduce the sample rate of the input sensor data, specified as a positive
integer scalar.

The number of rows of the inputs, accelReadings and gyroReadings, must be a multiple of the
decimation factor.

Tunable: No
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

AccelerometerNoise — Variance of accelerometer signal noise ((m/s2)2)
0.00019247 (default) | positive real scalar

Variance of accelerometer signal noise in (m/s2)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

GyroscopeNoise — Variance of gyroscope signal noise ((rad/s)2)
9.1385e-5 (default) | positive real scalar

Variance of gyroscope signal noise in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

GyroscopeDriftNoise — Variance of gyroscope offset drift ((rad/s)2)
3.0462e-13 (default) | positive real scalar

Variance of gyroscope offset drift in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

LinearAccelerationNoise — Variance of linear acceleration noise ((m/s2)2)
0.0096236 (default) | positive real scalar

Variance of linear acceleration noise in (m/s2)2, specified as a positive real scalar. Linear acceleration
is modeled as a lowpass filtered white noise process.
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Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

LinearAcclerationDecayFactor — Decay factor for linear acceleration drift
0.5 (default) | scalar in the range [0,1]

Decay factor for linear acceleration drift, specified as a scalar in the range [0,1]. If linear acceleration
is changing quickly, set LinearAccelerationDecayFactor to a lower value. If linear acceleration
changes slowly, set LinearAccelerationDecayFactor to a higher value. Linear acceleration drift
is modeled as a lowpass-filtered white noise process.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

InitialProcessNoise — Covariance matrix for process noise
9-by-9 matrix

Covariance matrix for process noise, specified as a 9-by-9 matrix. The default is:
  Columns 1 through 6

   0.000006092348396                   0                   0                   0                   0                   0
                   0   0.000006092348396                   0                   0                   0                   0
                   0                   0   0.000006092348396                   0                   0                   0
                   0                   0                   0   0.000076154354947                   0                   0
                   0                   0                   0                   0   0.000076154354947                   0
                   0                   0                   0                   0                   0   0.000076154354947
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0

  Columns 7 through 9

                   0                   0                   0
                   0                   0                   0
                   0                   0                   0
                   0                   0                   0
                   0                   0                   0
                   0                   0                   0
   0.009623610000000                   0                   0
                   0   0.009623610000000                   0
                   0                   0   0.009623610000000

The initial process covariance matrix accounts for the error in the process model.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size of the
output depends on the input size, N, and the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

Data Types: char | string
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Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings)

Description

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings) fuses
accelerometer and gyroscope readings to compute orientation and angular velocity measurements.
The algorithm assumes that the device is stationary before the first call.

Input Arguments

accelReadings — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix.
N is the number of samples, and the three columns of accelReadings represent the [x y z]
measurements. Accelerometer readings are assumed to correspond to the sample rate specified by
the SampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix. N is
the number of samples, and the three columns of gyroReadings represent the [x y z] measurements.
Gyroscope readings are assumed to correspond to the sample rate specified by the SampleRate
property.
Data Types: single | double

Output Arguments

orientation — Orientation that rotates quantities from global coordinate system to sensor
body coordinate system
M-by-1 vector of quaternions (default) | 3-by-3-by-M array

Orientation that can rotate quantities from a global coordinate system to a body coordinate system,
returned as quaternions or an array. The size and type of orientation depends on whether the
OrienationFormat property is set to 'quaternion' or 'Rotation matrix':

• 'quaternion' –– The output is an M-by-1 vector of quaternions, with the same underlying data
type as the inputs.

• 'Rotation matrix' –– The output is a 3-by-3-by-M array of rotation matrices the same data
type as the inputs.

The number of input samples, N, and the DecimationFactor property determine M.

You can use orientation in a rotateframe function to rotate quantities from a global coordinate
system to a sensor body coordinate system.
Data Types: quaternion | single | double
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angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
M-by-3 array (default)

Angular velocity with gyroscope bias removed in the sensor body coordinate system in rad/s, returned
as an M-by-3 array. The number of input samples, N, and the DecimationFactor property determine
M.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to imufilter
tune Tune imufilter parameters to reduce estimation error

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Orientation from IMU data

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and magnetometer
sensor data from a device oscillating in pitch (around y-axis), then yaw (around z-axis), and then roll
(around x-axis). The file also contains the sample rate of the recording.

load 'rpy_9axis.mat' sensorData Fs

accelerometerReadings = sensorData.Acceleration;
gyroscopeReadings = sensorData.AngularVelocity;

Create an imufilter System object™ with sample rate set to the sample rate of the sensor data.
Specify a decimation factor of two to reduce the computational cost of the algorithm.

decim = 2;
fuse = imufilter('SampleRate',Fs,'DecimationFactor',decim);

Pass the accelerometer readings and gyroscope readings to the imufilter object, fuse, to output
an estimate of the sensor body orientation over time. By default, the orientation is output as a vector
of quaternions.

q = fuse(accelerometerReadings,gyroscopeReadings);

Orientation is defined by the angular displacement required to rotate a parent coordinate system to a
child coordinate system. Plot the orientation in Euler angles in degrees over time.
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imufilter fusion correctly estimates the change in orientation from an assumed north-facing initial
orientation. However, the device's x-axis was pointing southward when recorded. To correctly
estimate the orientation relative to the true initial orientation or relative to NED, use ahrsfilter.

time = (0:decim:size(accelerometerReadings,1)-1)/Fs;

plot(time,eulerd(q,'ZYX','frame'))
title('Orientation Estimate')
legend('Z-axis', 'Y-axis', 'X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')

Model Tilt Using Gyroscope and Accelerometer Readings

Model a tilting IMU that contains an accelerometer and gyroscope using the imuSensor System
object™. Use ideal and realistic models to compare the results of orientation tracking using the
imufilter System object.

Load a struct describing ground-truth motion and a sample rate. The motion struct describes
sequential rotations:

1 yaw: 120 degrees over two seconds
2 pitch: 60 degrees over one second
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3 roll: 30 degrees over one-half second
4 roll: -30 degrees over one-half second
5 pitch: -60 degrees over one second
6 yaw: -120 degrees over two seconds

In the last stage, the motion struct combines the 1st, 2nd, and 3rd rotations into a single-axis
rotation. The acceleration, angular velocity, and orientation are defined in the local NED coordinate
system.

load y120p60r30.mat motion fs
accNED = motion.Acceleration;
angVelNED = motion.AngularVelocity;
orientationNED = motion.Orientation;

numSamples = size(motion.Orientation,1);
t = (0:(numSamples-1)).'/fs;

Create an ideal IMU sensor object and a default IMU filter object.

IMU = imuSensor('accel-gyro','SampleRate',fs);

aFilter = imufilter('SampleRate',fs);

In a loop:

1 Simulate IMU output by feeding the ground-truth motion to the IMU sensor object.
2 Filter the IMU output using the default IMU filter object.

orientation = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

    orientation(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

Plot the orientation over time.

figure(1)
plot(t,eulerd(orientation,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Ideal IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')
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Modify properties of your imuSensor to model real-world sensors. Run the loop again and plot the
orientation estimate over time.

IMU.Accelerometer = accelparams( ...
    'MeasurementRange',19.62, ...
    'Resolution',0.00059875, ...
    'ConstantBias',0.4905, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',0.003924, ...
    'BiasInstability',0, ...
    'TemperatureBias', [0.34335 0.34335 0.5886], ...
    'TemperatureScaleFactor',0.02);
IMU.Gyroscope = gyroparams( ...
    'MeasurementRange',4.3633, ...
    'Resolution',0.00013323, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',8.7266e-05, ...
    'TemperatureBias',0.34907, ...
    'TemperatureScaleFactor',0.02, ...
    'AccelerationBias',0.00017809, ...
    'ConstantBias',[0.3491,0.5,0]);

orientationDefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));
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    orientationDefault(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

figure(2)
plot(t,eulerd(orientationDefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')

The ability of the imufilter to track the ground-truth data is significantly reduced when modeling a
realistic IMU. To improve performance, modify properties of your imufilter object. These values
were determined empirically. Run the loop again and plot the orientation estimate over time.

aFilter.GyroscopeNoise          = 7.6154e-7;
aFilter.AccelerometerNoise      = 0.0015398;
aFilter.GyroscopeDriftNoise     = 3.0462e-12;
aFilter.LinearAccelerationNoise = 0.00096236;
aFilter.InitialProcessNoise     = aFilter.InitialProcessNoise*10;

orientationNondefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples
    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

    orientationNondefault(i) = aFilter(accelBody,gyroBody);
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end
release(aFilter)

figure(3)
plot(t,eulerd(orientationNondefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Nondefault IMU Filter')
legend('Z-axis','Y-axis','X-axis')

To quantify the improved performance of the modified imufilter, plot the quaternion distance
between the ground-truth motion and the orientation as returned by the imufilter with default and
nondefault properties.

qDistDefault = rad2deg(dist(orientationNED,orientationDefault));
qDistNondefault = rad2deg(dist(orientationNED,orientationNondefault));

figure(4)
plot(t,[qDistDefault,qDistNondefault])
title('Quaternion Distance from True Orientation')
legend('Realistic IMU Data, Default IMU Filter', ...
       'Realistic IMU Data, Nondefault IMU Filter')
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')
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Remove Bias from Angular Velocity Measurement

This example shows how to remove gyroscope bias from an IMU using imufilter.

Use kinematicTrajectory to create a trajectory with two parts. The first part has a constant
angular velocity about the y- and z-axes. The second part has a varying angular velocity in all three
axes.

duration = 60*8;
fs = 20;
numSamples = duration * fs;
rng('default') % Seed the RNG to reproduce noisy sensor measurements.

initialAngVel = [0,0.5,0.25];
finalAngVel = [-0.2,0.6,0.5];
constantAngVel = repmat(initialAngVel,floor(numSamples/2),1);
varyingAngVel = [linspace(initialAngVel(1), finalAngVel(1), ceil(numSamples/2)).', ...
    linspace(initialAngVel(2), finalAngVel(2), ceil(numSamples/2)).', ...
    linspace(initialAngVel(3), finalAngVel(3), ceil(numSamples/2)).'];

angVelBody = [constantAngVel; varyingAngVel];
accBody = zeros(numSamples,3);

traj = kinematicTrajectory('SampleRate',fs);

[~,qNED,~,accNED,angVelNED] = traj(accBody,angVelBody);
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Create an imuSensor System object™, IMU, with a nonideal gyroscope. Call IMU with the ground-
truth acceleration, angular velocity, and orientation.

IMU = imuSensor('accel-gyro', ...
    'Gyroscope',gyroparams('RandomWalk',0.003,'ConstantBias',0.3), ...
    'SampleRate',fs);

[accelReadings, gyroReadingsBody] = IMU(accNED,angVelNED,qNED);

Create an imufilter System object, fuse. Call fuse with the modeled accelerometer readings and
gyroscope readings.

fuse = imufilter('SampleRate',fs, 'GyroscopeDriftNoise', 1e-6);

[~,angVelBodyRecovered] = fuse(accelReadings,gyroReadingsBody);

Plot the ground-truth angular velocity, the gyroscope readings, and the recovered angular velocity for
each axis.

The angular velocity returned from the imufilter compensates for the effect of the gyroscope bias
over time and converges to the true angular velocity.

time = (0:numSamples-1)'/fs;

figure(1)
plot(time,angVelBody(:,1), ...
     time,gyroReadingsBody(:,1), ...
     time,angVelBodyRecovered(:,1))
title('X-axis')
legend('True Angular Velocity', ...
       'Gyroscope Readings', ...
       'Recovered Angular Velocity')
ylabel('Angular Velocity (rad/s)')
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figure(2)
plot(time,angVelBody(:,2), ...
     time,gyroReadingsBody(:,2), ...
     time,angVelBodyRecovered(:,2))
title('Y-axis')
ylabel('Angular Velocity (rad/s)')
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figure(3)
plot(time,angVelBody(:,3), ...
     time,gyroReadingsBody(:,3), ...
     time,angVelBodyRecovered(:,3))
title('Z-axis')
ylabel('Angular Velocity (rad/s)')
xlabel('Time (s)')
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Algorithms
Note: The following algorithm only applies to an NED reference frame.

The imufilter uses the six-axis Kalman filter structure described in [1]. The algorithm attempts to
track the errors in orientation, gyroscope offset, and linear acceleration to output the final orientation
and angular velocity. Instead of tracking the orientation directly, the indirect Kalman filter models the
error process, x, with a recursive update:

xk =
θk
bk
ak

= Fk

θk− 1
bk− 1
ak− 1

+ wk

where xk is a 9-by-1 vector consisting of:

• θk –– 3-by-1 orientation error vector, in degrees, at time k
• bk –– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time k
• ak –– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time k
• wk –– 9-by-1 additive noise vector
• Fk –– state transition model
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Because xk is defined as the error process, the a priori estimate is always zero, and therefore the
state transition model, Fk, is zero. This insight results in the following reduction of the standard
Kalman equations:

Standard Kalman equations:

xk
− = Fkxk− 1

+

Pk− = FkPk− 1
+ Fk

T + Qk

yk = zk− Hkxk
−

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = xk

− + Kkyk

Pk
+ = Pk−− KkHkPk−

Kalman equations used in this algorithm:

xk
− = 0

Pk− = Qk

yk = zk

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = Kkyk

Pk
+ = Pk−− KkHkPk−

where

• xk
− –– predicted (a priori) state estimate; the error process

• Pk
− –– predicted (a priori) estimate covariance

• yk –– innovation
• Sk –– innovation covariance
• Kk –– Kalman gain
• xk

+ –– updated (a posteriori) state estimate
• Pk

+ –– updated (a posteriori) estimate covariance

k represents the iteration, the superscript + represents an a posteriori estimate, and the superscript −
represents an a priori estimate.

The graphic and following steps describe a single frame-based iteration through the algorithm.
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Before the first iteration, the accelReadings and gyroReadings inputs are chunked into 1-by-3
frames and DecimationFactor-by-3 frames, respectively. The algorithm uses the most current
accelerometer readings corresponding to the chunk of gyroscope readings.

Detailed Overview

Step through the algorithm for an explanation of each stage of the detailed overview.

Model

The algorithm models acceleration and angular change as linear processes.
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Predict Orientation

The orientation for the current frame is predicted by first estimating the angular change from the
previous frame:

ΔφN × 3 =
gyroReadingsN × 3− gyroOf f set1 × 3

f s

where N is the decimation factor specified by the DecimationFactor property, and fs is the sample
rate specified by the SampleRate property.

The angular change is converted into quaternions using the rotvec quaternion construction
syntax:

ΔQN × 1 = quaternion(ΔφN × 3, ′rotvec′)

The previous orientation estimate is updated by rotating it by ΔQ:

q1 × 1
− = q1 × 1

+ ∏
n = 1

N
ΔQn

During the first iteration, the orientation estimate, q−, is initialized by ecompass with an assumption
that the x-axis points north.

Estimate Gravity from Orientation

The gravity vector is interpreted as the third column of the quaternion, q−, in rotation matrix form:
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g1 × 3 = rPrior(: , 3) T

See ecompass for an explanation of why the third column of rPrior can be interpreted as the gravity
vector.

Estimate Gravity from Acceleration

A second gravity vector estimation is made by subtracting the decayed linear acceleration estimate of
the previous iteration from the accelerometer readings:

gAccel1 × 3 = accelReadings1 × 3− linAccelprior1 × 3

Error Model

The error model is the difference between the gravity estimate from the accelerometer readings and
the gravity estimate from the gyroscope readings: z = g− gAccel.

Kalman Equations

The Kalman equations use the gravity estimate derived from the gyroscope readings, g, and the
observation of the error process, z, to update the Kalman gain and intermediary covariance matrices.
The Kalman gain is applied to the error signal, z, to output an a posteriori error estimate, x+.
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Observation Model

The observation model maps the 1-by-3 observed state, g, into the 3-by-9 true state, H.

The observation model is constructed as:

H3 × 9 =
0 gz −gy 0 −κgz κgy 1 0 0
−gz 0 gx κgz 0 −κgx 0 1 0
gy −gx 0 −κgy κgx 0 0 0 1

where gx, gy, and gz are the x-, y-, and z-elements of the gravity vector estimated from the orientation,
respectively. κ is a constant determined by the SampleRate and DecimationFactor properties: κ =
DecimationFactor/SampleRate.

See sections 7.3 and 7.4 of [1] for a derivation of the observation model.

Innovation Covariance

The innovation covariance is a 3-by-3 matrix used to track the variability in the measurements. The
innovation covariance matrix is calculated as:

S3x3 = R3x3 + H3x9 P9x9
− H3x9

T

where

• H is the observation model matrix
• P− is the predicted (a priori) estimate of the covariance of the observation model calculated in the

previous iteration
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• R is the covariance of the observation model noise, calculated as:

R3 × 3 = λ + ξ + κ β + η
1 0 0
0 1 0
0 0 1

.

The following properties define the observation model noise variance:

• κ –– (DecimationFactor/SampleRate)2

• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• λ –– AccelerometerNoise
• ξ –– LinearAccelerationNoise

Update Error Estimate Covariance

The error estimate covariance is a 9-by-9 matrix used to track the variability in the state.

The error estimate covariance matrix is updated as:

P9 × 9
+ = P9 × 9

− − K9 × 3 H3 × 9 P9 × 9
−

where K is the Kalman gain, H is the measurement matrix, and P− is the error estimate covariance
calculated during the previous iteration.

Predict Error Estimate Covariance

The error estimate covariance is a 9-by-9 matrix used to track the variability in the state. The a priori
error estimate covariance, P−, is set to the process noise covariance, Q, determined during the
previous iteration. Q is calculated as a function of the a posteriori error estimate covariance, P+.
When calculating Q, the cross-correlation terms are assumed to be negligible compared to the
autocorrelation terms, and are set to zero:
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Q =

P+(1) + κ2 P+(31) + β + η 0 0 −κ P+(31) + β 0 0 0 0 0

0 P+(11) + κ2 P+(41) + β + η 0 0 −κ(P+(41) + β) 0 0 0 0

0 0 P+(21) + κ2 P+(51) + β + η 0 0 −κ(P+(51) + β) 0 0 0

−κ P+(31) + β 0 0 P+(31) + β 0 0 0 0 0

0 −κ(P+(41) + β) 0 0 P+(41) + β 0 0 0 0

0 0 −κ(P+(51) + β) 0 0 P+(51) + β 0 0 0

0 0 0 0 0 0 ν2P+(61) + ξ 0 0

0 0 0 0 0 0 0 ν2P+(71) + ξ 0

0 0 0 0 0 0 0 0 ν2P+(81) + ξ

where

• P+ –– is the updated (a posteriori) error estimate covariance
• κ –– DecimationFactor/SampleRate
• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• ν –– LinearAcclerationDecayFactor
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• ξ –– LinearAccelerationNoise

See section 10.1 of [1] for a derivation of the terms of the process error matrix.

Kalman Gain

The Kalman gain matrix is a 9-by-3 matrix used to weight the innovation. In this algorithm, the
innovation is interpreted as the error process, z.

The Kalman gain matrix is constructed as:

K9 × 3 = P9 × 9
− H3 × 9

T S3 × 3
T −1

where

• P- –– predicted error covariance
• H –– observation model
• S –– innovation covariance

Update a Posteriori Error

The a posterior error estimate is determined by combining the Kalman gain matrix with the error in
the gravity vector estimations:

x9 × 1 = K9 × 3 (z1 × 3)T

Correct

Estimate Orientation

The orientation estimate is updated by multiplying the previous estimation by the error:

q+ = q− θ+

Estimate Linear Acceleration

The linear acceleration estimation is updated by decaying the linear acceleration estimation from the
previous iteration and subtracting the error:

linAccelPrior = (linAccelPriork− 1)ν− a+
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where

• ν –– LinearAcclerationDecayFactor

Estimate Gyroscope Offset

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from the
gyroscope offset from the previous iteration:

gyroOf f set = gyroOf f setk− 1− b+

Compute Angular Velocity

To estimate angular velocity, the frame of gyroReadings are averaged and the gyroscope offset
computed in the previous iteration is subtracted:

angularVelocity1 × 3 = ∑gyroReadingsN × 3
N − gyroOf f set1 × 3

where N is the decimation factor specified by the DecimationFactor property.

The gyroscope offset estimation is initialized to zeros for the first iteration.

Version History
Introduced in R2018b

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/

tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten, and P.H. Veltink. "Compensation of Magnetic
Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation."
IEEE Transactions on Neural Systems and Rehabilitation Engineering. Vol. 13. Issue 3, 2005,
pp. 395-405.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
ecompass | imuSensor | ahrsfilter | gpsSensor
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tune
Tune imufilter parameters to reduce estimation error

Syntax
tune(filter,sensorData,groundTruth)
tune( ___ ,config)

Description
tune(filter,sensorData,groundTruth) adjusts the properties of the imufilter filter object,
filter, to reduce the root-mean-squared (RMS) quaternion distance error between the fused sensor
data and the ground truth. The function fuses the sensor data to estimate the orientation, which is
compared to the orientation in the ground truth. The function uses the property values in the filter as
the initial estimate for the optimization algorithm.

tune( ___ ,config) specifies the tuning configuration based on a tunerconfig object, config.

Examples

Tune imufilter to Optimize Orientation Estimate

Load recorded sensor data and ground truth data.

ld = load('imufilterTuneData.mat');
qTrue = ld.groundTruth.Orientation; % true orientation

Create an imufilter object and fuse the filter with the sensor data.

fuse = imufilter;
qEstUntuned = fuse(ld.sensorData.Accelerometer, ...
    ld.sensorData.Gyroscope);

Create a tunerconfig object and tune the imufilter to improve the orientation estimate.

cfg = tunerconfig('imufilter');
tune(fuse, ld.sensorData, ld.groundTruth, cfg);

    Iteration    Parameter                        Metric
    _________    _________                        ______
    1            AccelerometerNoise               0.1149
    1            GyroscopeNoise                   0.1146
    1            GyroscopeDriftNoise              0.1146
    1            LinearAccelerationNoise          0.1122
    1            LinearAccelerationDecayFactor    0.1103
    2            AccelerometerNoise               0.1102
    2            GyroscopeNoise                   0.1098
    2            GyroscopeDriftNoise              0.1098
    2            LinearAccelerationNoise          0.1070
    2            LinearAccelerationDecayFactor    0.1053
    3            AccelerometerNoise               0.1053
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    3            GyroscopeNoise                   0.1048
    3            GyroscopeDriftNoise              0.1048
    3            LinearAccelerationNoise          0.1016
    3            LinearAccelerationDecayFactor    0.1002
    4            AccelerometerNoise               0.1001
    4            GyroscopeNoise                   0.0996
    4            GyroscopeDriftNoise              0.0996
    4            LinearAccelerationNoise          0.0962
    4            LinearAccelerationDecayFactor    0.0950
    5            AccelerometerNoise               0.0950
    5            GyroscopeNoise                   0.0943
    5            GyroscopeDriftNoise              0.0943
    5            LinearAccelerationNoise          0.0910
    5            LinearAccelerationDecayFactor    0.0901
    6            AccelerometerNoise               0.0900
    6            GyroscopeNoise                   0.0893
    6            GyroscopeDriftNoise              0.0893
    6            LinearAccelerationNoise          0.0862
    6            LinearAccelerationDecayFactor    0.0855
    7            AccelerometerNoise               0.0855
    7            GyroscopeNoise                   0.0848
    7            GyroscopeDriftNoise              0.0848
    7            LinearAccelerationNoise          0.0822
    7            LinearAccelerationDecayFactor    0.0818
    8            AccelerometerNoise               0.0817
    8            GyroscopeNoise                   0.0811
    8            GyroscopeDriftNoise              0.0811
    8            LinearAccelerationNoise          0.0791
    8            LinearAccelerationDecayFactor    0.0789
    9            AccelerometerNoise               0.0788
    9            GyroscopeNoise                   0.0782
    9            GyroscopeDriftNoise              0.0782
    9            LinearAccelerationNoise          0.0769
    9            LinearAccelerationDecayFactor    0.0768
    10           AccelerometerNoise               0.0768
    10           GyroscopeNoise                   0.0762
    10           GyroscopeDriftNoise              0.0762
    10           LinearAccelerationNoise          0.0754
    10           LinearAccelerationDecayFactor    0.0753
    11           AccelerometerNoise               0.0753
    11           GyroscopeNoise                   0.0747
    11           GyroscopeDriftNoise              0.0747
    11           LinearAccelerationNoise          0.0741
    11           LinearAccelerationDecayFactor    0.0740
    12           AccelerometerNoise               0.0740
    12           GyroscopeNoise                   0.0734
    12           GyroscopeDriftNoise              0.0734
    12           LinearAccelerationNoise          0.0728
    12           LinearAccelerationDecayFactor    0.0728
    13           AccelerometerNoise               0.0728
    13           GyroscopeNoise                   0.0721
    13           GyroscopeDriftNoise              0.0721
    13           LinearAccelerationNoise          0.0715
    13           LinearAccelerationDecayFactor    0.0715
    14           AccelerometerNoise               0.0715
    14           GyroscopeNoise                   0.0706
    14           GyroscopeDriftNoise              0.0706
    14           LinearAccelerationNoise          0.0700
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    14           LinearAccelerationDecayFactor    0.0700
    15           AccelerometerNoise               0.0700
    15           GyroscopeNoise                   0.0690
    15           GyroscopeDriftNoise              0.0690
    15           LinearAccelerationNoise          0.0684
    15           LinearAccelerationDecayFactor    0.0684
    16           AccelerometerNoise               0.0684
    16           GyroscopeNoise                   0.0672
    16           GyroscopeDriftNoise              0.0672
    16           LinearAccelerationNoise          0.0668
    16           LinearAccelerationDecayFactor    0.0667
    17           AccelerometerNoise               0.0667
    17           GyroscopeNoise                   0.0655
    17           GyroscopeDriftNoise              0.0655
    17           LinearAccelerationNoise          0.0654
    17           LinearAccelerationDecayFactor    0.0654
    18           AccelerometerNoise               0.0654
    18           GyroscopeNoise                   0.0641
    18           GyroscopeDriftNoise              0.0641
    18           LinearAccelerationNoise          0.0640
    18           LinearAccelerationDecayFactor    0.0639
    19           AccelerometerNoise               0.0639
    19           GyroscopeNoise                   0.0627
    19           GyroscopeDriftNoise              0.0627
    19           LinearAccelerationNoise          0.0627
    19           LinearAccelerationDecayFactor    0.0624
    20           AccelerometerNoise               0.0624
    20           GyroscopeNoise                   0.0614
    20           GyroscopeDriftNoise              0.0614
    20           LinearAccelerationNoise          0.0613
    20           LinearAccelerationDecayFactor    0.0613

Fuse the sensor data again using the tuned filter.

qEstTuned = fuse(ld.sensorData.Accelerometer, ...
    ld.sensorData.Gyroscope);

Compare the tuned and untuned filter RMS error performances.

dUntuned = rad2deg(dist(qEstUntuned, qTrue));
dTuned = rad2deg(dist(qEstTuned, qTrue));
rmsUntuned = sqrt(mean(dUntuned.^2))

rmsUntuned = 6.5864

rmsTuned = sqrt(mean(dTuned.^2))

rmsTuned = 3.5098

Visualize the results.

N = numel(dUntuned);
t = (0:N-1)./ fuse.SampleRate;
plot(t, dUntuned, 'r', t, dTuned, 'b');
legend('Untuned', 'Tuned');
title('imufilter - Tuned vs Untuned Error')
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');
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Input Arguments
filter — Filter object
imufilter object

Filter object, specified as an imufilter object.

sensorData — Sensor data
table

Sensor data, specified as a table. In each row, the sensor data is specified as:

• Accelerometer — Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.
• Gyroscope — Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the sensorData input based on your choice.

groundTruth — Ground truth data
table

Ground truth data, specified as a table. The table has only one column of Orientation data. In
each row, the orientation is specified as a quaternion object or a 3-by-3 rotation matrix.
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The function processes each row of the sensorData and groundTruth tables sequentially to
calculate the state estimate and RMS error from the ground truth. Each row of the sensorData and
the groundTruth tables must correspond to each other.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the groundTruth input based on your choice.

config — Tuner configuration
tunerconfig object

Tuner configuration, specified as a tunerconfig object.

Version History
Introduced in R2020b

References
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman

Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.
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imuSensor
IMU simulation model

Description
The imuSensor System object models receiving data from an inertial measurement unit (IMU). You
can specify the reference frame of the block inputs as the NED (North-East-Down) or ENU (East-North-
Up) frame by using the ReferenceFrame argument.

To model an IMU:

1 Create the imuSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
IMU = imuSensor
IMU = imuSensor('accel-gyro')
IMU = imuSensor('accel-mag')
IMU = imuSensor('accel-gyro-mag')
IMU = imuSensor( ___ ,'ReferenceFrame',RF)
IMU = imuSensor( ___ ,Name,Value)

Description

IMU = imuSensor returns a System object, IMU, that computes an inertial measurement unit
reading based on an inertial input signal. IMU has an ideal accelerometer and gyroscope.

IMU = imuSensor('accel-gyro') returns an imuSensor System object with an ideal
accelerometer and gyroscope. imuSensor and imuSensor('accel-gyro') are equivalent creation
syntaxes.

IMU = imuSensor('accel-mag') returns an imuSensor System object with an ideal
accelerometer and magnetometer.

IMU = imuSensor('accel-gyro-mag') returns an imuSensor System object with an ideal
accelerometer, gyroscope, and magnetometer.

IMU = imuSensor( ___ ,'ReferenceFrame',RF) returns an imuSensor System object that
computes an inertial measurement unit reading relative to the reference frame RF. Specify RF as
'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

Note

2 Classes

2-526



• If you choose the NED reference frame, specify the sensor inputs in the NED reference frame.
Additionally, the sensor models the gravitational acceleration as [0 0 9.81] m/s2.

• If you choose the ENU reference frame, specify the sensor inputs in the ENU reference frame.
Additionally, the sensor models the gravitational acceleration as [0 0 −9.81] m/s2.

IMU = imuSensor( ___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values. This syntax can be used in combination with any of the
previous input arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

IMUType — Type of inertial measurement unit
'accel-gyro' (default) | 'accel-mag' | 'accel-gyro-mag'

Type of inertial measurement unit, specified as a 'accel-gyro', 'accel-mag', or 'accel-gyro-
mag'.

The type of inertial measurement unit specifies which sensor readings to model:

• 'accel-gyro' –– Accelerometer and gyroscope
• 'accel-mag' –– Accelerometer and magnetometer
• 'accel-gyro-mag' –– Accelerometer, gyroscope, and magnetometer

You can specify IMUType as a value-only argument during creation or as a Name,Value pair.
Data Types: char | string

SampleRate — Sample rate of sensor (Hz)
100 (default) | positive scalar

Sample rate of the sensor model in Hz, specified as a positive scalar.
Data Types: single | double

Temperature — Temperature of IMU (oC)
25 (default) | real scalar

Operating temperature of the IMU in degrees Celsius, specified as a real scalar.

When the object calculates temperature scale factors and environmental drift noises, 25 oC is used as
the nominal temperature.

Tunable: Yes
Data Types: single | double
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MagneticField — Magnetic field vector in local navigation coordinate system (μT)
[27.5550 -2.4169 -16.0849] (default) | real scalar

Magnetic field vector in microtesla, specified as a three-element row vector in the local navigation
coordinate system.

The default magnetic field corresponds to the magnetic field at latitude zero, longitude zero, and
altitude zero.

Tunable: Yes
Data Types: single | double

Accelerometer — Accelerometer sensor parameters
accelparams object (default)

Accelerometer sensor parameters, specified by an accelparams object.

Tunable: Yes

Gyroscope — Gyroscope sensor parameters
gyroparams object (default)

Gyroscope sensor parameters, specified by a gyroparams object.

Tunable: Yes

Magnetometer — Magnetometer sensor parameters
magparams object (default)

Magnetometer sensor parameters, specified by a magparams object.

Tunable: Yes

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a real, nonnegative
integer scalar.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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Usage

Syntax
[accelReadings,gyroReadings] = IMU(acc,angVel)
[accelReadings,gyroReadings] = IMU(acc,angVel,orientation)

[accelReadings,magReadings] = IMU(acc,angVel)
[accelReadings,magReadings] = IMU(acc,angVel,orientation)

[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel)
[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel,orientation)

Description

[accelReadings,gyroReadings] = IMU(acc,angVel) generates accelerometer and gyroscope
readings from the acceleration and angular velocity inputs.

This syntax is only valid if IMUType is set to 'accel-gyro' or 'accel-gyro-mag'.

[accelReadings,gyroReadings] = IMU(acc,angVel,orientation) generates accelerometer
and gyroscope readings from the acceleration, angular velocity, and orientation inputs.

This syntax is only valid if IMUType is set to 'accel-gyro' or 'accel-gyro-mag'.

[accelReadings,magReadings] = IMU(acc,angVel) generates accelerometer and
magnetometer readings from the acceleration and angular velocity inputs.

This syntax is only valid if IMUType is set to 'accel-mag'.

[accelReadings,magReadings] = IMU(acc,angVel,orientation) generates accelerometer
and magnetometer readings from the acceleration, angular velocity, and orientation inputs.

This syntax is only valid if IMUType is set to 'accel-mag'.

[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel) generates accelerometer,
gyroscope, and magnetometer readings from the acceleration and angular velocity inputs.

This syntax is only valid if IMUType is set to 'accel-gyro-mag'.

[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel,orientation)
generates accelerometer, gyroscope, and magnetometer readings from the acceleration, angular
velocity, and orientation inputs.

This syntax is only valid if IMUType is set to 'accel-gyro-mag'.

Input Arguments

acc — Acceleration of IMU in local navigation coordinate system (m/s2)
N-by-3 matrix

Acceleration of the IMU in the local navigation coordinate system, specified as a real, finite N-by-3
array in meters per second squared. N is the number of samples in the current frame. Do not include
the gravitational acceleration in this input since the sensor models gravitational acceleration by
default.
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To specify the orientation of the IMU sensor body frame with respect to the local navigation frame,
use the orientation input argument.
Data Types: single | double

angVel — Angular velocity of IMU in local navigation coordinate system (rad/s)
N-by-3 matrix

Angular velocity of the IMU in the local navigation coordinate system, specified as a real, finite N-
by-3 array in radians per second. N is the number of samples in the current frame. To specify the
orientation of the IMU sensor body frame with respect to the local navigation frame, use the
orientation input argument.
Data Types: single | double

orientation — Orientation of IMU in local navigation coordinate system
N-element quaternion column vector | 3-by-3-by-N-element rotation matrix

Orientation of the IMU with respect to the local navigation coordinate system, specified as a
quaternion N-element column vector or a 3-by-3-by-N rotation matrix. Each quaternion or
rotation matrix represents a frame rotation from the local navigation coordinate system to the
current IMU sensor body coordinate system. N is the number of samples in the current frame.
Data Types: single | double | quaternion

Output Arguments

accelReadings — Accelerometer measurement of IMU in sensor body coordinate system
(m/s2)
N-by-3 matrix

Accelerometer measurement of the IMU in the sensor body coordinate system, specified as a real,
finite N-by-3 array in meters per second squared. N is the number of samples in the current frame.
Data Types: single | double

gyroReadings — Gyroscope measurement of IMU in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope measurement of the IMU in the sensor body coordinate system, specified as a real, finite
N-by-3 array in radians per second. N is the number of samples in the current frame.
Data Types: single | double

magReadings — Magnetometer measurement of IMU in sensor body coordinate system (μT)
N-by-3 matrix (default)

Magnetometer measurement of the IMU in the sensor body coordinate system, specified as a real,
finite N-by-3 array in microtelsa. N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:
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release(obj)

Specific to imuSensor
loadparams Load sensor parameters from JSON file
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Default imuSensor System object

The imuSensor System object™ enables you to model the data received from an inertial
measurement unit consisting of a combination of gyroscope, accelerometer, and magnetometer.

Create a default imuSensor object.

IMU = imuSensor

IMU = 
  imuSensor with properties:

          IMUType: 'accel-gyro'
       SampleRate: 100
      Temperature: 25
    Accelerometer: [1x1 accelparams]
        Gyroscope: [1x1 gyroparams]
     RandomStream: 'Global stream'

The imuSensor object, IMU, contains an idealized gyroscope and accelerometer. Use dot notation to
view properties of the gyroscope.

IMU.Gyroscope

ans = 
  gyroparams with properties:

    MeasurementRange: Inf             rad/s      
          Resolution: 0               (rad/s)/LSB
        ConstantBias: [0 0 0]         rad/s      
    AxesMisalignment: [3x3 double]    %          

       NoiseDensity: [0 0 0]    (rad/s)/√Hz
    BiasInstability: [0 0 0]    rad/s      
         RandomWalk: [0 0 0]    (rad/s)*√Hz

           TemperatureBias: [0 0 0]    (rad/s)/°C    
    TemperatureScaleFactor: [0 0 0]    %/°C          
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          AccelerationBias: [0 0 0]    (rad/s)/(m/s²)

Sensor properties are defined by corresponding parameter objects. For example, the gyroscope
model used by the imuSensor is defined by an instance of the gyroparams class. You can modify
properties of the gyroscope model using dot notation. Set the gyroscope measurement range to 4.3
rad/s.

IMU.Gyroscope.MeasurementRange = 4.3;

You can also set sensor properties to preset parameter objects. Create an accelparams object to
mimic specific hardware, and then set the IMU Accelerometer property to the accelparams
object. Display the Accelerometer property to verify the properties are correctly set.

SpecSheet1 = accelparams( ...
    'MeasurementRange',19.62, ...
    'Resolution',0.00059875, ...
    'ConstantBias',0.4905, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',0.003924, ...
    'BiasInstability',0, ...
    'TemperatureBias', [0.34335 0.34335 0.5886], ...
    'TemperatureScaleFactor', 0.02);

IMU.Accelerometer = SpecSheet1;

IMU.Accelerometer

ans = 
  accelparams with properties:

    MeasurementRange: 19.62                     m/s²      
          Resolution: 0.00059875                (m/s²)/LSB
        ConstantBias: [0.4905 0.4905 0.4905]    m/s²      
    AxesMisalignment: [3x3 double]              %         

       NoiseDensity: [0.003924 0.003924 0.003924]    (m/s²)/√Hz
    BiasInstability: [0 0 0]                         m/s²      
         RandomWalk: [0 0 0]                         (m/s²)*√Hz

           TemperatureBias: [0.34335 0.34335 0.5886]    (m/s²)/°C
    TemperatureScaleFactor: [0.02 0.02 0.02]            %/°C     

Generate IMU Data from Stationary Input

Use the imuSensor System object™ to model receiving data from a stationary ideal IMU containing
an accelerometer, gyroscope, and magnetometer.

Create an ideal IMU sensor model that contains an accelerometer, gyroscope, and magnetometer.

IMU = imuSensor('accel-gyro-mag')

IMU = 
  imuSensor with properties:
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          IMUType: 'accel-gyro-mag'
       SampleRate: 100
      Temperature: 25
    MagneticField: [27.5550 -2.4169 -16.0849]
    Accelerometer: [1x1 accelparams]
        Gyroscope: [1x1 gyroparams]
     Magnetometer: [1x1 magparams]
     RandomStream: 'Global stream'

Define the ground-truth, underlying motion of the IMU you are modeling. The acceleration and
angular velocity are defined relative to the local NED coordinate system.

numSamples = 1000;
acceleration = zeros(numSamples,3);
angularVelocity = zeros(numSamples,3);

Call IMU with the ground-truth acceleration and angular velocity. The object outputs accelerometer
readings, gyroscope readings, and magnetometer readings, as modeled by the properties of the
imuSensor System object. The accelerometer readings, gyroscope readings, and magnetometer
readings are relative to the IMU sensor body coordinate system.

[accelReading,gyroReading,magReading] = IMU(acceleration,angularVelocity);

Plot the accelerometer readings, gyroscope readings, and magnetometer readings.

t = (0:(numSamples-1))/IMU.SampleRate;
subplot(3,1,1)
plot(t,accelReading)
legend('X-axis','Y-axis','Z-axis')
title('Accelerometer Readings')
ylabel('Acceleration (m/s^2)')

subplot(3,1,2)
plot(t,gyroReading)
legend('X-axis','Y-axis','Z-axis')
title('Gyroscope Readings')
ylabel('Angular Velocity (rad/s)')

subplot(3,1,3)
plot(t,magReading)
legend('X-axis','Y-axis','Z-axis')
title('Magnetometer Readings')
xlabel('Time (s)')
ylabel('Magnetic Field (uT)')
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Orientation is not specified and the ground-truth motion is stationary, so the IMU sensor body
coordinate system and the local NED coordinate system overlap for the entire simulation.

• Accelerometer readings: The z-axis of the sensor body corresponds to the Down-axis. The 9.8
m/s^2 acceleration along the z-axis is due to gravity.

• Gyroscope readings: The gyroscope readings are zero along each axis, as expected.
• Magnetometer readings: Because the sensor body coordinate system is aligned with the local NED

coordinate system, the magnetometer readings correspond to the MagneticField property of
imuSensor. The MagneticField property is defined in the local NED coordinate system.

Model Rotating Six-Axis IMU Data

Use imuSensor to model data obtained from a rotating IMU containing an ideal accelerometer and
an ideal magnetometer. Use kinematicTrajectory to define the ground-truth motion. Fuse the
imuSensor model output using the ecompass function to determine orientation over time.

Define the ground-truth motion for a platform that rotates 360 degrees in four seconds, and then
another 360 degrees in two seconds. Use kinematicTrajectory to output the orientation,
acceleration, and angular velocity in the NED coordinate system.

fs = 100;
firstLoopNumSamples = fs*4;
secondLoopNumSamples = fs*2;
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totalNumSamples = firstLoopNumSamples + secondLoopNumSamples;

traj = kinematicTrajectory('SampleRate',fs);

accBody = zeros(totalNumSamples,3);
angVelBody = zeros(totalNumSamples,3);
angVelBody(1:firstLoopNumSamples,3) = (2*pi)/4;
angVelBody(firstLoopNumSamples+1:end,3) = (2*pi)/2;

[~,orientationNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

Create an imuSensor object with an ideal accelerometer and an ideal magnetometer. Call IMU with
the ground-truth acceleration, angular velocity, and orientation to output accelerometer readings and
magnetometer readings. Plot the results.

IMU = imuSensor('accel-mag','SampleRate',fs);

[accelReadings,magReadings] = IMU(accNED,angVelNED,orientationNED);

figure(1)
t = (0:(totalNumSamples-1))/fs;
subplot(2,1,1)
plot(t,accelReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Acceleration (m/s^2)')
title('Accelerometer Readings')

subplot(2,1,2)
plot(t,magReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Magnetic Field (\muT)')
xlabel('Time (s)')
title('Magnetometer Readings')
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The accelerometer readings indicate that the platform has no translation. The magnetometer
readings indicate that the platform is rotating around the z-axis.

Feed the accelerometer and magnetometer readings into the ecompass function to estimate the
orientation over time. The ecompass function returns orientation in quaternion format. Convert
orientation to Euler angles and plot the results. The orientation plot indicates that the platform
rotates about the z-axis only.

orientation = ecompass(accelReadings,magReadings);

orientationEuler = eulerd(orientation,'ZYX','frame');

figure(2)
plot(t,orientationEuler)
legend('Z-axis','Y-axis','X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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Model Rotating Six-Axis IMU Data with Noise

Use imuSensor to model data obtained from a rotating IMU containing a realistic accelerometer and
a realistic magnetometer. Use kinematicTrajectory to define the ground-truth motion. Fuse the
imuSensor model output using the ecompass function to determine orientation over time.

Define the ground-truth motion for a platform that rotates 360 degrees in four seconds, and then
another 360 degrees in two seconds. Use kinematicTrajectory to output the orientation,
acceleration, and angular velocity in the NED coordinate system.

fs = 100;
firstLoopNumSamples = fs*4;
secondLoopNumSamples = fs*2;
totalNumSamples = firstLoopNumSamples + secondLoopNumSamples;

traj = kinematicTrajectory('SampleRate',fs);

accBody = zeros(totalNumSamples,3);
angVelBody = zeros(totalNumSamples,3);
angVelBody(1:firstLoopNumSamples,3) = (2*pi)/4;
angVelBody(firstLoopNumSamples+1:end,3) = (2*pi)/2;

[~,orientationNED,~,accNED,angVelNED] = traj(accBody,angVelBody);
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Create an imuSensor object with a realistic accelerometer and a realistic magnetometer. Call IMU
with the ground-truth acceleration, angular velocity, and orientation to output accelerometer
readings and magnetometer readings. Plot the results.

IMU = imuSensor('accel-mag','SampleRate',fs);

IMU.Accelerometer = accelparams( ...
    'MeasurementRange',19.62, ...            % m/s^2
    'Resolution',0.0023936, ...              % m/s^2 / LSB
    'TemperatureScaleFactor',0.008, ...      % % / degree C
    'ConstantBias',0.1962, ...               % m/s^2
    'TemperatureBias',0.0014715, ...         % m/s^2 / degree C
    'NoiseDensity',0.0012361);               % m/s^2 / Hz^(1/2)

IMU.Magnetometer = magparams( ...
    'MeasurementRange',1200, ...             % uT
    'Resolution',0.1, ...                    % uT / LSB
    'TemperatureScaleFactor',0.1, ...        % % / degree C
    'ConstantBias',1, ...                    % uT
    'TemperatureBias',[0.8 0.8 2.4], ...     % uT / degree C
    'NoiseDensity',[0.6 0.6 0.9]/sqrt(100)); % uT / Hz^(1/2)

[accelReadings,magReadings] = IMU(accNED,angVelNED,orientationNED);

figure(1)
t = (0:(totalNumSamples-1))/fs;
subplot(2,1,1)
plot(t,accelReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Acceleration (m/s^2)')
title('Accelerometer Readings')

subplot(2,1,2)
plot(t,magReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Magnetic Field (\muT)')
xlabel('Time (s)')
title('Magnetometer Readings')
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The accelerometer readings indicate that the platform has no translation. The magnetometer
readings indicate that the platform is rotating around the z-axis.

Feed the accelerometer and magnetometer readings into the ecompass function to estimate the
orientation over time. The ecompass function returns orientation in quaternion format. Convert
orientation to Euler angles and plot the results. The orientation plot indicates that the platform
rotates about the z-axis only.

orientation = ecompass(accelReadings,magReadings);

orientationEuler = eulerd(orientation,'ZYX','frame');

figure(2)
plot(t,orientationEuler)
legend('Z-axis','Y-axis','X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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%

Model Tilt Using Gyroscope and Accelerometer Readings

Model a tilting IMU that contains an accelerometer and gyroscope using the imuSensor System
object™. Use ideal and realistic models to compare the results of orientation tracking using the
imufilter System object.

Load a struct describing ground-truth motion and a sample rate. The motion struct describes
sequential rotations:

1 yaw: 120 degrees over two seconds
2 pitch: 60 degrees over one second
3 roll: 30 degrees over one-half second
4 roll: -30 degrees over one-half second
5 pitch: -60 degrees over one second
6 yaw: -120 degrees over two seconds

In the last stage, the motion struct combines the 1st, 2nd, and 3rd rotations into a single-axis
rotation. The acceleration, angular velocity, and orientation are defined in the local NED coordinate
system.
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load y120p60r30.mat motion fs
accNED = motion.Acceleration;
angVelNED = motion.AngularVelocity;
orientationNED = motion.Orientation;

numSamples = size(motion.Orientation,1);
t = (0:(numSamples-1)).'/fs;

Create an ideal IMU sensor object and a default IMU filter object.

IMU = imuSensor('accel-gyro','SampleRate',fs);

aFilter = imufilter('SampleRate',fs);

In a loop:

1 Simulate IMU output by feeding the ground-truth motion to the IMU sensor object.
2 Filter the IMU output using the default IMU filter object.

orientation = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

    orientation(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

Plot the orientation over time.

figure(1)
plot(t,eulerd(orientation,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Ideal IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')
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Modify properties of your imuSensor to model real-world sensors. Run the loop again and plot the
orientation estimate over time.

IMU.Accelerometer = accelparams( ...
    'MeasurementRange',19.62, ...
    'Resolution',0.00059875, ...
    'ConstantBias',0.4905, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',0.003924, ...
    'BiasInstability',0, ...
    'TemperatureBias', [0.34335 0.34335 0.5886], ...
    'TemperatureScaleFactor',0.02);
IMU.Gyroscope = gyroparams( ...
    'MeasurementRange',4.3633, ...
    'Resolution',0.00013323, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',8.7266e-05, ...
    'TemperatureBias',0.34907, ...
    'TemperatureScaleFactor',0.02, ...
    'AccelerationBias',0.00017809, ...
    'ConstantBias',[0.3491,0.5,0]);

orientationDefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));
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    orientationDefault(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

figure(2)
plot(t,eulerd(orientationDefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')

The ability of the imufilter to track the ground-truth data is significantly reduced when modeling a
realistic IMU. To improve performance, modify properties of your imufilter object. These values
were determined empirically. Run the loop again and plot the orientation estimate over time.

aFilter.GyroscopeNoise          = 7.6154e-7;
aFilter.AccelerometerNoise      = 0.0015398;
aFilter.GyroscopeDriftNoise     = 3.0462e-12;
aFilter.LinearAccelerationNoise = 0.00096236;
aFilter.InitialProcessNoise     = aFilter.InitialProcessNoise*10;

orientationNondefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples
    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

    orientationNondefault(i) = aFilter(accelBody,gyroBody);
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end
release(aFilter)

figure(3)
plot(t,eulerd(orientationNondefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Nondefault IMU Filter')
legend('Z-axis','Y-axis','X-axis')

To quantify the improved performance of the modified imufilter, plot the quaternion distance
between the ground-truth motion and the orientation as returned by the imufilter with default and
nondefault properties.

qDistDefault = rad2deg(dist(orientationNED,orientationDefault));
qDistNondefault = rad2deg(dist(orientationNED,orientationNondefault));

figure(4)
plot(t,[qDistDefault,qDistNondefault])
title('Quaternion Distance from True Orientation')
legend('Realistic IMU Data, Default IMU Filter', ...
       'Realistic IMU Data, Nondefault IMU Filter')
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')
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Algorithms

Tip In the following algorithm description, variables in italic fonts are inputs or outputs of the
imuSensor object. Variables in bold fonts are properties of the imuSensor. Variables in normal fonts
are properties of the accelparams, gyroparams, or magparams object.

Accelerometer

The following algorithm description assumes an NED navigation frame. The accelerometer model
uses the ground-truth orientation and acceleration inputs and the imuSensor and accelparams
properties to model accelerometer readings.
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Obtain Total Acceleration

To obtain the total acceleration (totalAcc), the acceleration is preprocessed by negating and adding
the gravity constant vector (g= [0; 0; 9.8] m/s2 assuming an NED frame) as:

totalAcc = − acceleration + g

The acceleration term is negated to obtain zero total acceleration readings when the
accelerometer is in a free fall. The acceleration term is also known as the specific force.

Convert to Sensor Frame

Then the total acceleration is converted from the local navigation frame to the sensor frame using:

a = orientation totalAcc T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.
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Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model, which adds axes
misalignment and bias:

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of accelparams, and α1, α2, and α3 are given by the first, second,
and third elements of the AxesMisalignment property of accelparams.
Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1(k) = 1
2β1(k− 1) + (BiasInstability)w(k)

where k is the discrete time step index, BiasInstability is a property of accelparams, w is white
noise that follows a normal distribution of mean 0 and variance of 1. The discrete time step size is the
reciprocal of the SampleRate property.
White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where w is white noise that follows a normal distribution of mean 0 and variance of 1, SampleRate is
an imuSensor property, and NoiseDensity is an accelparams property.
Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β2(k) = β2(k− 1) + w(k) RandomWalk
SampleRate

2

where k is the discrete time step index, RandomWalk is a property of accelparams, SampleRate is a
property of imuSensor, w is white noise that follows a normal distribution of mean 0 and variance of
1. The discrete time step size is the reciprocal of the SampleRate property.
Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)
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where Temperature is a property of imuSensor, and TemperatureBias is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

accelReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of accelparams.

Gyroscope

The following algorithm description assumes an NED navigation frame. The gyroscope model uses
the ground-truth orientation, acceleration, and angular velocity inputs, and the imuSensor and
gyroparams properties to model accelerometer readings.
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Convert to Sensor Frame

The ground-truth angular velocity is converted from the local frame to the sensor frame using the
ground-truth orientation:

a = orientation angularVelocity T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.
Bulk Model

The ground-truth angular velocity in the sensor frame, a, passes through the bulk model, which adds
axes misalignment and bias:

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias
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where ConstantBias is a property of gyroparams, and α1, α2, and α3 are given by the first, second,
and third elements of the AxesMisalignment property of gyroparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1(k) = 1
2β1(k− 1) + (BiasInstability)w(k)

where k is the discrete time step index, BiasInstability is a property of gyroparams, w is white noise
that follows a normal distribution of mean 0 and variance of 1. The discrete time step size is the
reciprocal of the SampleRate property.

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where w is white noise that follows a normal distribution of mean 0 and variance of 1, SampleRate is
an imuSensor property, and NoiseDensity is an gyroparams property.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β2(k) = β2(k− 1) + w(k) RandomWalk
SampleRate

2

where k is the discrete time step index, RandomWalk is a property of gyroparams, SampleRate is a
property of imuSensor, and w is white noise that follows a normal distribution of mean 0 and
variance of 1. The discrete time step size is the reciprocal of the SampleRate property.

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

where Temperature is a property of imuSensor, and TemperatureBias is a property of gyroparams.
The constant 25 corresponds to a standard temperature.

Acceleration Bias Drift

The acceleration bias drift is modeled by multiplying the acceleration input and acceleration bias:

Δa = acceleration * AccelerationBias

where AccelerationBias is a property of gyroparams.
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Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
gyroparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

gyroReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of gyroparams.

Magnetometer

The following algorithm description assumes an NED navigation frame. The magnetometer model
uses the ground-truth orientation and acceleration inputs, and the imuSensor and magparams
properties to model magnetometer readings.
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Convert to Sensor Frame

The ground-truth acceleration is converted from the local frame to the sensor frame using the
ground-truth orientation:

a = orientation totalAcc T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model, which adds axes
misalignment and bias:
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b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of magparams, and α1, α2, and α3 are given by the first, second, and
third elements of the AxesMisalignment property of magparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1(k) = 1
2β1(k− 1) + (BiasInstability)w(k)

where k is the discrete time step index, BiasInstability is a property of magparams, w is white noise
that follows a normal distribution of mean 0 and variance of 1. The discrete time step size is the
reciprocal of the SampleRate property.

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where w is white noise that follows a normal distribution of mean 0 and variance of 1, SampleRate is
an imuSensor property, and NoiseDensity is an magparams property.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β2(k) = β2(k− 1) + w(k) RandomWalk
SampleRate

2

where k is the discrete time step index, RandomWalk is a property of magparams, SampleRate is a
property of imuSensor, w is white noise that follows a normal distribution of mean 0 and variance of
1. The discrete time step size is the reciprocal of the SampleRate property.

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

where Temperature is a property of imuSensor, and TemperatureBias is a property of magparams.
The constant 25 corresponds to a standard temperature.
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Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
magparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

magReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of magparams.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Classes
accelparams | gyroparams | magparams

Objects
gpsSensor
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insSensor
Inertial navigation system and GNSS/GPS simulation model

Description
The insSensor System object models a device that fuses measurements from an inertial navigation
system (INS) and global navigation satellite system (GNSS) such as a GPS, and outputs the fused
measurements.

To output fused INS and GNSS measurements:

1 Create the insSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
INS = insSensor
INS = insSensor(Name,Value)

Description

INS = insSensor returns a System object, INS, that models a device that outputs measurements
from an INS and GNSS.

INS = insSensor(Name,Value) sets properties on page 2-555 using one or more name-value
pairs. Unspecified properties have default values. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MountingLocation — Location of sensor on platform (m)
[0 0 0] (default) | three-element real-valued vector of form [x y z]

Location of the sensor on the platform, in meters, specified as a three-element real-valued vector of
the form [x y z]. The vector defines the offset of the sensor origin from the origin of the platform.

Tunable: Yes
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Data Types: single | double

RollAccuracy — Accuracy of roll measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the roll measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Roll is the rotation around the x-axis of the sensor body. Roll noise is modeled as a white noise
process. RollAccuracy sets the standard deviation of the roll measurement noise.

Tunable: Yes
Data Types: single | double

PitchAccuracy — Accuracy of pitch measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the pitch measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Pitch is the rotation around the y-axis of the sensor body. Pitch noise is modeled as a white noise
process. PitchAccuracy defines the standard deviation of the pitch measurement noise.

Tunable: Yes
Data Types: single | double

YawAccuracy — Accuracy of yaw measurement (deg)
1 (default) | nonnegative real scalar

Accuracy of the yaw measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Yaw is the rotation around the z-axis of the sensor body. Yaw noise is modeled as a white noise
process. YawAccuracy defines the standard deviation of the yaw measurement noise.

Tunable: Yes
Data Types: single | double

PositionAccuracy — Accuracy of position measurement (m)
[1 1 1] (default) | nonnegative real scalar | three-element real-valued vector

Accuracy of the position measurement of the sensor body, in meters, specified as a nonnegative real
scalar or a three-element real-valued vector. The elements of the vector set the accuracy of the x-, y-,
and z-position measurements, respectively. If you specify PositionAccuracy as a scalar value, then
the object sets the accuracy of all three positions to this value.

Position noise is modeled as a white noise process. PositionAccuracy defines the standard
deviation of the position measurement noise.

Tunable: Yes
Data Types: single | double

VelocityAccuracy — Accuracy of velocity measurement (m/s)
0.05 (default) | nonnegative real scalar
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Accuracy of the velocity measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Velocity noise is modeled as a white noise process. VelocityAccuracy defines the standard
deviation of the velocity measurement noise.

Tunable: Yes
Data Types: single | double

AccelerationAccuracy — Accuracy of acceleration measurement (m/s2)
0 (default) | nonnegative real scalar

Accuracy of the acceleration measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Acceleration noise is modeled as a white noise process. AccelerationAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes
Data Types: single | double

AngularVelocityAccuracy — Accuracy of angular velocity measurement (deg/s)
0 (default) | nonnegative real scalar

Accuracy of the angular velocity measurement of the sensor body, in meters per second, specified as
a nonnegative real scalar.

Angular velocity is modeled as a white noise process. AngularVelocityAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes
Data Types: single | double

TimeInput — Enable input of simulation time
false or 0 (default) | true or 1

Enable input of simulation time, specified as a logical 0 (false) or 1 (true). Set this property to
true to input the simulation time by using the simTime argument.

Tunable: No
Data Types: logical

HasGNSSFix — Enable GNSS fix
true or 1 (default) | false or 0

Enable GNSS fix, specified as a logical 1 (true) or 0 (false). Set this property to false to simulate
the loss of a GNSS receiver fix. When a GNSS receiver fix is lost, position measurements drift at a
rate specified by the PositionErrorFactor property.

Tunable: Yes
Dependencies

To enable this property, set TimeInput to true.
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Data Types: logical

PositionErrorFactor — Position error factor without GNSS fix
[0 0 0] (default) | nonnegative scalar | 1-by-3 vector of scalars

Position error factor without GNSS fix, specified as a scalar or a 1-by-3 vector of scalars.

When the HasGNSSFix property is set to false, the position error grows at a quadratic rate due to
constant bias in the accelerometer. The position error for a position component E(t) can be expressed
as E(t) = 1/2αt2, where α is the position error factor for the corresponding component and t is the
time since the GNSS fix is lost. While running, the object computes t based on the simTime input.
The computed E(t) values for the x, y, and z components are added to the corresponding position
components of the gTruth input.

Tunable: Yes

Dependencies

To enable this property, set TimeInput to true and HasGNSSFix to false.
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as one of these options:

• 'Global stream' –– Generate random numbers using the current global random number
stream.

• 'mt19937ar with seed' –– Generate random numbers using the mt19937ar algorithm, with
the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number generator algorithm, specified as a nonnegative
integer.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
measurement = INS(gTruth)
measurement = INS(gTruth,simTime)
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Description

measurement = INS(gTruth) models the data received from an INS sensor reading and GNSS
sensor reading. The output measurement is based on the inertial ground-truth state of the sensor
body, gTruth.

measurement = INS(gTruth,simTime) additionally specifies the time of simulation, simTime. To
enable this syntax, set the TimeInput property to true.

Input Arguments

gTruth — Inertial ground-truth state of sensor body
structure

Inertial ground-truth state of sensor body, in local Cartesian coordinates, specified as a structure
containing these fields:

Field Description
'Position' Position, in meters, specified as a real, finite N-

by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [vx vy vz] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

• N-element column vector of quaternion
objects

• 3-by-3-by-N array of rotation matrices
• N-by-3 matrix of [xroll ypitch zyaw] angles in

degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ax ay
az] vectors. N is the number of samples in the
current frame.

'AngularVelocity' Angular velocity (ω), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [ωx ωy ωz] vectors. N is the number of samples
in the current frame.

The field values must be of type double or single.

The Position, Velocity, and Orientation fields are required. The other fields are optional.
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Example: struct('Position',[0 0 0],'Velocity',[0 0
0],'Orientation',quaternion([1 0 0 0]))

simTime — Simulation time
nonnegative real scalar

Simulation time, in seconds, specified as a nonnegative real scalar.
Data Types: single | double

Output Arguments

measurement — Measurement of sensor body motion
structure

Measurement of the sensor body motion, in local Cartesian coordinates, returned as a structure
containing these fields:

Field Description
'Position' Position, in meters, specified as a real, finite N-

by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [vx vy vz] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

• N-element column vector of quaternion
objects

• 3-by-3-by-N array of rotation matrices
• N-by-3 matrix of [xroll ypitch zyaw] angles in

degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ax ay
az] vectors. N is the number of samples in the
current frame.

'AngularVelocity' Angular velocity (ω), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [ωx ωy ωz] vectors. N is the number of samples
in the current frame.

The returned field values are of type double or single and are of the same type as the
corresponding field values in the gTruth input.
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to insSensor
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object
release Release resources and allow changes to System object property values and input

characteristics

Examples

Generate INS Measurements from Stationary Input

Create a motion structure that defines a stationary position at the local north-east-down (NED) origin.
Because the platform is stationary, you need to define only a single sample. Assume the ground-truth
motion is sampled for 10 seconds with a 100 Hz sample rate. Create a default insSensor System
object™. Preallocate variables to hold output from the insSensor object.

Fs = 100;
duration = 10;
numSamples = Fs*duration;

motion = struct( ...
    'Position',zeros(1,3), ...
    'Velocity',zeros(1,3), ...
    'Orientation',ones(1,1,'quaternion'));

INS = insSensor;

positionMeasurements = zeros(numSamples,3);
velocityMeasurements = zeros(numSamples,3);
orientationMeasurements = zeros(numSamples,1,'quaternion');

In a loop, call INS with the stationary motion structure to return the position, velocity, and orientation
measurements in the local NED coordinate system. Log the position, velocity, and orientation
measurements.

for i = 1:numSamples
    
    measurements = INS(motion);
    
    positionMeasurements(i,:) = measurements.Position;
    velocityMeasurements(i,:) = measurements.Velocity;
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    orientationMeasurements(i) = measurements.Orientation;
    
end

Convert the orientation from quaternions to Euler angles for visualization purposes. Plot the position,
velocity, and orientation measurements over time.

orientationMeasurements = eulerd(orientationMeasurements,'ZYX','frame');

t = (0:(numSamples-1))/Fs;

subplot(3,1,1)
plot(t,positionMeasurements)
title('Position')
xlabel('Time (s)')
ylabel('Position (m)')
legend('North','East','Down')

subplot(3,1,2)
plot(t,velocityMeasurements)
title('Velocity')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
legend('North','East','Down')

subplot(3,1,3)
plot(t,orientationMeasurements)
title('Orientation')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('Roll', 'Pitch', 'Yaw')
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Generate INS Measurements for a Turning Platform

Generate INS measurements using the insSensor System object™. Use waypointTrajectory to
generate the ground-truth path.

Specify a ground-truth orientation that begins with the sensor body x-axis aligned with North and
ends with the sensor body x-axis aligned with East. Specify waypoints for an arc trajectory and a
time-of-arrival vector for the corresponding waypoints. Use a 100 Hz sample rate. Create a
waypointTrajectory System object with the waypoint constraints, and set SamplesPerFrame so
that the entire trajectory is output with one call.

eulerAngles = [0,0,0; ...
               0,0,0; ...
               90,0,0; ...
               90,0,0];
orientation = quaternion(eulerAngles,'eulerd','ZYX','frame');

r = 20;
waypoints = [0,0,0; ...
             100,0,0; ...
             100+r,r,0; ...
             100+r,100+r,0];

toa = [0,10,10+(2*pi*r/4),20+(2*pi*r/4)];
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Fs = 100;
numSamples = floor(Fs*toa(end));

path = waypointTrajectory('Waypoints',waypoints, ...
    'TimeOfArrival',toa, ...
    'Orientation',orientation, ...
    'SampleRate',Fs, ...
    'SamplesPerFrame',numSamples);

Create an insSensor System object to model receiving INS data. Set the PositionAccuracy to
0.1.

ins = insSensor('PositionAccuracy',0.1);

Call the waypoint trajectory object, path, to generate the ground-truth motion. Call the INS
simulator, ins, with the ground-truth motion to generate INS measurements.

[motion.Position,motion.Orientation,motion.Velocity] = path();
insMeas = ins(motion);

Convert the orientation returned by ins to Euler angles in degrees for visualization purposes. Plot
the full path and orientation over time.

orientationMeasurementEuler = eulerd(insMeas.Orientation,'ZYX','frame');

subplot(2,1,1)
plot(insMeas.Position(:,1),insMeas.Position(:,2));
title('Path')
xlabel('North (m)')
ylabel('East (m)')

subplot(2,1,2)
t = (0:(numSamples-1)).'/Fs;
plot(t,orientationMeasurementEuler(:,1), ...
     t,orientationMeasurementEuler(:,2), ...
     t,orientationMeasurementEuler(:,3));
title('Orientation')
legend('Yaw','Pitch','Roll')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
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Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
imuSensor | gpsSensor

Objects

Topics
“Model IMU, GPS, and INS/GPS”
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“Simulate Inertial Sensor Readings from a Driving Scenario”
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loadparams
Load sensor parameters from JSON file

Syntax
loadparams(sensor,file,PN)

Description
loadparams(sensor,file,PN) configures the imuSensor object, sensor, to match the
parameters in the PN part of a JSON file, File.

Examples

Load Pre-defined Parameters in imuSensor

Create an imuSensor system object.

s = imuSensor;

Load a JSON file.

fn = fullfile(matlabroot,'toolbox','shared',...
    'positioning','positioningdata','generic.json');

Here is a screen shot of the JSON file with some parts collapsed.
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Configure the object as a 6-axis sensor.

loadparams(s,fn,'GenericLowCost6Axis')
s

s = 
  imuSensor with properties:

          IMUType: 'accel-gyro'
       SampleRate: 100
      Temperature: 25
    Accelerometer: [1x1 accelparams]
        Gyroscope: [1x1 gyroparams]
     RandomStream: 'Global stream'

Configure the object as a 9-axis sensor.

loadparams(s,fn,'GenericLowCost9Axis')
s

s = 
  imuSensor with properties:

          IMUType: 'accel-gyro-mag'
       SampleRate: 100
      Temperature: 25
    MagneticField: [27.5550 -2.4169 -16.0849]
    Accelerometer: [1x1 accelparams]
        Gyroscope: [1x1 gyroparams]
     Magnetometer: [1x1 magparams]
     RandomStream: 'Global stream'

Input Arguments
sensor — IMU sensor
imuSensor object

IMU sensor, specified as an imuSensor system object.

file — JSON file
.json file

JavaScript Object Notation (JSON) format file, specified as a .json file.

PN — Part name
string

Part name in a JSON file, specified as a string.

Version History
Introduced in R2020a
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See Also
imuSensor
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kinematicTrajectory
Rate-driven trajectory generator

Description
The kinematicTrajectory System object generates trajectories using specified acceleration and
angular velocity.

To generate a trajectory from rates:

1 Create the kinematicTrajectory object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
trajectory = kinematicTrajectory
trajectory = kinematicTrajectory(Name,Value)

Description

trajectory = kinematicTrajectory returns a System object, trajectory, that generates a
trajectory based on acceleration and angular velocity.

trajectory = kinematicTrajectory(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: trajectory = kinematicTrajectory('SampleRate',200,'Position',[0,1,10])
creates a kinematic trajectory System object, trajectory, with a sample rate of 200 Hz and the
initial position set to [0,1,10].

Properties
If a property is tunable, you can change its value at any time.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Position — Position state in local navigation coordinate system (m)
[0 0 0] (default) | 3-element row vector
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Position state in the local navigation coordinate system in meters, specified as a three-element row
vector.

Tunable: Yes
Data Types: single | double

Velocity — Velocity state in local navigation coordinate system (m/s)
[0 0 0] (default) | 3-element row vector

Velocity state in the local navigation coordinate system in m/s, specified as a three-element row
vector.

Tunable: Yes
Data Types: single | double

Orientation — Orientation state in local navigation coordinate system
quaternion(1,0,0,0) (default) | scalar quaternion | 3-by-3 real matrix

Orientation state in the local navigation coordinate system, specified as a scalar quaternion or 3-by-3
real matrix. The orientation is a frame rotation from the local navigation coordinate system to the
current body frame.

Tunable: Yes
Data Types: quaternion | single | double

AccelerationSource — Source of acceleration state
'Input' (default) | 'Property'

Source of acceleration state, specified as 'Input' or 'Property'.

• 'Input' –– specify acceleration state as an input argument to the kinematic trajectory object
• 'Property' –– specify acceleration state by setting the Acceleration property

Tunable: No
Data Types: char | string

Acceleration — Acceleration state (m/s2)
[0 0 0] (default) | three-element row vector

Acceleration state in m/s2, specified as a three-element row vector.

Tunable: Yes

Dependencies

To enable this property, set AccelerationSource to 'Property'.
Data Types: single | double

AngularVelocitySource — Source of angular velocity state
'Input' (default) | 'Property'

Source of angular velocity state, specified as 'Input' or 'Property'.
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• 'Input' –– specify angular velocity state as an input argument to the kinematic trajectory object
• 'Property' –– specify angular velocity state by setting the AngularVelocity property

Tunable: No
Data Types: char | string

AngularVelocity — Angular velocity state (rad/s)
[0 0 0] (default) | three-element row vector

Angular velocity state in rad/s, specified as a three-element row vector.

Tunable: Yes

Dependencies

To enable this property, set AngularVelocitySource to 'Property'.
Data Types: single | double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive integer

Number of samples per output frame, specified as a positive integer.

Tunable: No

Dependencies

To enable this property, set AngularVelocitySource to 'Property' and AccelerationSource to
'Property'.
Data Types: single | double

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration,bodyAngularVelocity)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAngularVelocity)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()

Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration,bodyAngularVelocity) outputs the trajectory state and then updates the
trajectory state based on bodyAcceleration and bodyAngularVelocity.

This syntax is only valid if AngularVelocitySource is set to 'Input' and AccelerationSource
is set to 'Input'.
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[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAngularVelocity) outputs the trajectory state and then updates the trajectory state based on
bodyAngularVelocity.

This syntax is only valid if AngularVelocitySource is set to 'Input' and AccelerationSource
is set to 'Property'.

[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration) outputs the trajectory state and then updates the trajectory state based on
bodyAcceleration.

This syntax is only valid if AngularVelocitySource is set to 'Property' and
AccelerationSource is set to 'Input'.

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs the trajectory state and then updates the trajectory state.

This syntax is only valid if AngularVelocitySource is set to 'Property' and
AccelerationSource is set to 'Property'.

Input Arguments

bodyAcceleration — Acceleration in body coordinate system (m/s2)
N-by-3 matrix

Acceleration in the body coordinate system in meters per second squared, specified as an N-by-3
matrix.

N is the number of samples in the current frame.

bodyAngularVelocity — Angular velocity in body coordinate system (rad/s)
N-by-3 matrix

Angular velocity in the body coordinate system in radians per second, specified as an N-by-3 matrix.

N is the number of samples in the current frame.

Output Arguments

position — Position in local navigation coordinate system (m)
N-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

orientation — Orientation in local navigation coordinate system
N-element quaternion column vector | 3-by-3-by-N real array

Orientation in the local navigation coordinate system, returned as an N-by-1 quaternion column
vector or a 3-by-3-by-N real array. Each quaternion or 3-by-3 rotation matrix is a frame rotation from
the local navigation coordinate system to the current body coordinate system.

N is the number of samples in the current frame.
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Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

acceleration — Acceleration in local navigation coordinate system (m/s2)
N-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
N-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an N-
by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions

Specific to kinematicTrajectory
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
step Run System object algorithm

Examples

Create Default kinematicTrajectory

Create a default kinematicTrajectory System object™ and explore the relationship between
input, properties, and the generated trajectories.

trajectory = kinematicTrajectory

trajectory = 
  kinematicTrajectory with properties:

               SampleRate: 100
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                 Position: [0 0 0]
              Orientation: [1x1 quaternion]
                 Velocity: [0 0 0]
       AccelerationSource: 'Input'
    AngularVelocitySource: 'Input'

By default, the kinematicTrajectory object has an initial position of [0 0 0] and an initial velocity
of [0 0 0]. Orientation is described by a quaternion one (1 + 0i + 0j + 0k).

The kinematicTrajectory object maintains a visible and writable state in the properties
Position, Velocity, and Orientation. When you call the object, the state is output and then
updated.

For example, call the object by specifying an acceleration and angular velocity relative to the body
coordinate system.

bodyAcceleration = [5,5,0];
bodyAngularVelocity = [0,0,1];
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(bodyAcceleration,bodyAngularVelocity)

position = 1×3

     0     0     0

orientation = quaternion
     1 + 0i + 0j + 0k

velocity = 1×3

     0     0     0

acceleration = 1×3

     5     5     0

angularVelocity = 1×3

     0     0     1

The position, orientation, and velocity output from the trajectory object correspond to the state
reported by the properties before calling the object. The trajectory state is updated after being
called and is observable from the properties:

trajectory

trajectory = 
  kinematicTrajectory with properties:

               SampleRate: 100
                 Position: [2.5000e-04 2.5000e-04 0]
              Orientation: [1x1 quaternion]
                 Velocity: [0.0500 0.0500 0]
       AccelerationSource: 'Input'
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    AngularVelocitySource: 'Input'

The acceleration and angularVelocity output from the trajectory object correspond to the
bodyAcceleration and bodyAngularVelocity, except that they are returned in the navigation
coordinate system. Use the orientation output to rotate acceleration and angularVelocity
to the body coordinate system and verify they are approximately equivalent to bodyAcceleration
and bodyAngularVelocity.

rotatedAcceleration = rotatepoint(orientation,acceleration)

rotatedAcceleration = 1×3

     5     5     0

rotatedAngularVelocity = rotatepoint(orientation,angularVelocity)

rotatedAngularVelocity = 1×3

     0     0     1

The kinematicTrajectory System object™ enables you to modify the trajectory state through the
properties. Set the position to [0,0,0] and then call the object with a specified acceleration and
angular velocity in the body coordinate system. For illustrative purposes, clone the trajectory
object before modifying the Position property. Call both objects and observe that the positions
diverge.

trajectoryClone = clone(trajectory);
trajectory.Position = [0,0,0];

position = trajectory(bodyAcceleration,bodyAngularVelocity)

position = 1×3

     0     0     0

clonePosition = trajectoryClone(bodyAcceleration,bodyAngularVelocity)

clonePosition = 1×3
10-3 ×

    0.2500    0.2500         0

Create Oscillating Trajectory

This example shows how to create a trajectory oscillating along the North axis of a local NED
coordinate system using the kinematicTrajectory System object™.

Create a default kinematicTrajectory object. The default initial orientation is aligned with the
local NED coordinate system.

traj = kinematicTrajectory
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traj = 

  kinematicTrajectory with properties:

               SampleRate: 100
                 Position: [0 0 0]
              Orientation: [1x1 quaternion]
                 Velocity: [0 0 0]
       AccelerationSource: 'Input'
    AngularVelocitySource: 'Input'

Define a trajectory for a duration of 10 seconds consisting of rotation around the East axis (pitch) and
an oscillation along North axis of the local NED coordinate system. Use the default
kinematicTrajectory sample rate.

fs = traj.SampleRate;
duration = 10;

numSamples = duration*fs;

cyclesPerSecond = 1;
samplesPerCycle = fs/cyclesPerSecond;
numCycles = ceil(numSamples/samplesPerCycle);
maxAccel = 20;

triangle = [linspace(maxAccel,1/fs-maxAccel,samplesPerCycle/2), ...
    linspace(-maxAccel,maxAccel-(1/fs),samplesPerCycle/2)]';
oscillation = repmat(triangle,numCycles,1);
oscillation = oscillation(1:numSamples);

accNED = [zeros(numSamples,2),oscillation];

angVelNED = zeros(numSamples,3);
angVelNED(:,2) = 2*pi;

Plot the acceleration control signal.

timeVector = 0:1/fs:(duration-1/fs);

figure(1)
plot(timeVector,oscillation)
xlabel('Time (s)')
ylabel('Acceleration (m/s)^2')
title('Acceleration in Local NED Coordinate System')
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Generate the trajectory sample-by-sample in a loop. The kinematicTrajectory System object
assumes the acceleration and angular velocity inputs are in the local sensor body coordinate system.
Rotate the acceleration and angular velocity control signals from the NED coordinate system to the
sensor body coordinate system using rotateframe and the Orientation state. Update a 3-D plot
of the position at each time. Add pause to mimic real-time processing. Once the loop is complete,
plot the position over time. Rotating the accNED and angVelNED control signals to the local body
coordinate system assures the motion stays along the Down axis.

figure(2)
plotHandle = plot3(traj.Position(1),traj.Position(2),traj.Position(3),'bo');
grid on
xlabel('North')
ylabel('East')
zlabel('Down')
axis([-1 1 -1 1 0 1.5])
hold on

q = ones(numSamples,1,'quaternion');
for ii = 1:numSamples
     accBody = rotateframe(traj.Orientation,accNED(ii,:));
     angVelBody = rotateframe(traj.Orientation,angVelNED(ii,:));

    [pos(ii,:),q(ii),vel,ac] = traj(accBody,angVelBody);

    set(plotHandle,'XData',pos(ii,1),'YData',pos(ii,2),'ZData',pos(ii,3))

    pause(1/fs)
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end

figure(3)
plot(timeVector,pos(:,1),'bo',...
     timeVector,pos(:,2),'r.',...
     timeVector,pos(:,3),'g.')
xlabel('Time (s)')
ylabel('Position (m)')
title('NED Position Over Time')
legend('North','East','Down')
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Convert the recorded orientation to Euler angles and plot. Although the orientation of the platform
changed over time, the acceleration always acted along the North axis.

figure(4)
eulerAngles = eulerd(q,'ZYX','frame');
plot(timeVector,eulerAngles(:,1),'bo',...
     timeVector,eulerAngles(:,2),'r.',...
     timeVector,eulerAngles(:,3),'g.')
axis([0,duration,-180,180])
legend('Yaw','Pitch','Roll')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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Generate a Coil Trajectory

This example shows how to generate a coil trajectory using the kinematicTrajectory System
object™.

Create a circular trajectory for a 1000 second duration and a sample rate of 10 Hz. Set the radius of
the circle to 5000 meters and the speed to 80 meters per second. Set the climb rate to 100 meters
per second and the pitch to 15 degrees. Specify the initial orientation as pointed in the direction of
motion.

duration = 1000; % seconds
fs = 10;         % Hz
N = duration*fs; % number of samples

radius = 5000;   % meters
speed = 80;      % meters per second
climbRate = 50;  % meters per second
initialYaw = 90; % degrees
pitch = 15;      % degrees

initPos = [radius, 0, 0];
initVel = [0, speed, climbRate];
initOrientation = quaternion([initialYaw,pitch,0],'eulerd','zyx','frame');

trajectory = kinematicTrajectory('SampleRate',fs, ...
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    'Velocity',initVel, ...
    'Position',initPos, ...
    'Orientation',initOrientation);

Specify a constant acceleration and angular velocity in the body coordinate system. Rotate the body
frame to account for the pitch.

accBody = zeros(N,3);
accBody(:,2) = speed^2/radius;
accBody(:,3) = 0.2;

angVelBody = zeros(N,3);
angVelBody(:,3) = speed/radius;

pitchRotation = quaternion([0,pitch,0],'eulerd','zyx','frame');
angVelBody = rotateframe(pitchRotation,angVelBody);
accBody = rotateframe(pitchRotation,accBody);

Call trajectory with the specified acceleration and angular velocity in the body coordinate system.
Plot the position, orientation, and speed over time.

[position, orientation, velocity] = trajectory(accBody,angVelBody);

eulerAngles = eulerd(orientation,'ZYX','frame');
speed = sqrt(sum(velocity.^2,2));

timeVector = (0:(N-1))/fs;

figure(1)
plot3(position(:,1),position(:,2),position(:,3))
xlabel('North (m)')
ylabel('East (m)')
zlabel('Down (m)')
title('Position')
grid on
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figure(2)
plot(timeVector,eulerAngles(:,1),...
     timeVector,eulerAngles(:,2),...
     timeVector,eulerAngles(:,3))
axis([0,duration,-180,180])
legend('Yaw (Rotation Around Down)','Pitch (Rotation Around East)','Roll (Rotation Around North)')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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figure(3)
plot(timeVector,speed)
xlabel('Time (s)')
ylabel('Speed (m/s)')
title('Speed')
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Generate Spiraling Circular Trajectory with No Inputs

Define a constant angular velocity and constant acceleration that describe a spiraling circular
trajectory.

Fs = 100;
r = 10;
speed = 2.5;
initialYaw = 90;

initPos = [r 0 0];
initVel = [0 speed 0];
initOrient = quaternion([initialYaw 0 0], 'eulerd', 'ZYX', 'frame');

accBody = [0 speed^2/r 0.01];
angVelBody = [0 0 speed/r];

Create a kinematic trajectory object.

traj = kinematicTrajectory('SampleRate',Fs, ...
    'Position',initPos, ...
    'Velocity',initVel, ...
    'Orientation',initOrient, ...
    'AccelerationSource','Property', ...
    'Acceleration',accBody, ...
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    'AngularVelocitySource','Property', ...
    'AngularVelocity',angVelBody);

Call the kinematic trajectory object in a loop and log the position output. Plot the position over time.

N = 10000;
pos = zeros(N, 3);
for i = 1:N
    pos(i,:) = traj();
end

plot3(pos(:,1), pos(:,2), pos(:,3))
title('Position')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
waypointTrajectory
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lidarScan
Create object for storing 2-D lidar scan

Description
A lidarScan object contains data for a single 2-D lidar (light detection and ranging) scan. The lidar
scan is a laser scan for a 2-D plane with distances (Ranges) measured from the sensor to obstacles in
the environment at specific angles (Angles). Use this laser scan object as an input to other robotics
algorithms such as matchScans, controllerVFH, or monteCarloLocalization.

Creation

Syntax
scan = lidarScan(ranges,angles)
scan = lidarScan(cart)

Description

scan = lidarScan(ranges,angles) creates a lidarScan object from the ranges and angles,
that represent the data collected from a lidar sensor. The ranges and angles inputs are vectors of
the same length and are set directly to the Ranges and Angles properties.

scan = lidarScan(cart) creates a lidarScan object using the input Cartesian coordinates as an
n-by-2 matrix. The Cartesian property is set directly from this input.

scan = lidarScan(scanMsg) creates a lidarScan object from a LaserScan ROS message
object.

Properties
Ranges — Range readings from lidar in meters
vector

Range readings from lidar, specified as a vector in meters. This vector is the same length as Angles,
and the vector elements are measured in meters.
Data Types: single | double

Angles — Angle of readings from lidar in radians
vector

Angle of range readings from lidar, specified as a vector. This vector is the same length as Ranges,
and the vector elements are measured in radians. Angles are measured counter-clockwise around the
positive z-axis.
Data Types: single | double
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Cartesian — Cartesian coordinates of lidar readings in meters
[x y] matrix

Cartesian coordinates of lidar readings, returned as an [x y] matrix. In the lidar coordinate frame,
positive x is forward and positive y is to the left.
Data Types: single | double

Count — Number of lidar readings
scalar

Number of lidar readings, returned as a scalar. This scalar is also equal to the length of the Ranges
and Angles vectors or the number of rows in Cartesian.
Data Types: double

Object Functions
plot Display laser or lidar scan readings
removeInvalidData Remove invalid range and angle data
transformScan Transform laser scan based on relative pose

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)
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Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')
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Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transformedScan = transformScan(refScan,[0.5 0.2 0]);

Rotate the laser scan by 20 degrees.

rotateScan = transformScan(refScan,[0,0,deg2rad(20)]);

Match Lidar Scans

Create a reference lidar scan using lidarScan (Robotics System Toolbox). Specify ranges and angles
as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300); 
refScan = lidarScan(refRanges,refAngles);
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Using the transformScan (Robotics System Toolbox) function, generate a second lidar scan at an
x,y offset of (0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan into the frame
of the first scan using the relative pose difference. Plot both the original scans and the aligned scans.

currScan2 = transformScan(currScan,pose);

subplot(2,1,1);
hold on
plot(currScan)
plot(refScan)
title('Original Scans')
hold off

subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Lidar scans require a limited size in code generation. The lidar scans are limited to 4000 points
(range and angles) as a maximum.

See Also
matchScans | transformScan | controllerVFH | monteCarloLocalization
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plot
Display laser or lidar scan readings

Syntax
plot(scanObj)
plot( ___ ,Name,Value)
linehandle = plot( ___ )

Description
plot(scanObj) plots the lidar scan readings specified in scanObj.

plot( ___ ,Name,Value) provides additional options specified by one or more Name,Value pair
arguments.

linehandle = plot( ___ ) returns a column vector of line series handles, using any of the
arguments from previous syntaxes. Use linehandle to modify properties of the line series after it is
created.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)
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Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')
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Input Arguments
scanObj — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "MaximumRange",5

Parent — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of "Parent" and an axes object in
which the laser scan is drawn. By default, the laser scan is plotted in the currently active axes.

MaximumRange — Range of laser scan
scan.RangeMax (default) | scalar
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Range of laser scan, specified as the comma-separated pair consisting of "MaximumRange" and a
scalar. When you specify this name-value pair argument, the minimum and maximum x-axis and the
maximum y-axis limits are set based on specified value. The minimum y-axis limit is automatically
determined by the opening angle of the laser scanner.

This name-value pair only works when you input scanMsg as the laser scan.

Outputs
linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique identifiers, which
you can use to query and modify properties of a specific chart line.

Version History
Introduced in R2015a

See Also
matchScans | transformScan | controllerVFH | monteCarloLocalization

Topics
“Estimate Robot Pose with Scan Matching”
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lidarSLAM
Perform localization and mapping using lidar scans

Description
The lidarSLAM class performs simultaneous localization and mapping (SLAM) for lidar scan sensor
inputs. The SLAM algorithm takes in lidar scans and attaches them to a node in an underlying pose
graph. The algorithm then correlates the scans using scan matching. It also searches for loop
closures, where scans overlap previously mapped regions, and optimizes the node poses in the pose
graph.

Creation
Syntax
slamObj = lidarSLAM
slamObj = lidarSLAM(mapResolution,maxLidarRange)
slamObj = lidarSLAM(mapResolution,maxLidarRange,maxNumScans)

Description

slamObj = lidarSLAM creates a lidar SLAM object. The default occupancy map size is 20 cells per
meter. The maximum range for each lidar scan is 8 meters.

slamObj = lidarSLAM(mapResolution,maxLidarRange) creates a lidar SLAM object and sets
the MapResolution and MaxLidarRange properties based on the inputs.

slamObj = lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies the upper
bound on the number of accepted scans allowed when generating code. maxNumScans is a positive
integer. This scan limit is only required when generating code.

Properties
PoseGraph — Underlying pose graph that connects scans
poseGraph object

Underlying pose graph that connects scans, specified as a poseGraph object. Adding scans to
lidarSLAM updates this pose graph. When loop closures are found, the pose graph is optimized
using OptimizationFcn.

MapResolution — Resolution of occupancy grid map
20 cells per meter (default) | positive integer

Resolution of the occupancy grid map, specified as a positive integer in cells per meter. Specify the
map resolution on construction.

MaxLidarRange — Maximum range of lidar sensor
8 meters (default) | positive scalar
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Maximum range of the lidar sensor, specified as a positive scalar in meters. Specify the maximum
range on construction.

OptimizationFcn — Pose graph optimization function
optimizePoseGraph (default) | function handle

Pose graph optimization function, specified as a function handle. By default, the algorithm calls the
optimizePoseGraph function. To specify your own optimization method, the class requires the
function signature to be:

[updatedPose,stat] = myOptimizationFcn(poseGraph)

poseGraph is a poseGraph object. updatedPose is an n-by-3 vector of [x y theta] poses listed
in sequential node ID order. stat is a structure containing a ResidualError field as a positive
scalar. Use the stat structure to include other information relevant to your optimization.

LoopClosureThreshold — Threshold for accepting loop closures
100 (default) | positive scalar

Threshold on the score from the scan matching algorithm for accepting loop closures, specified as a
positive scalar. Higher thresholds correspond to a better match, but scores vary based on sensor
data.

LoopClosureSearchRadius — Search radius for loop closure detection
8 meters (default) | positive scalar

Search radius for loop closure detection, specified as a positive scalar. Increasing this radius affects
performance by increasing search time. Tune this distance based on your environment and the
expected vehicle trajectory.

LoopClosureMaxAttempts — Number of attempts at finding loop closures
1 (default) | positive integer

Number of attempts at finding looping closures, specified as a positive integer. Increasing the number
of attempts affects performance by increasing search time.

LoopClosureAutoRollback — Allow automatic rollback of added loop closures
true (default) | false

Allow automatic rollback of added loop closures, specified as true or false. The SLAM object tracks
the residual error returned by the OptimizationFcn. If it detects a sudden change in the residual
error and this property is true, it rejects (rolls back) the loop closure.

OptimizationInterval — Number of loop closures accepted to trigger optimization
1 (default) | positive integer

Number of loop closures accepted to trigger optimization, specified as a positive integer. By default,
the PoseGraph is optimized every time lidarSLAM adds a loop closure.

MovementThreshold — Minimum change in pose required to process scans
[0 0] (default) | [translation rotation]

Minimum change in pose required to process scans, specified as a [translation rotation]
vector. A relative pose change for a newly added scan is calculated as [x y theta]. If the
translation in xy-position or rotation of theta exceeds these thresholds, the lidarSLAM object
accepts the scan and adds a pose is added to the PoseGraph.
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ScanRegistrationMethod — Scan registration method
'BranchAndBound' (default) | 'PhaseCorrelation'

Scan registration method, specified as a character vector.

Note Image Processing Toolbox™ is required for using Phase Correlation method.

TranslationSearchRange — Incremental match translational search range
[maxLidarRange/2 maxLidarRange/2] (default) | two-element vector of the form [x y]

Incremental match translational search range, specified as a two-element vector of the form [x y] in
meters. This property is only applicable when the ScanRegistrationMethod property is set to
'BranchAndBound'.

These values define the search window around the initial translation estimate specified in the
relPoseEst argument of the addScan function. Set the value of this property to the maximum
expected translation between consecutive accepted scans.

This property is similar to the 'TranslationSearchRange' name-value pair argument in
matchScansGrid function.

RotationSearchRange — Incremental match rotational search range
pi/2 (default) | positive scalar

Incremental match rotational search range, specified as positive scalar in radians. This property is
only applicable when the ScanRegistrationMethod property is set to 'BranchAndBound'.

This values define the search window around the initial rotation estimate specified in the
relPoseEst argument of the addScan function. Set the value of this property to the maximum
expected rotation between consecutive accepted scans.

This property is similar to the 'RotationSearchRange' name-value pair argument in
matchScansGrid function.

Object Functions
addScan Add scan to lidar SLAM map
copy Copy lidar SLAM object
removeLoopClosures Remove loop closures from pose graph
scansAndPoses Extract scans and corresponding poses
show Plot scans and robot poses

Examples

Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an optimized pose
graph of the robot trajectory. To get an occupancy map from the associated poses and scans, use the
buildMap function.
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Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking garage on a
Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a high frequency and
each scan is not needed for SLAM. Therefore, down sample the scans by selecting only every 40th
scan.

load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure threshold, and
search radius. Tune these parameters for your specific robot and environment. Create the
lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;

Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to compare each
added scan to previously added ones. To improve the map, the object optimizes the pose graph
whenever it detects a loop closure. Every 10 scans, display the stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end
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View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling buildMap
with the scans and poses. Use the same map resolution and max range you used with the SLAM
object.

[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')
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More About
SLAM

Simultaneous localization and mapping (SLAM) is a general concept for algorithms correlating
different sensor readings to build a map of a vehicle environment and track pose estimates. Different
algorithms use different types of sensors and methods for correlating data.

The lidarSLAM algorithm uses lidar scans and odometry information as sensor inputs. The lidar
scans map the environment and are correlated between each other to build an underlying pose graph
of the vehicle trajectory. Odometry information is an optional input that gives an initial pose estimate
for the scans to aid in the correlation. Scan matching algorithms correlate scans to previously added
scans to estimate the relative pose between them and add them to an underlying pose graph.

The pose graph contains nodes connected by edges that represent the relative poses of the vehicle.
Edges specify constraints on the node as an information matrix. To correct for drifting pose
estimates, the algorithm optimizes over the whole pose graph whenever it detects loop closures.

The algorithm assumes that data comes from a vehicle navigating an environment and incrementally
getting laser scans along its path. Therefore, scans are first compared to the most recent scan to
identify relative poses and are added to the pose graph incrementally. However, the algorithm also
searches for loop closures, which identify when the vehicle scans an area that was previously visited.
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When working with SLAM algorithms, the environment and vehicle sensors affect the performance
and data correlation quality. Tune your parameters properly for your expected environment or
dataset.

Version History
Introduced in R2019b

References
[1] Hess, Wolfgang, Damon Kohler, Holger Rapp, and Daniel Andor. "Real-Time Loop Closure in 2D

LIDAR SLAM." 2016 IEEE International Conference on Robotics and Automation (ICRA).
2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:

slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies the upper
bound on the number of accepted scans allowed when generating code. maxNumScans is a positive
integer. This scan limit is only required when generating code.

See Also
poseGraph | optimizePoseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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addScan
Add scan to lidar SLAM map

Syntax
addScan(slamObj,currScan)
addScan(slamObj,currScan,relPoseEst)
[isAccepted,loopClosureInfo,optimInfo] = addScan( ___ )

Description
addScan(slamObj,currScan) adds a lidar scan, currScan, to the lidar SLAM object, slamObj.
The function uses scan matching to correlate this scan to the most recent one, then adds it to the
pose graph defined in slamObj. If the scan is accepted, addScan detects loop closures and optimizes
based on settings in slamObj.

addScan(slamObj,currScan,relPoseEst) also specifies a relative pose to the latest lidar scan
pose in slamObj. This relative pose improves the scan matching.

Note The relPoseEst input is ignored when the ScanRegistrationMethod property of
lidarSLAM object is set to 'PhaseCorrelation'.

[isAccepted,loopClosureInfo,optimInfo] = addScan( ___ ) outputs detailed information
about adding the scan to the SLAM object. isAccepted indicates if the scan is added or rejected.
loopClosureInfo and optimInfo indicate if a loop closure is detected or the pose graph is
optimized.

Examples

Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an optimized pose
graph of the robot trajectory. To get an occupancy map from the associated poses and scans, use the
buildMap function.

Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking garage on a
Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a high frequency and
each scan is not needed for SLAM. Therefore, down sample the scans by selecting only every 40th
scan.

load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure threshold, and
search radius. Tune these parameters for your specific robot and environment. Create the
lidarSLAM object with these parameters.
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maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;

Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to compare each
added scan to previously added ones. To improve the map, the object optimizes the pose graph
whenever it detects a loop closure. Every 10 scans, display the stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end

View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling buildMap
with the scans and poses. Use the same map resolution and max range you used with the SLAM
object.
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[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')

Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM algorithm
parameters, sensor data, and underlying pose graph used to build the map.

currScan — Lidar scan reading
lidarScan object

Lidar scan reading, specified as a lidarScan object. This scan is correlated to the most recent scan
in slamObj using scan matching.

relPoseEst — Relative pose estimate of scan
[x y theta] vector

Relative pose estimate of scan, specified as an [x y theta] vector. This relative pose improves scan
matching.
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Output Arguments
isAccepted — Indicates if scan is accepted
true | false

Indicates if scan is accepted, returned as true or false. If the relative pose between scans is below
the MovementThreshold property of slamObj, the scan is rejected. By default, all scans are
accepted.

loopClosureInfo — Loop closure details
structure

Loop closure details, returned as a structure with these fields:

• EdgeIDs –– IDs of newly connected edges in the pose graph, returned as a vector.
• Edges –– Newly added loop closure edges, returned as an n-by-2 matrix of node IDs that each

edge connects.
• Scores –– Scores of newly connected edges in the pose graph returned from scan matching,

returned as a vector.

Note If the LoopClosureAutoRollback property is set to true in slamObj, loop closure edges
can be removed from the pose graph. This property rejects loops closures if the residual error
changes drastically after optimization. Therefore, some of the edge IDs listed in this structure may
not exist in the actual pose graph.

optimInfo — Pose graph optimization details
structure

Pose graph optimization details, returned as a structure with these fields:

• IsPerformed –– Boolean indicating if optimization is performed when adding this scan.
Optimization performance depends on the OptimizationInterval property in slamObj.

• IsAccepted –– Boolean indicating if optimization was accepted based on ResidualError.
• ResidualError –– Error associated with optimization, returned as a scalar.
• LoopClosureRemoved –– List of IDs of loop closure edges removed during optimization, returned

as a vector.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:
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slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies the upper
bound on the number of accepted scans allowed when generating code. maxNumScans is a positive
integer. This scan limit is only required when generating code.

See Also
poseGraph | optimizePoseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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copy
Copy lidar SLAM object

Syntax
newSlamObj = copy(slamObj)

Description
newSlamObj = copy(slamObj) creates a deep copy of slamObj with the same properties. Any
changes made to newSlamObj are not reflected in slamObj.

Examples

Create Copy of Lidar SLAM

Create a lidarSLAM object.

slamObj = lidarSLAM

slamObj = 
  lidarSLAM with properties:

                  PoseGraph: [1x1 poseGraph]
              MapResolution: 20
              MaxLidarRange: 8
            OptimizationFcn: @optimizePoseGraph
       LoopClosureThreshold: 100
    LoopClosureSearchRadius: 8
     LoopClosureMaxAttempts: 1
    LoopClosureAutoRollback: 1
       OptimizationInterval: 1
          MovementThreshold: [0 0]
     ScanRegistrationMethod: 'BranchAndBound'
     TranslationSearchRange: [4 4]
        RotationSearchRange: 1.5708

Create a copy of the lidar SLAM object.

slamObjNew = copy(slamObj)

slamObjNew = 
  lidarSLAM with properties:

                  PoseGraph: [1x1 poseGraph]
              MapResolution: 20
              MaxLidarRange: 8
            OptimizationFcn: @optimizePoseGraph
       LoopClosureThreshold: 100
    LoopClosureSearchRadius: 8
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     LoopClosureMaxAttempts: 1
    LoopClosureAutoRollback: 1
       OptimizationInterval: 1
          MovementThreshold: [0 0]
     ScanRegistrationMethod: 'BranchAndBound'
     TranslationSearchRange: [4 4]
        RotationSearchRange: 1.5708

Remove Loop Closures from Pose Graph in Lidar SLAM Object

Load laser scan data from a file.

load("offlineSlamData.mat");

To set up the SLAM algorithm:

1 Specify the lidar range, map resolution, loop closure threshold, and search radius.
2 Tune these parameters for your specific robot and environment.
3 Create the lidarSLAM object with these parameters.

maxLidarRange = 8;
mapResolution = 20;
slamObj = lidarSLAM(mapResolution,maxLidarRange);
slamObj.LoopClosureThreshold = 210;  
slamObj.LoopClosureSearchRadius = 8;

Add scans iteratively to the SLAM object.

for i = 1:numel(scans)
    addScan(slamObj,scans{i});
end

Create a copy of the SLAM object. Display the underlying pose graph of the SLAM object.

slamObj2 = copy(slamObj);
slamObj2.PoseGraph

ans = 
  poseGraph with properties:

               NumNodes: 71
               NumEdges: 83
    NumLoopClosureEdges: 13
     LoopClosureEdgeIDs: [31 36 63 65 67 69 71 73 75 77 79 81 83]
        LandmarkNodeIDs: [1x0 double]

Remove the first two loop closures by specifying their edge IDs.

lcEdgeIDs = slamObj2.PoseGraph.LoopClosureEdgeIDs(1:2);
removeLoopClosures(slamObj2,lcEdgeIDs)

Plot the pose graphs of the SLAM object before and after removing the loop closures.
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subplot(2,1,1)
show(slamObj.PoseGraph);
subplot(2,1,2)
show(slamObj2.PoseGraph);

Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM algorithm
parameters, sensor data, and underlying pose graph used to build the map.

Output Arguments
newSlamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, returned as a lidarSLAM object.

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:

slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies the upper
bound on the number of accepted scans allowed when generating code. maxNumScans is a positive
integer. This scan limit is only required when generating code.

See Also
poseGraph | optimizePoseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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removeLoopClosures
Remove loop closures from pose graph

Syntax
removeLoopClosures(slamObj)
removeLoopClosures(slamObj,lcEdgeIDs)

Description
removeLoopClosures(slamObj) removes all loop closures from the underlying pose graph in
slamObj.

removeLoopClosures(slamObj,lcEdgeIDs) removes the loop closure edges with the specified
IDs from the underlying pose graph in slamObj.

Examples

Remove Loop Closures from Pose Graph in Lidar SLAM Object

Load laser scan data from a file.

load("offlineSlamData.mat");

To set up the SLAM algorithm:

1 Specify the lidar range, map resolution, loop closure threshold, and search radius.
2 Tune these parameters for your specific robot and environment.
3 Create the lidarSLAM object with these parameters.

maxLidarRange = 8;
mapResolution = 20;
slamObj = lidarSLAM(mapResolution,maxLidarRange);
slamObj.LoopClosureThreshold = 210;  
slamObj.LoopClosureSearchRadius = 8;

Add scans iteratively to the SLAM object.

for i = 1:numel(scans)
    addScan(slamObj,scans{i});
end

Create a copy of the SLAM object. Display the underlying pose graph of the SLAM object.

slamObj2 = copy(slamObj);
slamObj2.PoseGraph

ans = 
  poseGraph with properties:
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               NumNodes: 71
               NumEdges: 83
    NumLoopClosureEdges: 13
     LoopClosureEdgeIDs: [31 36 63 65 67 69 71 73 75 77 79 81 83]
        LandmarkNodeIDs: [1x0 double]

Remove the first two loop closures by specifying their edge IDs.

lcEdgeIDs = slamObj2.PoseGraph.LoopClosureEdgeIDs(1:2);
removeLoopClosures(slamObj2,lcEdgeIDs)

Plot the pose graphs of the SLAM object before and after removing the loop closures.

subplot(2,1,1)
show(slamObj.PoseGraph);
subplot(2,1,2)
show(slamObj2.PoseGraph);

Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM algorithm
parameters, sensor data, and underlying pose graph used to build the map
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lcEdgeIDs — Loop closure edge IDs
vector of positive integers

Loop closure edge IDs, specified as a vector of positive integers. To find specific edge IDs, use
findEdgeID on the underlying poseGraph object defined in slamObj.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:

slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies the upper
bound on the number of accepted scans allowed when generating code. maxNumScans is a positive
integer. This scan limit is only required when generating code.

See Also
poseGraph | optimizePoseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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scansAndPoses
Extract scans and corresponding poses

Syntax
[scans,poses] = scansAndPoses(slamObj)
[scans,poses] = scansAndPoses(slamObj,nodeIDs)

Description
[scans,poses] = scansAndPoses(slamObj) returns the scans used by the lidarSLAM object as
lidarScan objects, along with their associated [x y theta] poses from the underlying pose graph
of slamObj.

[scans,poses] = scansAndPoses(slamObj,nodeIDs) returns the scans and poses for the
specific node IDs. To get the node IDs, see the underlying poseGraph object in slamObj for the node
IDs.

Examples

Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an optimized pose
graph of the robot trajectory. To get an occupancy map from the associated poses and scans, use the
buildMap function.

Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking garage on a
Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a high frequency and
each scan is not needed for SLAM. Therefore, down sample the scans by selecting only every 40th
scan.

load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure threshold, and
search radius. Tune these parameters for your specific robot and environment. Create the
lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;
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Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to compare each
added scan to previously added ones. To improve the map, the object optimizes the pose graph
whenever it detects a loop closure. Every 10 scans, display the stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end

View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling buildMap
with the scans and poses. Use the same map resolution and max range you used with the SLAM
object.

[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')
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Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM algorithm
parameters, sensor data, and underlying pose graph used to build the map.

nodeIDs — Node IDs from pose graph
positive integer

Node IDs from pose graph, specified as a positive integer. Nodes are added to the pose graph with
sequential ID numbers. To get the node IDs, see the underlying poseGraph object in slamObj for the
node IDs.

Output Arguments
scans — Lidar scan readings
lidarScan object

Lidar scan readings, returned as a lidarScan object.

poses — Pose for each scan
n-by-3 matrix | [x y theta] vectors
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Pose for each scan, returned as an n-by-3 matrix of [x y theta] vectors. Each row is a pose that
corresponds to a scan in scans.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:

slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies the upper
bound on the number of accepted scans allowed when generating code. maxNumScans is a positive
integer. This scan limit is only required when generating code.

See Also
poseGraph | optimizePoseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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show
Plot scans and robot poses

Syntax
show(slamObj)
show(slamObj,Name,Value)
axes = show( ___ )

Description
show(slamObj) plots all the scans added to the input lidarSLAM object overlaid with the lidar
poses in its underlying pose graph.

show(slamObj,Name,Value) specifies options using Name,Value pair arguments. For example,
"Poses","off" turns off display of the underlying pose graph in slamObj.

axes = show( ___ ) returns the axes handle that the lidar SLAM data is plotted to using any of the
previous syntaxes.

Examples

Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an optimized pose
graph of the robot trajectory. To get an occupancy map from the associated poses and scans, use the
buildMap function.

Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking garage on a
Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a high frequency and
each scan is not needed for SLAM. Therefore, down sample the scans by selecting only every 40th
scan.

load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure threshold, and
search radius. Tune these parameters for your specific robot and environment. Create the
lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;
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Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to compare each
added scan to previously added ones. To improve the map, the object optimizes the pose graph
whenever it detects a loop closure. Every 10 scans, display the stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end

View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling buildMap
with the scans and poses. Use the same map resolution and max range you used with the SLAM
object.

[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')
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Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM algorithm
parameters, sensor data, and underlying pose graph used to build the map.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "Poses","off"

Parent — Axes used to plot pose graph
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of "Parent" and
either an Axes or UIAxes object. See axes or uiaxes.

Poses — Display lidar poses
"on" (default) | "off"
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Display lidar poses, specified as the comma-separated pair consisting of "Poses" and "on" or
"off".

Output Arguments
axes — Axes used to plot the map
Axes object | UIAxes object

Axes used to plot the map, returned as either an Axes or UIAxes object. See axes or uiaxes.

Version History
Introduced in R2019b

See Also
poseGraph | optimizePoseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

2 Classes

2-624



likelihoodFieldSensorModel
Create a likelihood field range sensor model

Description
The likelihoodFieldSensor object creates a likelihood field sensor model object for range
sensors. This object contains specific sensor model parameters. You can use this object to specify the
model parameters in a monteCarloLocalization object.

Creation

Syntax
lf = likelihoodFieldSensorModel

Description

lf = likelihoodFieldSensorModel creates a likelihood field sensor model object for range
sensors.

Properties
Map — Occupancy grid representing the map
binaryOccupancyMap object (default)

Occupancy grid representing the map, specified as a binaryOccupancyMap object. This object
represents the environment of the vehicle as a grid with binary values indicating obstacles as true
(1) and free locations as false (0).

SensorPose — Pose of the range sensor relative to the vehicle
[0 0 0] (default) | three-element vector

Pose of the range sensor relative to the coordinate frame of the vehicle, specified as a three-element
vector, [x y theta].

SensorLimits — Minimum and maximum range of sensor
[0 12] (default) | two-element vector

Minimum and maximum range of sensor, specified as a two-element vector in meters.

NumBeams — Number of beams used for likelihood computation
60 (default) | scalar

Number of beams used for likelihood computation, specified as a scalar. The computation efficiency
can be improved by specifying a smaller number of beams than the actual number available from the
sensor.
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MeasurementNoise — Standard deviation for measurement noise
0.2 (default) | scalar

Standard deviation for measurement noise, specified as a scalar.

RandomMeasurementWeight — Weight for probability of random measurement
0.05 (default) | scalar

Weight for probability of random measurement, specified as a scalar. This scalar is the probability
that the measurement is not accurate due to random interference.

ExpectedMeasurementWeight — Weight for probability of expected measurement
0.95 (default) | scalar

Weight for probability of expected measurement, specified as a scalar. The weight is the probability of
getting a correct range measurement within the noise limits specified in MeasurementNoise
property.

MaxLikelihoodDistance — Maximum distance to find nearest obstacles
2.0 (default) | scalar

Maximum distance to find nearest obstacles, specified as a scalar in meters.

Limitations
If you change your sensor model after using it with the monteCarloLocalization object, call
release on that object beforehand. For example:

mcl = monteCarloLocalization; 
[isUpdated,pose,covariance] = mcl(ranges,angles); 
release(mcl) 
mcl.SensorModel.NumBeams = 120;

Version History
Introduced in R2019b

See Also
monteCarloLocalization | odometryMotionModel

Topics
“Localize TurtleBot Using Monte Carlo Localization Algorithm”
“Monte Carlo Localization Algorithm”
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magparams
Magnetometer sensor parameters

Description
The magparams class creates a magnetometer sensor parameters object. You can use this object to
model a magnetometer when simulating an IMU with imuSensor. See the “Algorithms” on page 2-
545 section of imuSensor for details of magparams modeling.

Creation

Syntax
params = magarams
params = magparams(Name,Value)

Description

params = magarams returns an ideal magnetometer sensor parameters object with default values.

params = magparams(Name,Value) configures magparams object properties using one or more
Name,Value pair arguments. Name is a property name and Value is the corresponding value. Name
must appear inside single quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Properties
MeasurementRange — Maximum sensor reading (μT)
Inf (default) | real positive scalar

Maximum sensor reading in μT, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements (μT/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in μT/LSB, specified as a real nonnegative scalar. Here, LSB is
the acronym for least significant bit.
Data Types: single | double

ConstantBias — Constant sensor offset bias (μT)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in μT, specified as a real scalar or 3-element row vector. Any scalar input
is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double
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AxesMisalignment — Sensor axes skew (%)
diag([100 100 100]) (default) | scalar in the range [0,100] | 3-element row vector in the range
[0,100] | 3-by-3 matrix in the range [0,100]

Sensor axes skew in percentage, specified as a scalar, a 3-element row vector, or a 3-by-3 matrix with
values ranging from 0 to 100. The diagonal elements of the matrix account for the misalignment
effects for each axes. The off-diagonal elements account for the cross-axes misalignment effects. The
measured state vmeasure is obtained from the true state vtrue via the misalignment matrix as:

vmeasure = 1
100Mvtrue = 1

100

m11 m12 m13
m21 m22 m23
m31 m32 m33

vtrue

• If you specify the property as a scalar, then all the off-diagonal elements of the matrix take the
value of the specified scalar and all the diagonal elements are 100.

• If you specify the property as a vector [a b c], then m21 = m31 = a, m12 = m32 = b, and m13 = m23 =
c. All the diagonal elements are 100.

Data Types: single | double

NoiseDensity — Power spectral density of sensor noise (μT/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in μT/√Hz, specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (μT)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in μT, specified as a real scalar or 3-element row vector. Any scalar input
is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor (μT/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (μT/√Hz), specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

TemperatureBias — Sensor bias from temperature (μT/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (μT/℃), specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]
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Scale factor error from temperature in (%/℃), specified as a real scalar or 3-element row vector with
values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector where
each element has the input scalar value.
Data Types: single | double

Examples
Generate Magnetometer Data from Stationary Inputs

Generate magnetometer data for an imuSensor object from stationary inputs.

Generate a magnetometer parameter object with a maximum sensor reading of 1200 μT and a
resolution of 0.1 μT/LSB. The constant offset bias is 1 μT. The sensor has a power spectral density of

0 . 6 0 . 6 0 . 9
100  μT/ Hz. The bias from temperature is [0.8 0.8 2.4] μT/0C. The scale factor error from

temperature is 0.1 %/0C.

params = magparams('MeasurementRange',1200,'Resolution',0.1,'ConstantBias',1,'NoiseDensity',[0.6 0.6 0.9]/sqrt(100),'TemperatureBias',[0.8 0.8 2.4],'TemperatureScaleFactor',0.1);

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object using the
magnetometer parameter object.

Fs = 100;
numSamples = 1000;
t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('accel-mag','SampleRate', Fs, 'Magnetometer', params);

Generate magnetometer data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);
 
[~, magData] = imu(acc, angvel, orient);

Plot the resultant magnetometer data.

plot(t, magData)
title('Magnetometer')
xlabel('s')
ylabel('\mu T')
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Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
accelparams | gyroparams | imuSensor
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mapLayer
Create map layer for N-dimensional data

Description
The mapLayer object creates an N-dimensional grid map, where the first two dimensions determine
the footprint of the map, and all subsequent dimensions dictate the size and layout of the data stored
in each cell. For storing scalar binary or probability values for a grid map, use the
binaryOccupancyMap or occupancyMap objects instead.

A map layer stores data for grid cells that represent a discretized region of space. To query and
update data using world, local, or grid coordinates, use the getMapData and setMapData object
functions. Each grid cell in the map can store data of any size from a single a value to a multi-
dimensional array. For more information, see the DataSize property.

Layer behavior can also be customized by providing function handles during creation using the
GetTransformFcn and SetTransformFcn properties.

Creation

Syntax
map = mapLayer
map = mapLayer(p)
map = mapLayer(width,height)
map = mapLayer(rows,cols,'grid')
map = mapLayer(width,height,cellDims)
map = mapLayer(rows,cols,cellDims,'grid')
map = mapLayer(sourceMap)
map = mapLayer( ___ ,Name,Value)

Description

map = mapLayer creates an empty map object occupying 10-by-10 meters of space with a resolution
of 1 cell per meter.

map = mapLayer(p) creates a map from the values in the matrix or matrix array p. For 3-D matrix
arrays, each cell in the map is filled with the vector of values at each grid location along the third
dimension of the array. For an N-by-D matrix array, each cell contains a matrix (N=4) or a matrix
array (N>4) of data for that grid location.

map = mapLayer(width,height) creates a map covering the specified width and height with a
resolution of 1 cell per meter.

map = mapLayer(rows,cols,'grid') creates a map with a grid size of rows,cols with a
resolution of 1 cell per meter.
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map = mapLayer(width,height,cellDims) creates the map where the size of the data stored in
each cell is defined by the array of integers cellDims.

map = mapLayer(rows,cols,cellDims,'grid') creates a map with a grid size of rowscols
where the size of the data stored in each cell is defined by the array of integers cellDims.

map = mapLayer(sourceMap) creates a new object using the layers copied from another
mapLayer object.

map = mapLayer( ___ ,Name,Value) specifies property values using name-value pairs.

For example, mapLayer(__,'LocalOriginInWorld',[15 20]) sets the local origin to a specific
world location.

Properties
DataSize — Size of the N-dimensional data matrix
[10 10] (default) | vector of integers

Size of the N-dimensional data matrix, specified as vector of integers. The first two dimensions define
the footprint of the map, and all subsequent dimensions dictate the size and layout of the data stored
in each cell. The default value assumes a single value is stored for each cell in a 10-by-10 grid.

If the map stores an n-element vector of values in each cell, this property would be [width height
n].

If the map stores a 10-by-10 grid with each cell containing a 3-by-3-by-3 matrix array, the data size
would be [10 10 3 3 3].

This property is set when you create the object based on the dimensions of the input matrix p or the
inputs width, height, and cellDims.

After you create the object, this property is read-only.
Data Types: double

DataType — Data type of the values stored
'double' (default) | character vector

Data type of the values stored in the map, specified as a character vector.

This property is set based on the data type of the input p or the data type of DefaultValue. After you
create the object, this property is read-only.
Data Types: char

DefaultValue — Default value for unspecified map locations
0 (default) | numeric scalar

Default value for unspecified map locations including areas outside the map, specified as a numeric
scalar.

If you specify the GetTransformFcn or SetTransformFcn property when creating the object, the
default value is updated based on that transformation function. If you create the map with a matrix of
values p, the transform function modifies the values before storing.
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Data Types: double

GetTransformFcn — Applies transformations to retrieved values
function handle

Applies transformations to values retrieved by the getMapData function, specified as a function
handle.

This function handle is called inside the getMapData object function. It can be used to apply a
transformation to values retrieved from the map layer. The function definition must have the
following format:

modifiedValues = getTransformFcnHandle(map,values,varargin)

The size of the output modifiedValues must match the size of the input values. The function
provides all map data accessed from the getMapData object function to this transform function
through the varargin inputs.

You can set this property when you create the object. After you create the object, this property is
read-only.
Data Types: function_handle

GridLocationInWorld — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the bottom-left corner of the grid in world coordinates, specified as a two-element vector,
[xWorld yWorld].

You can set this property when you create the object.
Data Types: double

GridOriginInLocal — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xLocal yLocal]

Location of the bottom-left corner of the grid in local coordinates, specified as a two-element vector,
[xLocal yLocal].

You can set this property when you create the object.
Data Types: double

GridSize — Number of rows and columns in grid
two-element integer-valued vector

Number of rows and columns in grid, stored as a 1-by-2 real-valued vector representing the number
of rows and columns, in that order.

This property is set when you create the object based on the first two dimensions of the input matrix
p, the inputs width and height, or the inputs row and col.
Data Types: double

LayerName — Name of layer
'mapLayer' (default) | character vector | string scalar

Name of map layer, specified as a character vector or string scalar.

 mapLayer

2-633



You can set this property when you create the object. After you create the object, this property is
read-only.
Data Types: double

LocalOriginInWorld — Location of the local frame in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the origin of the local frame in world coordinates, specified as a two-element vector,
[xLocal yLocal]. Use the move function to shift the local frame as your vehicle moves.

You can set this property when you create the object.
Data Types: double

Resolution — Grid resolution
1 (default) | scalar

This property is read-only.

Grid resolution, stored as a scalar in cells per meter representing the number and size of grid
locations.

You can set this property when you create the object. After you create the object, this property is
read-only.
Data Types: double

SetTransformFcn — Applies transformations to set values
function handle

Applies transformations to values set by the setMapData function, specified as a function handle.

This function handle is called inside the setMapData object function. It can be used to apply a
transformation to values set in the map layer. The function must have the following syntax:

modifiedValues = setTransformFcnHandle(map,values,varargin)        
        if numel(varargin) == 0
            return; %
        else
          % Custom Code
        end
end

The size of the output, modifiedValues, must match the size of the input, values. The function
provides all map data specified in the setMapData object function to this transform function. When
creating this object without starting values, the function is called without additional input arguments,
so specify an if-statement to return when the number of elements in varagin is zero.

You can set this property when you create the object. After you create the object, this property is
read-only.
Data Types: function_handle

XLocalLimits — Minimum and maximum values of x-coordinates in local frame
two-element vector

This property is read-only.
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Minimum and maximum values of x-coordinates in local frame, stored as a two-element horizontal
vector of the form [min max]. Local frame is defined by LocalOriginInWorld property.
Data Types: double

YLocalLimits — Minimum and maximum values of y-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of y-coordinates in local frame, stored as a two-element horizontal
vector of the form [min max]. Local frame is defined by LocalOriginInWorld property.
Data Types: double

XWorldLimits — Minimum and maximum world range values of x-coordinates
two-element vector

This property is read-only.

Minimum and maximum world range values of x-coordinates, stored as a 1-by-2 vector representing
the minimum and maximum values, in that order.
Data Types: double

YWorldLimits — Minimum and maximum world range values of y-coordinates
two-element vector

This property is read-only.

Minimum and maximum world range values of y-coordinates, stored as a 1-by-2 vector representing
the minimum and maximum values, in that order.
Data Types: double

Object Functions
getMapData Retrieve data from map layer
grid2local Convert grid indices to local coordinates
grid2world Convert grid indices to world coordinates
local2grid Convert local coordinates to grid indices
local2world Convert local coordinates to world coordinates
move Move map in world frame
setMapData Assign data to map layer
syncWith Sync map with overlapping map
world2grid Convert world coordinates to grid indices
world2local Convert world coordinates to local coordinates

Examples

Store and Modify XY Velocities Using A Single Map Layer

Create a map layer that stores two values per grid location as xy-velocities.

Create an m-by-n-by-2 matrix of values. The first element in the third dimension is dx and the second
is dy as velocities.
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dXY = reshape(1:200,10,20);
dXY(:,:,2) = dXY;

Create a map layer from the matrix. Specify the resolution and layer name.

vLayer = mapLayer(dXY,'Resolution',1,'LayerName','dXY');

Get all the map data out as a matrix. Get the xy-locations of the velocity values by creating arrays that
cover the minimum and maximum xy-world limits and is shifted to the grid-center locations. The y-
locations are flipped when converting between matrix to world coordinates. Visualize the velocities
corresponding to those grid-center locations using the quiver function.

v = getMapData(vLayer);

R = 1/(2*vLayer.Resolution);
xLim = vLayer.XWorldLimits;
yLim = vLayer.YWorldLimits;
xLoc = (xLim(1)+R):R*2:(xLim(2)-R);
yLoc = (yLim(2)-R):-R*2:(yLim(1)+R);

quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))

Set the bottom-left quadrant to new updated values. Create the values as a matrix and specify the
bottom-left corner (0,0) in map coordinates to the setData function.

updateValues = repmat(reshape([-50,100],[1 1 2]),5,10);

setMapData(vLayer,[0 0],updateValues)
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v = getMapData(vLayer);
quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))

Set new values for the top-left quadrant using grid coordinates. For maps, the top-left grid location is
(1,1).

setMapData(vLayer,[1 1],updateValues,'grid')
v = getMapData(vLayer);
quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))
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Write Custom Transform Functions for Map Layers

The mapLayer object enables you to apply custom element-wise transformations when setting and
getting data in the map. To transform data you set or get from the map, specify function handles for
the GetTransfomFcn and SetTransformFcn properties. This example shows how to implement a
log-odds probabilitistic map layer by creating a lookup table for probability and log-odds values. The
transform functions use these lookup tables to convert between these values when setting or getting
data.

Create Lookup Tables

Generate a full lookup table of values that map the probability values to the minimum and maximum
limits of int16 values.

Create an array of int16 values from intmin to intmax. Define the probablilty limits.

intType = 'int16';
intLinSpace = intmin(intType):intmax(intType);
numOfPoints = length(intLinSpace);
probLimits = [0.001 .999];

The exampleHelperProbToLogodds and examplerHelperLogoddsToProb functions covert
between the log-odds and probability values. Use the helper functions to get the log-odds limits and
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generate the array for looking up log-odds values. Create an interpolated grid for the entire lookup
table.

logOddsLimits = exampleHelperProbToLogodds([0.001 .999]);
logOddsLookup = single(exampleHelperLogoddsToProb(linspace(logOddsLimits(1),logOddsLimits(2),numOfPoints)));
interpTable = griddedInterpolant(logOddsLookup,single(intLinSpace),'nearest');

Specify Transform Function Handles

The transform function handles utilize example helpers that define how to convert between log-odds
integer values and the probability values with an applied saturation limit. The probability saturation
limits are [0.001 .999] as previously specified. This behavior is similar to the occupancyMap
object.

getXformFcn = @(obj,logodds,varargin)...
    exampleHelperIntLogoddsToProb(logodds,logOddsLookup(:),intLinSpace);

setXformFcn = @(obj,prob,varargin)...
    exampleHelperProbToIntLogodds(prob,interpTable,logOddsLookup(:),intLinSpace,probLimits);

Create Map Layer

Generate an occupancy map layer object from a matrix of probability values. Specify the get and set
transform functions.

occupancyLayer = mapLayer(repmat(0.5,10,10),...
                           'LayerName','Occupancy',...
                           'GetTransformFcn',getXformFcn,...
                           'SetTransformFcn',setXformFcn);

Notice that when you create the map, the default value is 0.001 instead of 0. This difference is
because the SetTransformFcn function has been applied to the default value of 0 when you create
the object, which saturates the value to 0.001.

disp(occupancyLayer.DefaultValue)

    0.0010

Get and Set Map Data

The map data matches the matrix you set on creation.

extData = getMapData(occupancyLayer) 

extData = 10×10

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000

Set specific map locations to values that are:
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• Outside of the probability saturation limits.
• Higher precision than the resolution of the lookup tables.

setMapData(occupancyLayer,[0 0],0.00001)
setMapData(occupancyLayer,[5 5],0.25999)

For the first location, the probability is bound to the saturation limits.

extData = getMapData(occupancyLayer,[0 0])

extData = 0.0010

The second location returns the value closest to the probability value in the lookup table.

extData2 = getMapData(occupancyLayer,[5 5])

extData2 = 0.2600

The generated map layer can now be used for updating a probability occupany map that are stored as
int16 values. To combine this map with other layers or map types, see the multiLayerMap object.

Limitations
• mapLayer objects can only belong to one multiLayerMap object at a time.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The LayerName property must be fixed at compile-time
• The DataType property must be known at compile-time.

As of MATLAB R2022a, default map behavior during code generation has changed, which may result
in backwards compatibility issues. Maps such as mapLayer now support fixed-size code generation
(DynamicMemoryAllocation="off").

1 Maps that are either default-constructed or constructed with compile-time constant size
information (or matrices that are of compile-time constant size) produce fixed-size maps.

2 To restore the previous behavior, use the coder.ignoreConst function when specifying size
inputs, or coder.varsize matrix variable name specified as a string scalar or character vector,
prior to constructing the map.

See Also
Objects
multiLayerMap | occupancyMap3D | occupancyMap | binaryOccupancyMap
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Functions
getMapData | setMapData | move | syncWith

Topics
“Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map”
“Fuse Multiple Lidar Sensors Using Map Layers”
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getMapData
Retrieve data from map layer

Syntax
mapData = getMapData(map)
mapData = getMapData(map,xy)
mapData = getMapData(map,xy,"local")
mapData = getMapData(map,ij,"grid")
[mapData,inBounds] = getMapData( ___ )

mapData = getMapData(map,bottomLeft,mapSize)
mapData = getMapData(map,bottomLeft,mapSize,"local")
mapData = getMapData(map,topLeft,gridSize,"grid")

Description
mapData = getMapData(map) returns a matrix of values that contains all the data for the given
map layer map.

mapData = getMapData(map,xy) returns an array of values for the given xy-locations in world
coordinates.

mapData = getMapData(map,xy,"local") returns an array of values for the given xy-locations in
local coordinates.

mapData = getMapData(map,ij,"grid") returns an array of values for the given ij-locations in
grid coordinates. Each row of ij refers to a grid cell index [i j]

[mapData,inBounds] = getMapData( ___ ) also returns a vector of logical values indicating
whether the corresponding input location xy or ij is valid using the previous syntaxes.

mapData = getMapData(map,bottomLeft,mapSize) returns a matrix of values in a subregion of
the map layer, map. The subregion starts in the bottom-left xy-position bottomLeft in world
coordinates with a given map size mapSize specified as [width height] in meters.

mapData = getMapData(map,bottomLeft,mapSize,"local") specifies the bottom-left corner
of the subregion in local coordinates.

mapData = getMapData(map,topLeft,gridSize,"grid") specifies the top-left corner of the
sub region in grid coordinates. The subregion size, gridSize is also given in grid coordinates as
[rows cols].

Examples

Store and Modify XY Velocities Using A Single Map Layer

Create a map layer that stores two values per grid location as xy-velocities.
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Create an m-by-n-by-2 matrix of values. The first element in the third dimension is dx and the second
is dy as velocities.

dXY = reshape(1:200,10,20);
dXY(:,:,2) = dXY;

Create a map layer from the matrix. Specify the resolution and layer name.

vLayer = mapLayer(dXY,'Resolution',1,'LayerName','dXY');

Get all the map data out as a matrix. Get the xy-locations of the velocity values by creating arrays that
cover the minimum and maximum xy-world limits and is shifted to the grid-center locations. The y-
locations are flipped when converting between matrix to world coordinates. Visualize the velocities
corresponding to those grid-center locations using the quiver function.

v = getMapData(vLayer);

R = 1/(2*vLayer.Resolution);
xLim = vLayer.XWorldLimits;
yLim = vLayer.YWorldLimits;
xLoc = (xLim(1)+R):R*2:(xLim(2)-R);
yLoc = (yLim(2)-R):-R*2:(yLim(1)+R);

quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))

Set the bottom-left quadrant to new updated values. Create the values as a matrix and specify the
bottom-left corner (0,0) in map coordinates to the setData function.
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updateValues = repmat(reshape([-50,100],[1 1 2]),5,10);

setMapData(vLayer,[0 0],updateValues)
v = getMapData(vLayer);
quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))

Set new values for the top-left quadrant using grid coordinates. For maps, the top-left grid location is
(1,1).

setMapData(vLayer,[1 1],updateValues,'grid')
v = getMapData(vLayer);
quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))
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Write Custom Transform Functions for Map Layers

The mapLayer object enables you to apply custom element-wise transformations when setting and
getting data in the map. To transform data you set or get from the map, specify function handles for
the GetTransfomFcn and SetTransformFcn properties. This example shows how to implement a
log-odds probabilitistic map layer by creating a lookup table for probability and log-odds values. The
transform functions use these lookup tables to convert between these values when setting or getting
data.

Create Lookup Tables

Generate a full lookup table of values that map the probability values to the minimum and maximum
limits of int16 values.

Create an array of int16 values from intmin to intmax. Define the probablilty limits.

intType = 'int16';
intLinSpace = intmin(intType):intmax(intType);
numOfPoints = length(intLinSpace);
probLimits = [0.001 .999];

The exampleHelperProbToLogodds and examplerHelperLogoddsToProb functions covert
between the log-odds and probability values. Use the helper functions to get the log-odds limits and

 getMapData

2-645



generate the array for looking up log-odds values. Create an interpolated grid for the entire lookup
table.

logOddsLimits = exampleHelperProbToLogodds([0.001 .999]);
logOddsLookup = single(exampleHelperLogoddsToProb(linspace(logOddsLimits(1),logOddsLimits(2),numOfPoints)));
interpTable = griddedInterpolant(logOddsLookup,single(intLinSpace),'nearest');

Specify Transform Function Handles

The transform function handles utilize example helpers that define how to convert between log-odds
integer values and the probability values with an applied saturation limit. The probability saturation
limits are [0.001 .999] as previously specified. This behavior is similar to the occupancyMap
object.

getXformFcn = @(obj,logodds,varargin)...
    exampleHelperIntLogoddsToProb(logodds,logOddsLookup(:),intLinSpace);

setXformFcn = @(obj,prob,varargin)...
    exampleHelperProbToIntLogodds(prob,interpTable,logOddsLookup(:),intLinSpace,probLimits);

Create Map Layer

Generate an occupancy map layer object from a matrix of probability values. Specify the get and set
transform functions.

occupancyLayer = mapLayer(repmat(0.5,10,10),...
                           'LayerName','Occupancy',...
                           'GetTransformFcn',getXformFcn,...
                           'SetTransformFcn',setXformFcn);

Notice that when you create the map, the default value is 0.001 instead of 0. This difference is
because the SetTransformFcn function has been applied to the default value of 0 when you create
the object, which saturates the value to 0.001.

disp(occupancyLayer.DefaultValue)

    0.0010

Get and Set Map Data

The map data matches the matrix you set on creation.

extData = getMapData(occupancyLayer) 

extData = 10×10

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000

Set specific map locations to values that are:
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• Outside of the probability saturation limits.
• Higher precision than the resolution of the lookup tables.

setMapData(occupancyLayer,[0 0],0.00001)
setMapData(occupancyLayer,[5 5],0.25999)

For the first location, the probability is bound to the saturation limits.

extData = getMapData(occupancyLayer,[0 0])

extData = 0.0010

The second location returns the value closest to the probability value in the lookup table.

extData2 = getMapData(occupancyLayer,[5 5])

extData2 = 0.2600

The generated map layer can now be used for updating a probability occupany map that are stored as
int16 values. To combine this map with other layers or map types, see the multiLayerMap object.

Input Arguments
map — Map layer
mapLayer object

Map layer, specified as a mapLayer object.

xy — World or local coordinates
n-by-2 matrix

World or local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
coordinates.
Data Types: double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format, where n is the
number of grid positions.
Data Types: double

bottomLeft — Location of output matrix in world or local coordinates
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

mapSize — Subregion map size
two-element vector | [x y]

Subregion map size, specified as a two-element vector [x y] in world or local coordinates.
Data Types: double
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gridSize — Output grid size
two-element vector | [row col]

Output grid size, specified as a two-element vector [row col].
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
mapData — Data values from map layer
matrix

Data values from map layer, returned as a matrix. By default, the function returns all data on the
layer as an M-by-N-by-DataDims matrix. M and N are the grid rows and columns respectively.
DataDims are the dimensions of the map data, map.DataSize(3:end).

For other syntaxes, the map data may be returned as an array of values with size N-by-DataDims or
as a subregion of the full matrix.

inBounds — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map limits return a value of 1. Locations outside the map limits return a value of 0.

Version History
Introduced in R2021a

R2023a: Signed Distance Map Support

The getMapData function now supports the signedDistanceMap object as a new map
representation for the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | occupancyMap3D | occupancyMap | binaryOccupancyMap |
signedDistanceMap
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Functions
setMapData | move | syncWith
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setMapData
Assign data to map layer

Syntax
setMapData(map,mapData)
setMapData(map,xy,mapData)
setMapData(map,xy,mapData,"local")
setMapData(map,ij,mapData,"grid")
inBounds = setMapData( ___ )

setMapData(map,bottomLeft,mapData)
setMapData(map,bottomLeft,mapData,"local")
setMapData(map,topLeft,mapData,"grid")

Description
setMapData(map,mapData) overwrites all values in the map layer using a matrix with dimensions
that match the map layer data dimensions, map.DataSize.

setMapData(map,xy,mapData) specifies an array of values for the given xy-locations in world
coordinates. The mapData input must be an X-by-1-by-DataDims array. DataDims are the dimensions
of the map data, map.DataSize(3:end). Locations outside the map boundaries are ignored.

setMapData(map,xy,mapData,"local") specifies locations in local coordinates.

setMapData(map,ij,mapData,"grid") specifies an array of values for the given ij-locations in
grid coordinates. Each row of ij refers to a grid cell index [i j]

inBounds = setMapData( ___ ) also returns a vector of logical values indicating whether the
corresponding input location xy or ij is valid using the previous syntaxes.

setMapData(map,bottomLeft,mapData) specifies a matrix of values mapData for a subregion of
the map layer, map. The subregion starts in the bottom-left xy-position bottomLeft and updates a
subregion based on the size of mapData.

setMapData(map,bottomLeft,mapData,"local") specifies the bottom-left corner of the
subregion in local coordinates.

setMapData(map,topLeft,mapData,"grid") specifies the top-left corner of a sub region in grid
coordinates. The subregion is updated with values in mapData.

Examples

Store and Modify XY Velocities Using A Single Map Layer

Create a map layer that stores two values per grid location as xy-velocities.
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Create an m-by-n-by-2 matrix of values. The first element in the third dimension is dx and the second
is dy as velocities.

dXY = reshape(1:200,10,20);
dXY(:,:,2) = dXY;

Create a map layer from the matrix. Specify the resolution and layer name.

vLayer = mapLayer(dXY,'Resolution',1,'LayerName','dXY');

Get all the map data out as a matrix. Get the xy-locations of the velocity values by creating arrays that
cover the minimum and maximum xy-world limits and is shifted to the grid-center locations. The y-
locations are flipped when converting between matrix to world coordinates. Visualize the velocities
corresponding to those grid-center locations using the quiver function.

v = getMapData(vLayer);

R = 1/(2*vLayer.Resolution);
xLim = vLayer.XWorldLimits;
yLim = vLayer.YWorldLimits;
xLoc = (xLim(1)+R):R*2:(xLim(2)-R);
yLoc = (yLim(2)-R):-R*2:(yLim(1)+R);

quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))

Set the bottom-left quadrant to new updated values. Create the values as a matrix and specify the
bottom-left corner (0,0) in map coordinates to the setData function.
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updateValues = repmat(reshape([-50,100],[1 1 2]),5,10);

setMapData(vLayer,[0 0],updateValues)
v = getMapData(vLayer);
quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))

Set new values for the top-left quadrant using grid coordinates. For maps, the top-left grid location is
(1,1).

setMapData(vLayer,[1 1],updateValues,'grid')
v = getMapData(vLayer);
quiver(xLoc,yLoc,v(:,:,1),v(:,:,2))
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Write Custom Transform Functions for Map Layers

The mapLayer object enables you to apply custom element-wise transformations when setting and
getting data in the map. To transform data you set or get from the map, specify function handles for
the GetTransfomFcn and SetTransformFcn properties. This example shows how to implement a
log-odds probabilitistic map layer by creating a lookup table for probability and log-odds values. The
transform functions use these lookup tables to convert between these values when setting or getting
data.

Create Lookup Tables

Generate a full lookup table of values that map the probability values to the minimum and maximum
limits of int16 values.

Create an array of int16 values from intmin to intmax. Define the probablilty limits.

intType = 'int16';
intLinSpace = intmin(intType):intmax(intType);
numOfPoints = length(intLinSpace);
probLimits = [0.001 .999];

The exampleHelperProbToLogodds and examplerHelperLogoddsToProb functions covert
between the log-odds and probability values. Use the helper functions to get the log-odds limits and
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generate the array for looking up log-odds values. Create an interpolated grid for the entire lookup
table.

logOddsLimits = exampleHelperProbToLogodds([0.001 .999]);
logOddsLookup = single(exampleHelperLogoddsToProb(linspace(logOddsLimits(1),logOddsLimits(2),numOfPoints)));
interpTable = griddedInterpolant(logOddsLookup,single(intLinSpace),'nearest');

Specify Transform Function Handles

The transform function handles utilize example helpers that define how to convert between log-odds
integer values and the probability values with an applied saturation limit. The probability saturation
limits are [0.001 .999] as previously specified. This behavior is similar to the occupancyMap
object.

getXformFcn = @(obj,logodds,varargin)...
    exampleHelperIntLogoddsToProb(logodds,logOddsLookup(:),intLinSpace);

setXformFcn = @(obj,prob,varargin)...
    exampleHelperProbToIntLogodds(prob,interpTable,logOddsLookup(:),intLinSpace,probLimits);

Create Map Layer

Generate an occupancy map layer object from a matrix of probability values. Specify the get and set
transform functions.

occupancyLayer = mapLayer(repmat(0.5,10,10),...
                           'LayerName','Occupancy',...
                           'GetTransformFcn',getXformFcn,...
                           'SetTransformFcn',setXformFcn);

Notice that when you create the map, the default value is 0.001 instead of 0. This difference is
because the SetTransformFcn function has been applied to the default value of 0 when you create
the object, which saturates the value to 0.001.

disp(occupancyLayer.DefaultValue)

    0.0010

Get and Set Map Data

The map data matches the matrix you set on creation.

extData = getMapData(occupancyLayer) 

extData = 10×10

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000

Set specific map locations to values that are:
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• Outside of the probability saturation limits.
• Higher precision than the resolution of the lookup tables.

setMapData(occupancyLayer,[0 0],0.00001)
setMapData(occupancyLayer,[5 5],0.25999)

For the first location, the probability is bound to the saturation limits.

extData = getMapData(occupancyLayer,[0 0])

extData = 0.0010

The second location returns the value closest to the probability value in the lookup table.

extData2 = getMapData(occupancyLayer,[5 5])

extData2 = 0.2600

The generated map layer can now be used for updating a probability occupany map that are stored as
int16 values. To combine this map with other layers or map types, see the multiLayerMap object.

Input Arguments
map — Map representation
mapLayer object | signedDistanceMap

Map layer, specified as a mapLayer or signedDistanceMap object.

mapData — Data values for setting map layer
matrix

Data values for setting map layer, specified as a matrix. By default, the function sets all data on the
layer as an M-by-N-by-DataDims matrix. M and N are the grid height and width respectively.
DataDims are the dimensions of the map data, map.DataSize(3,:).

For other syntaxes, the map data may be specified as a matrix with size N-by-DataDims, where N is
the number of elements in xy or ij, or as a subregion of the full matrix.

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

bottomLeft — Location of output matrix in world or local coordinates
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

ij — Grid positions
n-by-2 matrix
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Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format, where n is the
number of grid positions.
Data Types: double

xy — World or local coordinates
n-by-2 matrix

World or local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
coordinates.
Data Types: double

Output Arguments
inBounds — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map limits return a value of 1. Locations outside the map limits return a value of 0.

Version History
Introduced in R2021a

R2023a: Signed Distance Map Support

The setMapData function now supports the signedDistanceMap object as a new map
representation for the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | occupancyMap3D | occupancyMap | binaryOccupancyMap |
signedDistanceMap

Functions
getMapData | move | syncWith
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signedDistanceMap
Discrete signed distance map of 2-D region

Description
Use the signedDistanceMap object to represent distances to surfaces or contours in space using
signed distance functions. Query points return positive values if they lie outside an occupied region of
space and negative if they lie inside a space. This map object also provides gradient information and
the location to nearest occupied cell in the scene.

Creation

Syntax
map = signedDistanceMap
map = signedDistanceMap(width,height)
map = signedDistanceMap(width,height,resolution)
map = signedDistanceMap(width,height,resolution,"world")
map = signedDistanceMap(rows,cols,resolution,"grid")

map = signedDistanceMap(mapmatrix)
map = signedDistanceMap(mapmatrix,resolution)
map = signedDistanceMap(sourcemap)
map = signedDistanceMap(sourcemap,resolution)

map = signedDistanceMap( ___ ,Name=Value)

Description
Dimensions

map = signedDistanceMap creates an empty 2-D signed distance map object occupying 10-by-10
meters of space with a resolution of 1 cell per meter.

map = signedDistanceMap(width,height) creates a map with the specified width width, and
height height with a resolution of 1 cell per meter.

map = signedDistanceMap(width,height,resolution) creates a map with the specified
width width, and height height with a resolution of resolution cell per meter. The Resolution
property is set to resolution.

map = signedDistanceMap(width,height,resolution,"world") creates a map with a grid
size of width-by-height in world coordinates. The Resolution property is set to resolution.

map = signedDistanceMap(rows,cols,resolution,"grid") creates a map with a grid size of
rows-by-cols in grid coordinates. The Resolution property is set to resolution.
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Other Maps

map = signedDistanceMap(mapmatrix) creates a map of the same size and value as the matrix
mapmatrix.

map = signedDistanceMap(mapmatrix,resolution) creates a map from the values in the
matrix or matrix array mapmatrix with a resolution resolution. The Resolution property is set
to resolution.

map = signedDistanceMap(sourcemap) creates a new object using the occupancy data copied
from another signedDistanceMap object.

map = signedDistanceMap(sourcemap,resolution) creates a new object using the occupancy
data copied from another signedDistanceMap object but resamples the matrix to have the specified
resolution resolution. The Resolution property is set to resolution.

Additional Options

map = signedDistanceMap( ___ ,Name=Value) specifies property values using name-value
arguments.

For example, signedDistanceMap(__,LocalOriginInWorld=[15 20]) sets the local origin to a
specific world location.

Input Arguments

width — Width of map
10 (default) | nonnegative numeric scalar

Width of map, specified as nonnegative numeric scalar, in meters.

height — Height of map
nonnegative numeric scalar

Height of map, specified as nonnegative numeric scalar, in meters.

rows — Number of rows in map
nonnegative numeric scalar

Number of rows in map, specified as nonnegative numeric scalar.

cols — Number of columns in map
10 (default) | nonnegative numeric scalar

Number of columns in map, specified as nonnegative numeric scalar.

mapmatrix — Map matrix
M-by-N matrix

Map matrix, specified as a M-by-N matrix, where each cell contains 1 for occupied and 0 for
unoccupied.

sourcemap — Signed distance map to copy values from
signedDistanceMap object

Signed distance map to copy values from, specified as a signedDistanceMap object.
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Properties
DataType — Data type of the values stored
'double' (default) | character vector

Data type of the values stored in the map, specified as a character vector.

This property is set based on the data type of the input p or the data type of DefaultValue. After you
create the object, this property is read-only.
Data Types: char

DefaultValue — Default value for unspecified map locations
0 (default) | numeric scalar

Default value for unspecified map locations including areas outside the map, specified as a numeric
scalar.

InterpolationMethod — Interpolation method for distance matrix
"none" (default) | "linear"

Interpolation method for distance matrix, specified as a string scalar:

• "none" — Distance is constant within cells. The gradient is NaN.
• "linear" — Bilinearly interpolate distance. The gradient is piecewise continuous between cell-

centers.

Data Types: char | string

GridLocationInWorld — Location of bottom-left corner of grid in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the bottom-left corner of the grid in world coordinates, specified as a two-element vector,
[xWorld yWorld].

You can set this property when you create the object.

GridOriginInLocal — Location of bottom-left corner of grid in local coordinates
[0 0] (default) | two-element vector | [xLocal yLocal]

Location of the bottom-left corner of the grid in local coordinates, specified as a two-element vector,
[xLocal yLocal].

You can set this property when you create the object.

GridSize — Number of rows and columns in grid
two-element integer-valued vector

Number of rows and columns in grid, stored as a two-element integer-valued vector representing the
number of rows and columns, in that order.

This property is set when you create the object based on the first two dimensions of the input matrix
mapmatrix, the inputs width and height, or the inputs row and col.

LayerName — Name of map layer
'distanceLayer' (default) | character vector | string scalar
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Name of map layer, specified as a character vector or string scalar.

You can set this property as a name-value argument when you create the object. After you create the
object, this property is read-only.
Data Types: char | string

LocalOriginInWorld — Location of local frame origin in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the local frame origin in world coordinates, specified as a two-element vector, [xLocal
yLocal]. Use the move function to shift the local frame as your vehicle moves.

You can set this property as a name-value argument when you create the object.

Resolution — Grid resolution
1 (default) | positive numeric scalar

This property is read-only.

Grid resolution, specified as a positive numeric scalar in cells per meter representing the number and
size of grid locations.

You can set this property as a name-value argument when you create the object. After you create the
object, this property is read-only.

XLocalLimits — Minimum and maximum values of x-coordinates in local frame
two-element row vector

This property is read-only.

Minimum and maximum values of x-coordinates in the local frame, stored as a two-element row
vector of the form [min max]. Local frame is defined by the LocalOriginInWorld property.

YLocalLimits — Minimum and maximum values of y-coordinates in local frame
two-element row vector

This property is read-only.

Minimum and maximum values of y-coordinates in the local frame, stored as a two-element row
vector of the form [min max]. Local frame is defined by the LocalOriginInWorld property.

XWorldLimits — Minimum and maximum values of x-coordinates of world frame
two-element row vector

This property is read-only.

Minimum and maximum values of x-coordinates of the world frame, stored as a two-element row
vector representing the minimum and maximum values, in that order.

YWorldLimits — Minimum and maximum values of y-coordinates of world frame
two-element row vector

This property is read-only.

Minimum and maximum values of y-coordinates of the world frame, stored as a two-element row
vector representing the minimum and maximum values, in that order.
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Object Functions
copy Create copy of 2-D signed distance map
closestBoundary Get nearest boundary to location
distance Get distance at locations
getMapData Retrieve data from map layer
gradient Get gradient at locations
grid2world Convert grid indices to world coordinates
grid2local Convert grid indices to local coordinates
local2grid Convert local coordinates to grid indices
local2world Convert local coordinates to world coordinates
move Move map in world frame
setMapData Assign data to map layer
show Display signed distance map
syncWith Sync map with overlapping map
world2grid Convert world coordinates to grid indices
world2local Convert world coordinates to local coordinates

Examples

Get Distance to Nearest Obstacles in Signed Distance Map

Load the exampleMaps MAT file.

load exampleMaps.mat

Create a signed distance map using the simpleMap data.

sdm = signedDistanceMap(simpleMap,InterpolationMethod="none");
show(sdm,BoundaryColor=[0 0 0],Colorbar="on");
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setMapData(sdm,[7 1],zeros(5,5))
getMapData(sdm,[9 2])

ans = logical
   0

show(sdm,BoundaryColor=[0 0 0],Colorbar="on");
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Find the closest boundary to the coordinate, [16.25 6.25] and calculate the distance to the nearest
boundary.

coord = [16.25 6.25];
boundary = closestBoundary(sdm,coord,"world")

boundary = 
boundary(:,:,1) =

   20.5000

boundary(:,:,2) =

    6.5000

dist = distance(sdm,coord)

dist = 4

Plot the line between the queried point and the closest obstacle cell center

hold on
plot([coord(1) boundary(:,:,1)],[coord(2) boundary(:,:,2)],"-r",Marker=".",MarkerSize=10)
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Note that even though distance from the queried point appears greater than 4 when plotted, the
distance function calculates the distance from the nearest cell center of the queried point.

Version History
Introduced in R2023a

See Also
Objects
multiLayerMap | occupancyMap3D | occupancyMap | binaryOccupancyMap

Functions
distance | getMapData | setMapData | move | syncWith
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closestBoundary
Get nearest boundary to location

Syntax
boundary = closestBoundary(map)
boundary = closestBoundary(map,location)
boundary = closestBoundary(map,location,frame)
[boundary,isValid] = closestBoundary(map,location, ___ )
boundary = closestBoundary(map,cornerLocation,matSize)
boundary = closestBoundary(map,cornerLocation,matSize,frame)

Description
boundary = closestBoundary(map) returns the locations of the closest obstacles boundary for
each cell of the specified signed distance map map.

boundary = closestBoundary(map,location) returns the closest boundary locations for the
specified xy-locations locations in world coordinates.

boundary = closestBoundary(map,location,frame) returns the closest boundary locations
for the specified locations locations in the coordinate frame frame.

[boundary,isValid] = closestBoundary(map,location, ___ ) returns isValid, indicating
which of the specified locations locations are within the map bounds.

boundary = closestBoundary(map,cornerLocation,matSize) returns the closest boundary
locations for a subregion of the signed distance map, map. The subregion starts in the minimum
corner location cornerLocation in the world coordinate frame with a given map size matSize.

boundary = closestBoundary(map,cornerLocation,matSize,frame) returns the closest
boundary locations for a subregion of the signed distance map, map. The subregion starts in the
minimum corner location cornerLocation in the coordinate frame frame.

Note When specifying a corner location and map size, closestBoundary determines the closest
boundary locations using the distances between cell centers within the rectangular query region.

Examples

Find Closest Boundary in Signed Distance Map

Create a signed distance map with a width of 40 cells and a height of 20 cells.

map = signedDistanceMap(40,20);

Update the map occupancy with an identity matrix.

setMapData(map,[1 10],eye(20),"grid");
show(map);
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Find nearest boundary for each corner cell of map.

queryIJ = [1 1; 20 1; 1 40; 20 40];
nearestCornerIJ = closestBoundary(map,queryIJ,"grid")

nearestCornerIJ = 
nearestCornerIJ(:,:,1) =

     1
     6
    16
    20

nearestCornerIJ(:,:,2) =

    10
    15
    25
    29

Find nearest XY boundary cell for cells in the first 5-by-5 quadrant in the top-left.

nearestQuadrantXY = closestBoundary(map,[0 5],[5 5])

nearestQuadrantXY = 
nearestQuadrantXY(:,:,1) =
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    9.5000   10.5000   10.5000   11.5000   11.5000
   10.5000   10.5000   11.5000   11.5000   12.5000
   10.5000   11.5000   11.5000   12.5000   12.5000
   11.5000   11.5000   12.5000   12.5000   13.5000
   11.5000   12.5000   12.5000   13.5000   13.5000

nearestQuadrantXY(:,:,2) =

   19.5000   18.5000   18.5000   17.5000   17.5000
   18.5000   18.5000   17.5000   17.5000   16.5000
   18.5000   17.5000   17.5000   16.5000   16.5000
   17.5000   17.5000   16.5000   16.5000   15.5000
   17.5000   16.5000   16.5000   15.5000   15.5000

Input Arguments
map — Signed distance map
signedDistanceMap object

Signed distance map, specified as a signedDistanceMap object.

location — World or local coordinates, or grid locations
N-by-2 matrix

World or local coordinates, or grid locations, specified as an N-by-2 matrix. N is the number of
locations. The format of the rows depends on the value of the frame argument:

• "world" — [x y] coordinates in the world frame.
• "local" — [x y] coordinates in the local frame.
• "grid" — [row column] location in the grid frame.

cornerLocation — Minimum corner location of output matrix
two-element vector

Minimum corner location of output matrix, specified as a two-element vector of coordinates in the
form, [x y]. The location is in world or local coordinates if the frame argument is set to "world" and
"local", respectively. When frame is "grid", the coordinates are in the form [row column] and
cornerLocation is the top-left corner of the world frame.

matSize — Subregion map size
two-element vector | [x y]

Subregion map size, specified as a two-element vector [x y] in world or local coordinates. Location is
in world or local coordinates if the frame argument is set to "world" and "local", respectively.
When frame is "grid", cornerLocation is the top-left corner of the world frame.

frame — Coordinate frame
"world" (default) | "local" | "grid"

Coordinate frame, specified as one of these options:
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• "world" — Specify coordinates in the world frame.
• "local" — Specify coordinates in the local frame.
• "grid" — Specify grid locations in the grid frame.

Data Types: char | string

Output Arguments
boundary — Nearest boundary point
L-by-1-by-2 array | M-by-N-by-2 array

Nearest boundary point, returned as an L-by-1-by-2 array for point queries and an M-by-N-by-2 array
for subregion queries. L is the number of locations queried. M and N are the dimensions of the map
or specified map subregion.

isValid — Points in boundary
L-element vector

Points in boundary, returned as an L-element vector, where L is the total number of queried locations.
Each element is a 1 (true) if the point is within the boundaries, and 0 (false) if the point is outside
boundaries.

This output is only returned for point queries.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
signedDistanceMap | gradient | distance
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distance
Get distance at locations

Syntax
dist = distance(map)
dist = distance(map,location)
dist = distance(map,location,frame)
[dist,isValid] = distance(map,location, ___ )
dist = distance(map,cornerLocation,mapSize)
dist = distance(map,cornerLocation,mapSize,frame)

Description
dist = distance(map) returns the signed distances dist to the closest obstacle for all cells in the
map map.

dist = distance(map,location) returns the signed distances to the closest boundaries for the
specified xy-locations location in world coordinates.

Note Note that the distance function determines the distance using the interpolation method
specified in InterpolationMethod property of map.

dist = distance(map,location,frame) returns distances to the closest boundaries for the
specified locations location in the coordinate frame frame.

[dist,isValid] = distance(map,location, ___ ) returns isValid, indicating which of the
specified locations location are within the map bounds isValid.

dist = distance(map,cornerLocation,mapSize) returns the distances to the closest
boundaries for a subregion of the map layer, map. The subregion starts in the corner location
cornerLocation in the world coordinate frame with a given map size mapSize.

dist = distance(map,cornerLocation,mapSize,frame) returns the distances to the closest
boundaries for a subregion of the map layer, map. The subregion starts in the corner location
cornerLocation in the coordinate frame frame.

Note When specifying a corner location and map size, distance determines the distances between
cell centers within the rectangular query region.

Examples

Get Distance to Nearest Obstacles in Signed Distance Map

Load the exampleMaps MAT file.
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load exampleMaps.mat

Create a signed distance map using the simpleMap data.

sdm = signedDistanceMap(simpleMap,InterpolationMethod="none");
show(sdm,BoundaryColor=[0 0 0],Colorbar="on");

setMapData(sdm,[7 1],zeros(5,5))
getMapData(sdm,[9 2])

ans = logical
   0

show(sdm,BoundaryColor=[0 0 0],Colorbar="on");
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Find the closest boundary to the coordinate, [16.25 6.25] and calculate the distance to the nearest
boundary.

coord = [16.25 6.25];
boundary = closestBoundary(sdm,coord,"world")

boundary = 
boundary(:,:,1) =

   20.5000

boundary(:,:,2) =

    6.5000

dist = distance(sdm,coord)

dist = 4

Plot the line between the queried point and the closest obstacle cell center

hold on
plot([coord(1) boundary(:,:,1)],[coord(2) boundary(:,:,2)],"-r",Marker=".",MarkerSize=10)
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Note that even though distance from the queried point appears greater than 4 when plotted, the
distance function calculates the distance from the nearest cell center of the queried point.

Input Arguments
map — Signed distance map
signedDistanceMap object

Signed distance map, specified as a signedDistanceMap object.

location — World or local coordinates, or grid locations
N-by-2 matrix

World or local coordinates, or grid locations, specified as an N-by-2 matrix. N is the number of
locations. The format of the rows depends on the value of the frame argument:

• "world" — [x y] coordinates in the world frame.
• "local" — [x y] coordinates in the local frame.
• "grid" — [row column] location in the grid frame.

Data Types: double

cornerLocation — Location of output matrix
two-element vector
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Location of output matrix, specified as a two-element vector of coordinates in the form, [x y]. The
location is in world or local coordinates if the frame argument is set to "world" and "local",
respectively. When frame is "grid", cornerLocation is the top-left corner of the world frame.
Data Types: double

mapSize — Subregion map size
two-element vector | [x y]

Subregion map size, specified as a two-element vector [x y] in world or local coordinates. Location is
in world or local coordinates if the frame argument is set to "world" and "local", respectively.
When frame is "grid", cornerLocation is the top-left corner of the world frame.
Data Types: double

frame — Coordinate frame
"world" (default) | "local" | "grid"

Coordinate frame, specified as one of these options:

• "world" — Specify coordinates in the world frame.
• "local" — Specify coordinates in the local frame.
• "grid" — Specify grid locations in the grid frame.

Data Types: char | string

Output Arguments
dist — Distances to closest obstacles
L-element column vector | M-by-N-by-2 array

Distances to closest obstacles, returned as an L-element column vector for location queries and an M-
by-N-by-2 array for subregion queries. L is the number of locations queried. M and N are the
dimensions of the map or specified map subregion.

isValid — Points in boundary
L-element vector

Points in boundary, returned as an L-element vector, where L is the total number of queried locations.
Each element is a 1 (true) if the point is within the boundaries, and 0 (false) if the point is outside
boundaries.

This output is only returned for point queries.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
signedDistanceMap | closestBoundary | gradient
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gradient
Get gradient at locations

Syntax
grad = gradient(map)
grad = gradient(map,location)
grad = gradient(map,location,frame)
[grad,isValid] = gradient(map,location, ___ )
grad = gradient(map,cornerLocation,mapSize)
grad = gradient(map,cornerLocation,mapSize,frame)

Description
grad = gradient(map) returns the xy-gradients grad for the specified signed distance map map.

grad = gradient(map,location) returns an array of gradients for the specified xy-locations
location in world coordinates.

grad = gradient(map,location,frame) returns an array of gradient values for the specified
locations location, in the coordinate frame frame.

[grad,isValid] = gradient(map,location, ___ ) returns isValid, indicating which of the
specified locations location are within the map bounds isValid.

grad = gradient(map,cornerLocation,mapSize) returns a matrix of values in a subregion of
the map layer, map. The subregion starts in the corner location cornerLocation in the world
coordinate frame with a given map size mapSize.

grad = gradient(map,cornerLocation,mapSize,frame) returns a matrix of distances in a
subregion of the map layer, map. The subregion starts in the corner location cornerLocation in the
coordinate frame frame with a given map size mapSize.

Note When the cornerLoc and mapSize are specified, gradient computes gradients at cell
centers within the rectangular query region.

Examples

Calculate Gradients using Signed Distance Map

Create a linearly interpolated map.

map = signedDistanceMap(InterpolationMethod="linear");

Set the map data to an identity matrix to set the main diagonal of the map to occupied.

setMapData(map,eye(10));

Set top left quadrant as occupied.
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setMapData(map,[0 5],true(5));

Calculate gradient in each corner cell of map.

queryIJ = [1 1; 1 10; 10 1; 10 10];
gradientAtCornerCell = gradient(map,queryIJ,"grid")

gradientAtCornerCell = 
gradientAtCornerCell(:,:,1) =

     1
     1
     0
    -1

gradientAtCornerCell(:,:,2) =

    -1
     0
    -1
     1

Calculate gradient for cells in top-left quadrant.

gradientInQuadrant = gradient(map,[0 5],[5 5])

gradientInQuadrant = 
gradientInQuadrant(:,:,1) =

    1.0000    1.0000    1.0000    1.0000    1.0000
         0    0.5000    1.0000    1.0000    1.0000
         0         0    0.5000    1.0000    1.0000
         0         0         0    0.5000    1.0000
         0         0         0         0    0.5000

gradientInQuadrant(:,:,2) =

   -1.0000         0         0         0         0
   -1.0000   -0.5000         0         0         0
   -1.0000   -1.0000   -0.5000         0         0
   -1.0000   -1.0000   -1.0000   -0.5000         0
   -1.0000   -1.0000   -1.0000   -1.0000   -0.5000

Display gradient vectors over the map.

show(map,BoundaryColor=[0 0 0],VectorField="Gradient");
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Input Arguments
map — Signed distance map
signedDistanceMap object

Signed distance map, specified as a signedDistanceMap object.

location — World or local coordinates, or grid locations
N-by-2 matrix

World or local coordinates, or grid locations, specified as an N-by-2 matrix. N is the number of
locations. The format of the rows depends on the value of the frame argument:

• "world" — [x y] coordinates in the world frame.
• "local" — [x y] coordinates in the local frame.
• "grid" — [row column] location in the grid frame.

Data Types: double

cornerLocation — Location of output matrix
two-element vector

Location of output matrix, specified as a two-element vector of coordinates in the form, [x y]. The
location is in world or local coordinates if the frame argument is set to "world" and "local",
respectively. When frame is "grid", cornerLocation is the top-left corner of the world frame.
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Data Types: double

mapSize — Subregion map size
two-element vector | [x y]

Subregion map size, specified as a two-element vector [x y] in world or local coordinates. Location is
in world or local coordinates if the frame argument is set to "world" and "local", respectively.
When frame is "grid", cornerLocation is the top-left corner of the world frame.
Data Types: double

frame — Coordinate frame
"world" (default) | "local" | "grid"

Coordinate frame, specified as one of these options:

• "world" — Specify coordinates in the world frame.
• "local" — Specify coordinates in the local frame.
• "grid" — Specify grid locations in the grid frame.

Data Types: char | string

Output Arguments
grad — xy-gradients
L-by-1-by-2 array | M-by-N-by-2 array

xy-gradients, returned as an L-by-1-by-2 array for location queries and an M-by-N-by-2 array for
subregion queries. L is the number of locations queried. M and N are the dimensions of the map or
specified map subregion.

The x-gradients and y-gradients are the first and second page, respectively.

isValid — Points in boundary
L-element vector

Points in boundary, returned as an L-element vector, where L is the total number of queried locations.
Each element is a 1 (true) if the point is within the boundaries, and 0 (false) if the point is outside
boundaries.

This output is only returned for point queries.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
signedDistanceMap | closestBoundary | distance
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show
Display signed distance map

Syntax
show(map)
show(map,frame)
show( ___ ,Name=Value)
mapimage = show( ___ )
[mapimage,colorbar] = show( ___ )

Description
show(map) displays the occupancy grid map in the current axes, with the axes labels representing
the world coordinates.

show(map,frame) displays the occupancy grid map in the current axes, with the axes labels
representing the coordinates in the coordinate frame frame.

show( ___ ,Name=Value) specifies additional options specified by one or more name-value
arguments.

mapimage = show( ___ ) returns the handle to the image object mapimage, created by show.

[mapimage,colorbar] = show( ___ ) returns the handle to the colorbar colorbar, created by
show.

Examples

Get Distance to Nearest Obstacles in Signed Distance Map

Load the exampleMaps MAT file.

load exampleMaps.mat

Create a signed distance map using the simpleMap data.

sdm = signedDistanceMap(simpleMap,InterpolationMethod="none");
show(sdm,BoundaryColor=[0 0 0],Colorbar="on");
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setMapData(sdm,[7 1],zeros(5,5))
getMapData(sdm,[9 2])

ans = logical
   0

show(sdm,BoundaryColor=[0 0 0],Colorbar="on");
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Find the closest boundary to the coordinate, [16.25 6.25] and calculate the distance to the nearest
boundary.

coord = [16.25 6.25];
boundary = closestBoundary(sdm,coord,"world")

boundary = 
boundary(:,:,1) =

   20.5000

boundary(:,:,2) =

    6.5000

dist = distance(sdm,coord)

dist = 4

Plot the line between the queried point and the closest obstacle cell center

hold on
plot([coord(1) boundary(:,:,1)],[coord(2) boundary(:,:,2)],"-r",Marker=".",MarkerSize=10)

2 Classes

2-682



Note that even though distance from the queried point appears greater than 4 when plotted, the
distance function calculates the distance from the nearest cell center of the queried point.

Input Arguments
map — Signed distance map
signedDistanceMap object

Signed distance map, specified as a signedDistanceMap object.

frame — Coordinate frame
"local" | "grid"

Coordinate frame, specified as either "local" or "grid".

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: signedDistanceMap(sdm,Parent=ax)

Parent — Axes to plot the map
gca (default) | Axes object | UIAxes object
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Axes to plot the map specified as either an Axes or UIAxes object. See axes or uiaxes.

Colormap — Colormap values
three-column matrix of RGB triplets

Colormap values for the pixel values in the map, specified as a three-column matrix of RGB triplets. If
not provided, the current colormap of the axes is used

BoundaryColor — Occupied boundary color
RGB triplet

Occupied boundary color, specified as an RGB triplet. The occupied boundary cells use the specified
color when specified.

Colorbar — Use colorbar
false or 0 (default) | true or 1

Use colorbar, specified as a logical 1 (true) or 0 (false). When true, show creates a colorbar that
corresponds to the Colormap input and adds it to a hidden axis behind the current axis.
Data Types: logical

VectorField — Vector field display type
"off" (default) | "Gradient" | "ClosestBoundary"

Vector field display type, specified as one of these options:

• "off" — Show no vector field.
• "Gradient" — Show gradient field superimposed on the distance map.
• "ClosestBoundary" — Show arrows that point to the nearest occupied boundary cell.

Data Types: char | string

Output Arguments
mapimage — Map image handle
image object

Map image handle, specified as a image object.

colorbar — Colorbar handle
colorbar object

Colorbar handle, returned as a colorbar object.

Version History
Introduced in R2023a

See Also
signedDistanceMap
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copy
Create copy of 2-D signed distance map

Syntax
copyMap = copy(map)

Description
copyMap = copy(map) creates a deep copy of the signedDistanceMap object with the same
properties.

Input Arguments
map — Signed distance map
signedDistanceMap object

Map representation, specified as a signedDistanceMap object.

Output Arguments
copyMap — Copied signed distance map
signedDistanceMap object

Map representation, specified as a signedDistanceMap object. The properties are the same as the
input object, map, but the copy has a different object handle.

Version History
Introduced in R2023a

See Also
signedDistanceMap
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insfilterMARG
Estimate pose from MARG and GPS data

Description
The insfilterMARG object implements sensor fusion of MARG and GPS data to estimate pose in the
NED (or ENU) reference frame. MARG (magnetic, angular rate, gravity) data is typically derived from
magnetometer, gyroscope, and accelerometer sensors. The filter uses a 22-element state vector to
track the orientation quaternion, velocity, position, MARG sensor biases, and geomagnetic vector. The
insfilterMARG object uses an extended Kalman filter to estimate these quantities.

Creation

Syntax
filter = insfilterMARG
filter = insfilterMARG('ReferenceFrame',RF)
filter = insfilterMARG( ___ ,Name,Value)

Description

filter = insfilterMARG creates an insfilterMARG object with default property values.

filter = insfilterMARG('ReferenceFrame',RF) allows you to specify the reference frame,
RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default
value is 'NED'.

filter = insfilterMARG( ___ ,Name,Value) also allows you set properties of the created
filter using one or more name-value pairs. Enclose each property name in single quotes.

Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the inertial measurement unit (IMU) in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location units are [degrees degrees meters].
Data Types: single | double
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GyroscopeNoise — Multiplicative process noise variance from gyroscope (rad/s)2

1e-9 (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise in the x, y,
and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to the x, y, and z axes of
the gyroscope.

Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope bias (rad/s)2

1e-10 (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar or 3-
element row vector of positive real numbers.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the gyroscope bias, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from accelerometer (m/s2)2

1e-4 (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerometerBiasNoise — Multiplicative process noise variance from accelerometer bias
(m/s2)2

1e-4 (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as a scalar or
3-element row vector of positive real numbers.

• If AccelerometerBiasNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the accelerometer bias, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

GeomagneticVectorNoise — Additive process noise for geomagnetic vector (µT2)
1e-6 (default) | positive scalar | 3-element row vector

Additive process noise for geomagnetic vector in µT2, specified as a scalar or 3-element row vector of
positive real numbers.
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• If GeomagneticVectorNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the geomagnetic vector, respectively.

• If GeomagneticVectorNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

MagnetometerBiasNoise — Additive process noise for magnetometer bias (µT2)
0.1 (default) | positive scalar | 3-element row vector

Additive process noise for magnetometer bias in µT2, specified as a scalar or 3-element row vector.

• If MagnetometerBiasNoise is specified as a row vector, the elements correspond to the noise in
the x, y, and z axes of the magnetometer bias, respectively.

• If MagnetometerBiasNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

State — State vector of extended Kalman filter
22-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Position (NED or ENU) m 5:7
Velocity (NED or ENU) m/s 8:10
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector (NED
or ENU)

µT 17:19

Magnetometer Bias (XYZ) µT 20:22

Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(22)*1e-6 (default) | 22-by-22 matrix

State error covariance for the extended Kalman filter, specified as a 22-by-22-element matrix, or real
numbers.
Data Types: single | double

Object Functions
correct Correct states using direct state measurements for insfilterMARG
residual Residuals and residual covariances from direct state measurements for insfilterMARG
fusegps Correct states using GPS data for insfilterMARG
residualgps Residuals and residual covariance from GPS measurements for insfilterMARG
fusemag Correct states using magnetometer data for insfilterMARG
residualmag Residuals and residual covariance from magnetometer measurements for

insfilterMARG
pose Current orientation and position estimate for insfilterMARG
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predict Update states using accelerometer and gyroscope data for insfilterMARG
reset Reset internal states for insfilterMARG
stateinfo Display state vector information for insfilterMARG
tune Tune insfilterMARG parameters to reduce estimation error
copy Create copy of insfitlerMARG

Examples

Estimate Pose of UAV

This example shows how to estimate the pose of an unmanned aerial vehicle (UAV) from logged
sensor data and ground truth pose.

Load the logged sensor data and ground truth pose of an UAV.

load uavshort.mat

Initialize the insfilterMARG filter object.

f = insfilterMARG;
f.IMUSampleRate = imuFs;
f.ReferenceLocation = refloc;
f.AccelerometerBiasNoise = 2e-4;
f.AccelerometerNoise = 2;
f.GyroscopeBiasNoise = 1e-16;
f.GyroscopeNoise = 1e-5;
f.MagnetometerBiasNoise = 1e-10;
f.GeomagneticVectorNoise = 1e-12;
f.StateCovariance = 1e-9*ones(22);
f.State = initstate;
 
gpsidx = 1;
N = size(accel,1);
p = zeros(N,3);
q = zeros(N,1,'quaternion');

Fuse accelerometer, gyroscope, magnetometer, and GPS data.

for ii = 1:size(accel,1)               % Fuse IMU
   f.predict(accel(ii,:), gyro(ii,:));
        
   if ~mod(ii,fix(imuFs/2))            % Fuse magnetometer at 1/2 the IMU rate
       f.fusemag(mag(ii,:),Rmag);
   end
  
   if ~mod(ii,imuFs)                   % Fuse GPS once per second
       f.fusegps(lla(gpsidx,:),Rpos,gpsvel(gpsidx,:),Rvel);
       gpsidx = gpsidx + 1;
   end
 
   [p(ii,:),q(ii)] = pose(f);           %Log estimated pose
end

Calculate and display RMS errors.

posErr = truePos - p;
qErr = rad2deg(dist(trueOrient,q));
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pRMS = sqrt(mean(posErr.^2));
qRMS = sqrt(mean(qErr.^2));
fprintf('Position RMS Error\n\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

Position RMS Error
    X: 0.57, Y: 0.53, Z: 0.68 (meters)

    
fprintf('Quaternion Distance RMS Error\n\t%.2f (degrees)\n\n',qRMS);

Quaternion Distance RMS Error
    0.28 (degrees)

Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterMARG uses a 22-axis extended Kalman filter structure to estimate pose in the NED
reference frame. The state is defined as:

x =

q0
q1
q2
q3

positionN
positionE
positionD

νN
νE
νD

ΔθbiasX

ΔθbiasY

ΔθbiasZ
ΔνbiasX
ΔνbiasY
ΔνbiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ

where
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• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame
rotation from the platform's current orientation to the local NED coordinate system.

• positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.
• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
• ΔθbiasX, ΔθbiasY, ΔθbiasZ –– Bias in the integrated gyroscope reading.
• ΔνbiasX, ΔνbiasY, ΔνbiasZ –– Bias in the integrated accelerometer reading.
• geomagneticFieldVectorN, geomagneticFieldVectorE, geomagneticFieldVectorD –– Estimate of the

geomagnetic field vector at the reference location.
• magbiasX, magbiasY, magbiasZ –– Bias in the magnetometer readings.

Given the conventional formation of the predicted state estimate,

xk k− 1 = f (x k− 1 k− 1, uk)

uk is controlled by accelerometer and gyroscope data that has been converted to delta velocity and
delta angle through trapezoidal integration. The predicted state estimation is:
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xk k− 1 =

q0q0′ − q1q1′ − q2q2′ − q3q3′
q1q0′ + q0q1′ − q3q2′ + q2q3′
q2q0′ + q3q1′ + q0q2′ − q1q3′
q3q0′ − q2q1′ + q1q2′ + q0q3′

positionN + Δt νN
positionE + Δt νE
positionD + Δt νD

νN + Δt gN + ΔνX− ΔνbiasX q0
2 + q1

2− q2
2− q3

2 − 2 ΔνY − ΔνbiasY q0q3− q1q2 + 2 ΔνZ− ΔνbiasZ q0q2 + q1q3

νE + Δt gE + ΔνY − ΔνbiasY q0
2− q1

2 + q2
2− q3

2 + 2 ΔνX− ΔνbiasX q0q3 + q1q2 − 2 ΔνZ− ΔνbiasZ q0q1− q2q3

νD + Δt gD + ΔνZ− ΔνbiasZ q0
2− q1

2− q2
2 + q3

2 − 2 ΔνX− ΔνbiasX q0q2− q1q3 + 2 ΔνY − ΔνbiasY q0q1 + q2q3

ΔθbiasX

ΔθbiasY

ΔθbiasZ
ΔνbiasX
ΔνbiasY
ΔνbiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ
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In the equation, (q0
', q1

', q2
', q3

') is the quaternion that accounts for the orientation change from one
step to the next step. Assuming the orientation change is small, then the rotation vector can be
approximated as (ΔθX − ΔθbiasX, ΔθY − ΔθbiasY, ΔθZ − ΔθbiasZ), where ΔθX, ΔθY, ΔθZ are the
integrated gyroscope readings. (q0

', q1
', q2

', q3
') is then obtained by converting the approximated

rotation vector to a quaternion. In each calculation, the quaternion is normalized such that the length
of the quaternion is 1 and its real part q0 is nonnegative.

Additionally,

• ΔνX, ΔνY, ΔνZ –– Integrated accelerometer readings.
• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterNonholonomic | insfilterErrorState | insfilterAsync
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correct
Correct states using direct state measurements for insfilterMARG

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance based on the measurement and measurement covariance. The
measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

idx — State vector Index of measurement to correct
N-element vector of increasing integers in the range [1,22]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1, 22].

The state values represent:

State Units Index
Orientation (quaternion parts)  1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector (NED) µT 17:19
Magnetometer Bias (XYZ) µT 20:22

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
Data Types: single | double
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measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N is the
number of elements of the index argument, idx.
Data Types: single | double

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterMARG | insfilter
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copy
Create copy of insfitlerMARG

Syntax
newFilter = copy(filter)

Description
newFilter = copy(filter) returns a copy of the insfilterMARG, filter, with the exactly
same property values.

Input Arguments
filter — Filter to be copied
insfitlerMARG

Filter to be copied, specified as an insfilterMARG object.

Output Arguments
newFilter — New copied filter
insfitlerMARG

New copied filter, returned as an insfilterMARG object.

Version History
Introduced in R2020b

See Also
insfilterMARG
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fusegps
Correct states using GPS data for insfilterMARG

Syntax
[res,resCov] = fusegps(FUSE,position,positionCovariance)
[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = fusegps(FUSE,position,positionCovariance) fuses GPS position data to
correct the state estimate.

[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS position and velocity data to correct the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix
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Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-6 vector of real values in m and m/s, respectively.

resCov — Residual covariance
6-by-6 matrix of real values

Residual covariance, returned as a 6-by-6 matrix of real values.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG
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fusemag
Correct states using magnetometer data for insfilterMARG

Syntax
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance) fuses
magnetometer data to correct the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

Version History
Introduced in R2018b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterMARG | insfilter
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pose
Current orientation and position estimate for insfilterMARG

Syntax
[position,orientation,velocity] = pose(FUSE)
[position,orientation,velocity] = pose(FUSE,format)

Description
[position,orientation,velocity] = pose(FUSE) returns the current estimate of the pose
and velocity.

[position,orientation,velocity] = pose(FUSE,format) returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate expressed in the local coordinate system (m)
3-element row vector

Position estimate expressed in the local coordinate system of the filter in meters, returned as a 3-
element row vector.
Data Types: single | double

orientation — Orientation estimate expressed in the local coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate expressed in the local coordinate system of the filter, returned as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix represents a frame rotation
from the local reference frame of the filter to the body reference frame.
Data Types: single | double | quaternion
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velocity — Velocity estimate expressed in local coordinate system (m/s)
3-element row vector

Velocity estimate expressed in the local coordinate system of the filter in m/s, returned as a 3-element
row vector.
Data Types: single | double

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterMARG | insfilter

2 Classes

2-702



predict
Update states using accelerometer and gyroscope data for insfilterMARG

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope data to
update the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterMARG | insfilter
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reset
Reset internal states for insfilterMARG

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their default values.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterMARG | insfilter
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residual
Residuals and residual covariances from direct state measurements for insfilterMARG

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

idx — State vector index of measurement
N-element vector of increasing integers in the range [1,22]

State vector index of measurement, specified as an N-element vector of increasing integers in the
range [1, 22].

The state values represent:

State Units Index
Orientation (quaternion parts)  1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector (NED) µT 17:19
Magnetometer Bias (XYZ) µT 20:22

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

measurementCovariance — Covariance of measurement
N-by-N matrix

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.
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Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Version History
Introduced in R2020a

See Also
insfilterMARG
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residualgps
Residuals and residual covariance from GPS measurements for insfilterMARG

Syntax
[res,resCov] = residualgps(FUSE,position,positionCovariance)
[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = residualgps(FUSE,position,positionCovariance) computes the
residual, res, and the residual covariance, resCov, based on the GPS position measurement and
covariance.

[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance) computes the residual, res, and the residual covariance, resCov, based on
the GPS position measurement and covariance.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix
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Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-3 vector of real values | 1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-3 vector of real values if the inputs only contain
position information, and returned as 1-by-6 vector of real values if the inputs also contain velocity
information.

resCov — Residual covariance
3-by-3 matrix of real values | 6-by-6 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values if the inputs only contain position
information, and a 6-by-6 matrix of real values if the inputs also contain velocity information.

Version History
Introduced in R2020a

See Also
insfilter | insfilterMARG
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residualmag
Residuals and residual covariance from magnetometer measurements for insfilterMARG

Syntax
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance) computes the
residual, residual, and the residual covariance, resCov, based on the magnetometer readings and
the corresponding covariance.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.
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Version History
Introduced in R2020a

See Also
insfilterMARG | insfilter
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stateinfo
Display state vector information for insfilterMARG

Syntax
stateinfo(FUSE)
info = stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the associated
units.

info = stateinfo(FUSE) returns a structure with fields containing descriptions of the elements of
the state vector of the filter, FUSE.

Examples

State Information of insfilterMARG

Create an insfilterMARG object.

filter = insfilterMARG;

Display the state information of the created filter.

stateinfo(filter)

States                            Units    Index
Orientation (quaternion parts)             1:4  
Position (NAV)                    m        5:7  
Velocity (NAV)                    m/s      8:10 
Delta Angle Bias (XYZ)            rad      11:13
Delta Velocity Bias (XYZ)         m/s      14:16
Geomagnetic Field Vector (NAV)    µT       17:19
Magnetometer Bias (XYZ)           µT       20:22

Output the state information of the filter as a structure.

info = stateinfo(filter)

info = struct with fields:
               Orientation: [1 2 3 4]
                  Position: [5 6 7]
                  Velocity: [8 9 10]
            DeltaAngleBias: [11 12 13]
         DeltaVelocityBias: [14 15 16]
    GeomagneticFieldVector: [17 18 19]
          MagnetometerBias: [20 21 22]
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Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

info — State information
structure

State information, returned as a structure. The field names of the structure are names of the
elements of the state vector in the filter. The values of each field are the corresponding indices of the
state vector.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterMARG | insfilter
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tune
Tune insfilterMARG parameters to reduce estimation error

Syntax
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth)
tunedMeasureNoise = tune( ___ ,config)

Description
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth) adjusts the
properties of the insfilterMARG filter object, filter, and measurement noises to reduce the root-
mean-squared (RMS) state estimation error between the fused sensor data and the ground truth. The
function also returns the tuned measurement noise, tunedMeasureNoise. The function uses the
property values in the filter and the measurement noise provided in the measureNoise structure as
the initial estimate for the optimization algorithm.

tunedMeasureNoise = tune( ___ ,config) specifies the tuning configuration based on a
tunerconfig object, config.

Examples

Tune insfilterMARG to Optimize Pose Estimate

Load the recorded sensor data and ground truth data.

load('insfilterMARGTuneData.mat');

Create tables for the sensor data and the truth data.

sensorData = table(Accelerometer, Gyroscope, ...
    Magnetometer, GPSPosition, GPSVelocity);
groundTruth = table(Orientation, Position);

Create an insfilterMARG filter object that has a few noise properties.

filter = insfilterMARG('State',initialState,...
        'StateCovariance',initialStateCovariance,...
        'AccelerometerBiasNoise',1e-7,...
        'GyroscopeBiasNoise',1e-7,...
        'MagnetometerBiasNoise',1e-7,...
        'GeomagneticVectorNoise',1e-7);

Create a tuner configuration object for the filter. Set the maximum iterations to eight. Also, set the
tunable parameters.

cfg = tunerconfig('insfilterMARG', 'MaxIterations', 8);
cfg.TunableParameters = setdiff(cfg.TunableParameters, ...
    {'GeomagneticFieldVector', 'AccelerometerBiasNoise', ...
    'GyroscopeBiasNoise', 'MagnetometerBiasNoise'});
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Use the tuner noise function to obtain a set of initial sensor noises used in the filter.

measNoise = tunernoise('insfilterMARG')

measNoise = struct with fields:
    MagnetometerNoise: 1
     GPSPositionNoise: 1
     GPSVelocityNoise: 1

Tune the filter and obtain the tuned parameters.

tunedParams = tune(filter, measNoise, sensorData, ...
        groundTruth, cfg);

    Iteration    Parameter                 Metric
    _________    _________                 ______
    1            AccelerometerNoise        2.5701
    1            GPSPositionNoise          2.5446
    1            GPSVelocityNoise          2.5279
    1            GeomagneticVectorNoise    2.5268
    1            GyroscopeNoise            2.5268
    1            MagnetometerNoise         2.5204
    2            AccelerometerNoise        2.5203
    2            GPSPositionNoise          2.4908
    2            GPSVelocityNoise          2.4695
    2            GeomagneticVectorNoise    2.4684
    2            GyroscopeNoise            2.4684
    2            MagnetometerNoise         2.4615
    3            AccelerometerNoise        2.4615
    3            GPSPositionNoise          2.4265
    3            GPSVelocityNoise          2.4000
    3            GeomagneticVectorNoise    2.3988
    3            GyroscopeNoise            2.3988
    3            MagnetometerNoise         2.3911
    4            AccelerometerNoise        2.3911
    4            GPSPositionNoise          2.3500
    4            GPSVelocityNoise          2.3164
    4            GeomagneticVectorNoise    2.3153
    4            GyroscopeNoise            2.3153
    4            MagnetometerNoise         2.3068
    5            AccelerometerNoise        2.3068
    5            GPSPositionNoise          2.2587
    5            GPSVelocityNoise          2.2166
    5            GeomagneticVectorNoise    2.2154
    5            GyroscopeNoise            2.2154
    5            MagnetometerNoise         2.2063
    6            AccelerometerNoise        2.2063
    6            GPSPositionNoise          2.1505
    6            GPSVelocityNoise          2.0981
    6            GeomagneticVectorNoise    2.0971
    6            GyroscopeNoise            2.0971
    6            MagnetometerNoise         2.0875
    7            AccelerometerNoise        2.0874
    7            GPSPositionNoise          2.0240
    7            GPSVelocityNoise          1.9601
    7            GeomagneticVectorNoise    1.9594
    7            GyroscopeNoise            1.9594
    7            MagnetometerNoise         1.9499
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    8            AccelerometerNoise        1.9499
    8            GPSPositionNoise          1.8802
    8            GPSVelocityNoise          1.8035
    8            GeomagneticVectorNoise    1.8032
    8            GyroscopeNoise            1.8032
    8            MagnetometerNoise         1.7959

Fuse the sensor data using the tuned filter.

N = size(sensorData,1);
qEstTuned = quaternion.zeros(N,1);
posEstTuned = zeros(N,3);
for ii=1:N
    predict(filter,Accelerometer(ii,:),Gyroscope(ii,:));
    if all(~isnan(Magnetometer(ii,1)))
        fusemag(filter,Magnetometer(ii,:),...
            tunedParams.MagnetometerNoise);
    end
    if all(~isnan(GPSPosition(ii,1)))
        fusegps(filter,GPSPosition(ii,:),...
            tunedParams.GPSPositionNoise,GPSVelocity(ii,:),...
            tunedParams.GPSVelocityNoise);
    end
    [posEstTuned(ii,:),qEstTuned(ii,:)] = pose(filter);
end

Compute the RMS errors.

orientationErrorTuned = rad2deg(dist(qEstTuned,Orientation));
rmsOrientationErrorTuned = sqrt(mean(orientationErrorTuned.^2))

rmsOrientationErrorTuned = 0.8580

positionErrorTuned = sqrt(sum((posEstTuned - Position).^2,2));
rmsPositionErrorTuned = sqrt(mean(positionErrorTuned.^2))

rmsPositionErrorTuned = 1.7946

Visualize the results.

figure();
t = (0:N-1)./filter.IMUSampleRate;
subplot(2,1,1)
plot(t,positionErrorTuned,'b');
title("Tuned insfilterMARG" + newline + ...
    "Euclidean Distance Position Error")
xlabel('Time (s)');
ylabel('Position Error (meters)')
subplot(2,1,2)
plot(t, orientationErrorTuned,'b');
title("Orientation Error")
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');

 tune

2-715



Input Arguments
filter — Filter object
infilterMARG object

Filter object, specified as an insfilterMARG object.

measureNoise — Measurement noise
structure

Measurement noise, specified as a structure. The function uses the measurement noise input as the
initial guess for tuning the measurement noise. The structure must contain these fields:

Field name Description
MagnetometerNoise Variance of magnetometer noise, specified as a

scalar in (μT)2

GPSPositionNoise Variance of GPS position noise, specified as a
scalar in m2

GPSVelocityNoise Variance of GPS velocity noise, specified as a
scalar in (m/s)2

sensorData — Sensor data
table
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Sensor data, specified as a table. In each row, the sensor data is specified as:

• Accelerometer — Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.
• Gyroscope — Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.
• Magnetometer — Magnetometer data, specified as a 1-by-3 vector of scalars in μT.
• GPSPosition — GPS position data, specified as a 1-by-3 vector of scalars in [degrees, degrees,

meters].
• GPSVelocity — GPS velocity data, specified as a 1-by-3 vector of scalars in m/s.

If the GPS sensor does not produce complete measurements, specify the corresponding entry for
GPSPosition and/or GPSVelocity as NaN. If you set the Cost property of the tuner configuration
input, config, to Custom, then you can use other data types for the sensorData input based on
your choice.

groundTruth — Ground truth data
table

Ground truth data, specified as a table. In each row, the table can optionally contain any of these
variables:

• Orientation — Orientation from the navigation frame to the body frame, specified as a
quaternion or a 3-by-3 rotation matrix.

• Position — Position in navigation frame, specified as a 1-by-3 vector of scalars in meters.
• Velocity — Velocity in navigation frame, specified as a 1-by-3 vector of scalars in m/s.
• DeltaAngleBias — Delta angle bias, specified as a 1-by-3 vector of scalars in radians.
• DeltaVelocityBias — Delta velocity bias, specified as a 1-by-3 vector of scalars in m/s.
• GeomagneticFieldVector — Geomagnetic field vector in navigation frame, specified as a 1-by-3

vector of scalars.
• MagnetometerBias — Magnetometer bias in body frame, specified as a 1-by-3 vector of scalars

in μT.

The function processes each row of the sensorData and groundTruth tables sequentially to
calculate the state estimate and RMS error from the ground truth. State variables not present in
groundTruth input are ignored for the comparison. The sensorData and the groundTruth tables
must have the same number of rows.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the groundTruth input based on your choice.

config — Tuner configuration
tunerconfig object

Tuner configuration, specified as a tunerconfig object.

Output Arguments
tunedMeasureNoise — Tuned measurement noise
structure

Tuned measurement noise, returned as a structure. The structure contains these fields.
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Field name Description
MagnetometerNoise Variance of magnetometer noise, specified as a

scalar in (μT)2

GPSPositionNoise Variance of GPS position noise, specified as a
scalar in m2

GPSVelocityNoise Variance of GPS velocity noise, specified as a
scalar in (m/s)2

Version History
Introduced in R2021a

References
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman

Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.

See Also
tunerconfig | tunernoise
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gnssMeasurementGenerator
Package: nav

Simulate GNSS measurements for scenarios

Description
The gnssMeasurementGenerator System object simulates global navigation satellite system
(GNSS) receiver measurements. The object calculates pseudoranges based on the sensor time and
data that specifies the satellite orbital parameters on page 2-730. The object uses only the Global
Positioning System (GPS) constellations for calculations. To set the starting positions of the satellites,
set the InitialTime property.

To simulate GNSS measurements:

1 Create the gnssMeasurementGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
GNSS = gnssMeasurementGenerator
GNSS = gnssMeasurementGenerator(Name=Value)

Description

GNSS = gnssMeasurementGenerator returns a gnssMeasurementGenerator System object
GNSS that simulates raw global navigation satellite system receiver measurements.

GNSS = gnssMeasurementGenerator(Name=Value) specifies properties using one or more
name-value arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of GNSS receiver
1 (default) | positive scalar

Sample rate of the GNSS receiver, specified as a positive scalar in Hz.
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InitialTime — Initial time of GNSS receiver
datetime("now",TimeZone="UTC") (default) | datetime object

Initial time of the GNSS receiver, specified as a datetime object. The object accounts for leap
seconds in the conversion between the UTC and the GNSS time.

ReferenceLocation — Origin of local navigation reference frame
[0 0 0] (default) | three-element row vector

Origin of the local navigation reference frame, specified as a three-element row vector in geodetic
coordinates of the form [latitude longitude altitude]. Specify latitude in degrees, longitude in degrees,
and altitude in meters. Altitude is the height above the reference ellipsoid model WGS84.

MaskAngle — Elevation mask angle
10 (default) | scalar in range [0, 90]

Elevation mask angle, specified as a scalar in the range [0, 90], in degrees. The object does not use
satellites that are in view, but below the mask angle, in estimating the position of the receiver.

Tunable: Yes

RangeAccuracy — Standard deviation of pseudorange measurement noise
1 (default) | nonnegative scalar

Standard deviation of the pseudorange measurement noise, specified as a nonnegative scalar in
meters.

Tunable: Yes

RandomStream — Random number source
"Global stream" (default) | "mt19937ar with seed"

Random number source, specified as one of these options::

• "Global stream" –– Generate random numbers using the current global random number
stream.

• "mt19937ar with seed" –– Generate random numbers using the mt19937ar algorithm with the
seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number generator algorithm
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number generator algorithm, specified as a nonnegative
integer.

Dependencies

To enable this property, specify RandomStream property as "mt19937ar with seed".
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Usage

Syntax
[pseudorangeMeasurements,satellitePositions,status] = GNSS

Description

[pseudorangeMeasurements,satellitePositions,status] = GNSS computes the GNSS
receiver measurements.

Output Arguments

pseudorangeMeasurements — Pseudorange measurements of the GNSS receiver
N-element vector

Pseudorange measurements of the GNSS receiver, returned as an N-element vector, in meters. N is
the number of satellites in view.

satellitePositions — Satellite positions in Earth-centered Earth-fixed coordinate system
N-by-3 matrix

Satellite positions in Earth-centered Earth-fixed coordinate system, returned as an N-by-3 matrix. N
is the number of satellites in view. Each row is a Cartesian coordinate in meters.

status — Status of satellite measurements
structure

Status of the satellite measurements, returned as a structure containing the field:

• LOS — Line of sight for each satellite, returned as a logical N-element vector. N is the number of
satellites in view. A status of 1 or true indicates that there is line of sight from the receiver to the
satellite, and a status of 0 or false indicates there is no line of sight from the receiver to the
satellite.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Generate GNSS Measurements in Driving Scenario

Create variables for the sample rate and the geodetic reference location. Set the sample rate to 1 Hz,
and set the reference location to Natick, Massachusetts.

Fs = 1;
refLocNatick = [42.2825 -71.343 53.0352]; 

Create a driving scenario with the reference location set to Natick, and add a car to the scenario.

scene = drivingScenario(GeoReference=refLocNatick);
car = vehicle(scene);

Create a GNSS measurement generator System object with the previously specified sample rate and
reference location.

gnss = gnssMeasurementGenerator(SampleRate=Fs,ReferenceLocation=refLocNatick);

Mount the GNSS measurement generator, as a sensor, on the car in the scene.

mountingPosition = [0 0 1.5];
addSensors(scene,{gnss},car.ActorID,mountingPosition)

Initialize and advance the scenario.

advance(scene);

Get the raw GNSS measurements.

[pr,satPos,status] = gnss()

pr = 8×1
107 ×

    2.3626
    2.4540
    2.1476
    2.0239
    2.1728
    2.3950
    2.1945
    2.0567

satPos = 8×3
107 ×

    2.4931   -0.5781    0.7103
   -2.0368   -0.9335    1.4263
    1.3903   -0.6416    2.1701
    0.5968   -1.6666    1.9800
    1.4855   -2.1626    0.4134
    0.6832   -2.4433   -0.7859
   -0.9903   -1.2772    2.1076
   -0.0796   -2.1541    1.5517
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status = struct with fields:
    LOS: [8x1 logical]

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
gpsSensor | imuSensor | gnssSensor | drivingScenario

Functions
skyplot | gnssconstellation | lookangles | pseudoranges | receiverposition

Topics
“Simulate GNSS Multipath Effects in Urban Canyon Environment”
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gnssSensor
Simulate GNSS to generate position and velocity readings

Description
The gnssSensor System object simulates a global navigation satellite system (GNSS) to generate
position and velocity readings based on local position and velocity data. The object calculates satellite
positions and velocities based on the sensor time and data that specifies the satellite orbital
parameters on page 2-730. The object uses only the Global Positioning System (GPS) constellations
for calculations. To set the starting positions of the satellites, set the InitialTime property.

To generate GNSS position and velocity readings:

1 Create the gnssSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Calling the object increments the time of the sensor and propagates the satellite position and
velocities based on the orbital parameters.

Creation
Syntax
GNSS = gnssSensor
GNSS = gnssSensor(ReferenceFrame=frame)
GNSS = gnssSensor( ___ ,Name=Value)

Description

GNSS = gnssSensor returns a gnssSensor System object GNSS that computes global navigation
satellite system receiver readings based on local position and velocity input.

GNSS = gnssSensor(ReferenceFrame=frame) specifies the reference frame in which the GNSS
readings are reported. Specify frame as 'NED' (north-east-down) or 'ENU' (east-north-up). The
default value is 'NED'.

GNSS = gnssSensor( ___ ,Name=Value) sets properties using one or more name-value pairs. For
example, gnssSensor("SampleRate",2) creates a simulated GNSS with a sample rate of 2 Hz.
Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of GNSS receiver (Hz)
1 (default) | positive scalar

Sample rate of the GNSS receiver, specified as a positive scalar in Hz.
Data Types: single | double

InitialTime — Initial time of GNSS receiver
datetime('now',TimeZone="UTC") (default) | datetime object

Initial time of the GNSS receiver, specified as a datetime object. The object accounts for leap
seconds in the conversion between the UTC and the GNSS time.

ReferenceLocation — Origin of local navigation reference frame
[0 0 0] (default) | three-element row vector

Origin of the local navigation reference frame, specified as a three-element row vector in geodetic
coordinates (latitude in degrees, longitude in degrees, and altitude in meters). Altitude is the height
above the reference ellipsoid model WGS84.
Data Types: single | double

MaskAngle — Elevation mask angle (deg)
10 (default) | scalar in [0, 90]

Elevation mask angle, specified as a scalar in the range [0, 90] in degrees. Satellites in view but
below the mask angle are not used in estimating the position of the receiver.

Tunable: Yes
Data Types: single | double

RangeAccuracy — Standard deviation of measurement noise of pseudorange (m)
1 (default) | nonnegative scalar

Standard deviation of the measurement noise of pseudorange, specified as a nonnegative scalar in
meters.

Tunable: Yes
Data Types: single | double

RangeRateAccuracy — Standard deviation of measurement noise of pseudorange rate (m/s)
0.02 (default) | nonnegative scalar

Standard deviation of the measurement noise of pseudorange rate, specified as a nonnegative scalar
in meters per second.

Tunable: Yes
Data Types: single | double

RandomStream — Random number source
"Global stream" (default) | "mt19937ar with seed"
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Random number source, specified as one of these options::

• "Global stream" –– Random numbers are generated using the current global random number
stream.

• "mt19937ar with seed" –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number generator algorithm
67 (default) | nonnegative integer

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer.

Dependencies

To enable this property, set RandomStream to "mt19937ar with seed".
Data Types: integer

Usage

Syntax
[positionReadings,velocityReadings,status] = GNSS(position,velocity)

Description

[positionReadings,velocityReadings,status] = GNSS(position,velocity) computes
global navigation satellite system receiver readings from the position and velocity inputs.

Input Arguments

position — Cartesian position of GNSS receiver in local navigation coordinate system
N-by-3 matrix

Cartesian position of the GNSS receiver in the local navigation coordinate system, specified as an N-
by-3 matrix in meters. N is the number of samples.

The default reference frame is NED (north-east-down). For ENU (east-north-up), set the
ReferenceFrame name-value argument to"ENU" on creation.
Data Types: single | double

velocity — Velocity of GNSS receiver in local navigation coordinate system
N-by-3 matrix

Velocity of the GNSS receiver in the local navigation coordinate system, specified as an N-by-3 matrix
in meters per second. N is the number of samples.
Data Types: single | double

The default reference frame is NED (north-east-down). For ENU (east-north-up), set the
ReferenceFrame name-value argument to"ENU" on creation.
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Output Arguments

positionReadings — Position readings in LLA coordinate system
N-by-3 matrix

Position readings of the GNSS receiver in the geodetic latitude, longitude, and altitude (LLA)
coordinate system, returned as an N-by-3 matrix. Altitude is the height above the reference ellipsoid
model, WGS84. N is the number of samples in the input argument. Latitude and longitude are in
degrees. Altitude is in meters.
Data Types: single | double

velocityReadings — Velocity readings in local navigation coordinate system
N-by-3 matrix

Velocity reading of the GNSS receiver in the local navigation coordinate system in meters per second,
returned as an N-by-3 matrix. N is the number of samples in the input arguments.
Data Types: single | double

status — Status information of visible satellites
N-element array of structures

Status information of visible satellites, returned as an N-element array of structures. N is the number
of samples in the input arguments. Each structure contains these four fields:

Field Name Description
SatelliteAzimuth Azimuth angles of visible satellites, returned as

an M-element vector in degrees. M is the number
of visible satellites.

SatelliteElevation Elevation angles of visible satellites, returned as
an M-element vector in degrees. M is the number
of visible satellites.

HDOP Horizontal dilution of precision, returned as a
scalar.

VDOP Vertical dilution of precision, returned as a scalar.

To plot the satellite positions, see the skyplot function.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
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isDone End-of-data status

Examples

Generate GNSS Position and Velocity Readings

Generate target positions and velocities based on a waypoint trajectory.

rng(2020) % For repeatable results
fs = 0.1;
tArrival = 50;
tspan = 0:1/fs:tArrival;
% Create a waypoint trajectory.
trajectory = waypointTrajectory([0,0,0;1,1,1]*500,[0,tArrival]);
[positions,~,velocities] = lookupPose(trajectory,tspan)

positions = 6×3

         0         0         0
  100.0000  100.0000  100.0000
  200.0000  200.0000  200.0000
  300.0000  300.0000  300.0000
  400.0000  400.0000  400.0000
  500.0000  500.0000  500.0000

velocities = 6×3

   10.0000   10.0000   10.0000
   10.0000   10.0000   10.0000
   10.0000   10.0000   10.0000
   10.0000   10.0000   10.0000
   10.0000   10.0000   10.0000
   10.0000   10.0000   10.0000

Create a GNSS System object. Use the LLA position for Natick, MA as the local reference frame
origin of the trajectory.

refLocNatick = [42.2825 -71.343 53.0352];
gnss = gnssSensor('SampleRate',fs, ...
    'ReferenceLocation',refLocNatick);

Generate position and velocity readings based on the GNSS object.

[llaReadings,velocityReadings,status] = gnss(positions,velocities)

llaReadings = 6×3

   42.2825  -71.3430   54.1047
   42.2834  -71.3418  -47.3405
   42.2843  -71.3406 -143.5760
   42.2852  -71.3394 -246.7009
   42.2861  -71.3382 -348.6732
   42.2870  -71.3369 -448.2822
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velocityReadings = 6×3

    9.9685    9.9977    9.9860
    9.9987    9.9799   10.0363
    9.9858    9.9958   10.0195
    9.9720    9.9917   10.0058
   10.0099    9.9952    9.9997
   10.0194   10.0044   10.0312

status=6×1 struct array with fields:
    SatelliteAzimuth
    SatelliteElevation
    HDOP
    VDOP

View Satellite Positions from GNSS Sensor

Create a GNSS sensor model as a gnssSensor System object™.

gnss = gnssSensor; 

Specify the position and velocity of the sensor. This example assumes a stationary sensor at the
position of [0 0 0] in the NED reference frame. Simulate the sensor readings and get the status
from visible satellites. Store the azimuth and elevation angles as vectors.

pos = [0 0 0]; 
vel = [0 0 0]; 
[~,~,status] = gnss(pos,vel); 
satAz = status.SatelliteAzimuth; 
satEl = status.SatelliteElevation; 

Plot the satellite positions.

skyplot(satAz,satEl) 
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More About
Orbital Parameters

The satellite positions and velocities are defined by orbital parameters from IS-GPS-200M Interface
Specification, and are given in the Earth-Centered Earth-Fixed (ECEF) coordinates.

Position calculations use equations from Table 30-II in the same IS-GPS-200M Interface Specification.

Velocity calculations use equations 8.21-8.27 in Principles of GNSS, Inertial, and Multisensor
Integrated Navigation Systems [1].

Version History
Introduced in R2020b

References
[1] Groves, Paul D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 2nd

ed, Artech House, 2013.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
gpsSensor | imuSensor | gnssMeasurementGenerator

Functions
skyplot | gnssconstellation | lookangles | pseudoranges | receiverposition
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mobileRobotPropagator
State propagator for wheeled robotic systems

Description
The mobileRobotPropagator object is a state propagator that propagates and validates the state
of a mobile robot based on control commands, durations, and target states. The object supports
different kinematic models, integrator types, and control policies.

Creation
Syntax
mobileProp = mobileRobotPropagator
mobileProp = mobileRobotPropagator(Name,Value)

Description

mobileProp = mobileRobotPropagator creates a mobile robot propagator for a bicycle
kinematic model using a linear-pursuit control policy.

mobileProp = mobileRobotPropagator(Name,Value) specifies properties using name-value
arguments. For example, mobileRobotPropagator("ControlStepSize"=0.01) creates a mobile
robot propagator with a control step size of 0.01.

Properties
StateSpace — State space for sampling during planning
stateSpaceSE2 object (default) | object of subclass of nav.StateSpace object

State space for sampling during planning, specified as an object of a subclass of nav.StateSpace
object.

The state space is responsible for representing the configuration space of a system. The object should
include all state information related to the propagated system. Systems employing multi-layer
cascade controllers can append persistent low-level control information directly to the state vector,
whereas the state propagator directly manages top-level control commands.

Environment — Environment for validating states
[] (default) | binaryOccupancyMap object | occupancyMap object | vehicleCostmap object

Environment for validating states, specified as a binaryOccupancyMap, occupancyMap, or
vehicleCostmap object.

The mobileRobotPropagator object validates discrete states along the propagated motion. By
default, the environment is empty, so the object only rejects states outside the state space bounds.

This property can only be set during construction.
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DistanceEstimator — Distance metric for estimating propagation cost
'euclidean' (default) | 'dubins' | 'reedsshepp'

Distance metric for estimating propagation cost, specified as one of these options:

• 'euclidean' — Standard Euclidean distance.
• 'dubins' — Distance along a Dubins path that connects the two states. For more information,

see dubinsPathSegment.
• 'reedsshepp' — Distance along a Reeds Shepp path that connects the two states. For more

information, see reedsSheppPathSegment.

This property can only be set during construction.

GoalDistance — Threshold of distance for reaching goal states
1 (default) | positive scalar

Threshold of distance for reaching goal states, specified as a positive scalar. When propagating
states, a state is considered equal to the goal state when it is closer than this distance threshold.

This property can only be set during construction.

KinematicModel — Kinematic model for propagating state
'bicycle' (default) | 'ackermann'

Kinematic model for propagating the state, which determines the state variables, size of the control
inputs, and other system parameters that you can specify in the SystemParameters property.

Kinematic Model States and Controls

Type State Vector Control input
'bicycle' [x y theta] [v psi]
'ackermann' [x y theta psi] [v psiDot]

This property can only be set during construction and selecting the Ackermann kinematic model
requires the Robotics System Toolbox™.

Integrator — Integration method when propagating state
'rungekutta4' (default) | 'euler'

Integration method when propagating state. Integration step size can be updated through the
SystemParameters property.

'rungekutta4' provides a more accurate integration result than 'euler' at the cost of speed.

This property can only be set during construction.

SystemParameters — Parameters for kinematic model, integrator, and control policy
structure

Parameters for the kinematic model, integrator, and control policy, specified as a structure with these
fields:

• KinematicModel — Parameters for the kinematic model type specified in the KinematicModel
property.
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• WheelBase — Size of wheel base in meters
• SpeedLimit — Velocity in the forward and backward directions in meters per second.
• SteerRatelimit — Limits on steering rate in radians per second

• Integrator — Parameters for the integrator type specified in the Integrator property.
• ControlPolicy — Parameters for the control policy specified in the ControlPolicy property.

Control Parameters

ControlPolicy — Control command generation policy
'linearpursuit' (default) | 'arcpursuit' | 'randomsamples'

Control command generation policy, specified as one of these options:

• 'linearpursuit' — Samples a random velocity and calculates a lookahead point along the
vector that connects the initial state to the target state.

• 'arcpursuit' — Samples a random velocity and calculates a lookahead point along an arc that
is tangential to the target state and intersects the initial xy-position.

• 'randomsamples' — Draws a finite set of random control samples from the control space and
propagates to each. The propagator selects the sample that gets the closest to the goal and then
performs a validation.

ControlLimits — Limits on control commands for each state
[-1 1; -pi/4 pi/4] (default) | n-by-2 matrix

Limits on control commands for each state, specified as an n-by-2 matrix. n is the number of control
inputs for your system model.

NumControlOutput — Number of control outputs
2 (default) | positive scalar

This property is read-only.

Number of control outputs, specified as a nonnegative scalar.

ControlStepSize — Duration of each control command
0.1 (default) | positive scalar

Duration of each control command, specified as a positive scalar.

MaxControlSteps — Maximum number of control steps
10 (default) | positive integer

Maximum number of times to propagate the system specified as positive integer.

Object Functions
distance Estimate cost of propagating to target state
propagate Propagate system without validation
propagateWhileValid Propagate system and return valid motion
sampleControl Generate control command and duration
setup Set up the mobile robot state propagator
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Examples

Plan Kinodynamic Path with Controls for Mobile Robot

Plan control paths for a bicycle kinematic model with the mobileRobotPropagator object. Specify
a map for the environment, set state bounds, and define a start and goal location. Plan a path using
the control-based RRT algorithm, which uses a state propagator for planning motion and the required
control commands.

Set State and State Propagator Parameters

Load a ternary map matrix and create an occupancyMap object. Create the state propagator using
the map. By default, the state propagator uses a bicycle kinematic model.

load('exampleMaps','ternaryMap')
map = occupancyMap(ternaryMap,10);

propagator = mobileRobotPropagator(Environment=map); % Bicycle model

Set the state bounds on the state space based on the map world limits.

propagator.StateSpace.StateBounds(1:2,:) = ...
                    [map.XWorldLimits; map.YWorldLimits];

Plan Path

Create the path planner from the state propagator.

planner = plannerControlRRT(propagator);

Specify the start and goal states.

start = [10 15 0];
goal  = [40 30 0];

Plan a path between the states. For repeatable results, reset the random number generator before
planning. The plan function outputs a navPathControl object, which contains the states, control
commands, and durations.

rng("default")
path = plan(planner,start,goal)

path = 
  navPathControl with properties:

    StatePropagator: [1x1 mobileRobotPropagator]
             States: [192x3 double]
           Controls: [191x2 double]
          Durations: [191x1 double]
       TargetStates: [191x3 double]
          NumStates: 192
        NumSegments: 191

Visualize Results

Visualize the map and plot the path states.
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show(map)
hold on
plot(start(1),start(2),"rx")
plot(goal(1),goal(2),"go")
plot(path.States(:,1),path.States(:,2),"b")
hold off

Display the [v psi] control inputs of forward velocity and steering angle.

plot(path.Controls)
ylim([-1 1])
legend(["Velocity (m/s)","Steering Angle (rad)"])
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Limitations
• Deployment using MATLAB Compiler™ is not supported when KinematicModel is set to

'ackermann'.

Version History
Introduced in R2021b

See Also
Classes
nav.StateSpace

Objects
stateSpaceSE2 | stateSpaceDubins | stateSpaceReedsShepp

Functions
distance | propagate | propagateWhileValid | sampleControl | setup
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distance
Estimate cost of propagating to target state

Syntax
h = distance(mobileProp,q1,q2)

Description
h = distance(mobileProp,q1,q2) estimates the cost of propagating from one state to another.
The DistanceEstimator property of the state propagator defines the distance metric for
approximating cost.

Input Arguments
mobileProp — Mobile robot state propagator
mobileRobotPropagator object

Mobile robot state propagator, specified as a mobileRobotPropagator object.

q1 — Initial states
n-by-s matrix

Initial states, specified as an n-by-s matrix. n is the number of states and s is the size of the state
vector.

q2 — Final states
n-by-s matrix

Final states, specified as an n-by-s matrix. n is the number of states and s is the size of the state
vector.

Output Arguments
h — Cost values
n-element vector

Cost values, returned as an n-element vector. n is the number of q1 and q2 pairs.

You can use the cost values returned by this function to find the nearest neighbor for sampled target
states when planning a path.

Version History
Introduced in R2021b
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See Also
Objects
mobileRobotPropagator

Functions
propagate | propagateWhileValid | sampleControl | setup
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propagate
Propagate system without validation

Syntax
[q,u,steps] = propagate(mobileProp,q0,u0,qTgt,maxSteps)

Description
[q,u,steps] = propagate(mobileProp,q0,u0,qTgt,maxSteps) iteratively propagates the
system from the current state q0 towards a target state qTgt with an initial control input u0 for a
maximum number of steps maxSteps.

At the end of each propagation step i, the system returns these values:

• q(i,:) — Current state of the system
• u(i,:) — Control input for step i + 1
• steps(i) — Number of steps between i - 1 and i

Input Arguments
mobileProp — Mobile robot state propagator
mobileRobotPropagator object

Mobile robot state propagator, specified as a mobileRobotPropagator object.

q0 — Initial state
s-element vector

Initial state of the system, specified as an s-element vector. s is the number of state variables in the
state space.

u0 — Initial control on initial state
c-element vector

Initial control on the initial state, specified as an c-element vector. c is the number of control inputs.

qTgt — Target state
s-element vector

Target state of the system, specified as an s-element vector. s is the number of state variables in the
state space.

maxSteps — Maximum number of steps
positive scalar

Maximum number of steps, specified as a positive scalar.
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Output Arguments
q — Propagated states
n-by-s matrix

Propagated states of the system, returned as an s-element vector. s is the number of state variables in
the state space.

u — Control inputs for propagating states
n-by-c matrix

Control inputs for propagating states, returned as an n-by-c matrix. c is the number of control inputs

steps — Number of steps between each state and control input to next
n-element vector of positive integers

Number of steps from each state and control input to next, returned as an n-element vector of
positive integers.

Version History
Introduced in R2021b

See Also
Objects
mobileRobotPropagator

Functions
distance | propagateWhileValid | sampleControl | setup

 propagate
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propagateWhileValid
Propagate system and return valid motion

Syntax
[q,u,steps] = propagateWhileValid(mobileProp,q0,u0,qTgt,maxSteps)

Description
[q,u,steps] = propagateWhileValid(mobileProp,q0,u0,qTgt,maxSteps) iteratively
propagates the system from the current state q0 towards a target state qTgt with an initial control
input u0 for a maximum number of steps maxSteps.

At the end of each propagation step i, the system returns these values:

• q(i,:) — Current state of the system
• u(i,:) — Control input for step i + 1
• steps(i) — Number of steps between i - 1 and i

The function validates all propagations and returns system information between q0 and the last valid
state.

Input Arguments
mobileProp — Mobile robot state propagator
mobileRobotPropagator object

Mobile robot state propagator, specified as a mobileRobotPropagator object.

q0 — Initial state
s-element vector

Initial state of the system, specified as an s-element vector. s is the number of state variables in the
state space.

u0 — Initial control on initial state
c-element vector

Initial control on the initial state, specified as an c-element vector. c is the number of control inputs.

qTgt — Target state
s-element vector

Target state of the system, specified as an s-element vector. s is the number of state variables in the
state space.

maxSteps — Maximum number of steps
positive scalar

Maximum number of steps, specified as a positive scalar.
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Output Arguments
q — Propagated states
n-by-s matrix

Propagated states of the system, returned as an s-element vector. s is the number of state variables in
the state space.

u — Control inputs for propagating states
n-by-c matrix

Control inputs for propagating states, returned as an n-by-c matrix. c is the number of control inputs

steps — Number of steps from each state and control input to next
n-element vector of positive integers

Number of steps from each state and control input to next, returned as an n-element vector of
positive integers.

Version History
Introduced in R2021b

See Also
Objects
mobileRobotPropagator

Functions
distance | propagate | sampleControl | setup
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sampleControl
Generate control command and duration

Syntax
[u,steps] = sampleControl(mobileProp,q0,u0,qTgt)

Description
[u,steps] = sampleControl(mobileProp,q0,u0,qTgt) generates a series of control
commands and number of steps to move from the current state q0 with control command u0 toward
the target state qTgt.

Input Arguments
mobileProp — Mobile robot state propagator
mobileRobotPropagator object

Mobile robot state propagator, specified as a mobileRobotPropagator object.

q0 — Initial state
s-element vector

Initial state of the system, specified as an s-element vector. s is the number of state variables in the
state space.

u0 — Initial control on the initial state
c-element vector

Initial control input, specified as an c-element vector. c is the number of control inputs.

qTgt — Target state
s-element vector

Target state of the system, specified as an s-element vector. s is the number of state variables in the
state space.

Output Arguments
u — Control inputs for propagating states
n-by-c matrix

Control inputs for propagating states, returned as an c-element vector. c is the number of control
inputs.

steps — Number of steps from each state and control input to next
n-element vector of positive integers

Number of steps from each state and control input to next, returned as an n-element vector of
positive integers.
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Version History
Introduced in R2021b

See Also
Objects
mobileRobotPropagator

Functions
distance | propagate | propagateWhileValid | setup
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setup
Set up the mobile robot state propagator

Syntax
setup(mobileProp)

Description
setup(mobileProp) sets up the mobileRobotPropagator object based on the properties of the
object. If you change the properties of the object, use this object function before you use the object to
sample controls, propagate the system, or calculate distances.

Note Override this function to implement custom functionality to run in the setup.

Input Arguments
mobileProp — Mobile robot state propagator
mobileRobotPropagator object

Mobile robot state propagator, specified as a mobileRobotPropagator object.

Version History
Introduced in R2021b

See Also
Objects
mobileRobotPropagator

Functions
distance | propagate | propagateWhileValid | sampleControl
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monteCarloLocalization

Localize robot using range sensor data and map

Description
The monteCarloLocalization System object creates a Monte Carlo localization (MCL) object. The
MCL algorithm is used to estimate the position and orientation of a vehicle in its environment using a
known map of the environment, lidar scan data, and odometry sensor data.

To localize the vehicle, the MCL algorithm uses a particle filter to estimate the vehicle’s position. The
particles represent the distribution of likely states for the vehicle, where each particle represents a
possible vehicle state. The particles converge around a single location as the vehicle moves in the
environment and senses different parts of the environment using a range sensor. An odometry sensor
measures the vehicle’s motion.

A monteCarloLocalization object takes the pose and lidar scan data as inputs. The input lidar
scan sensor data is given in its own coordinate frame, and the algorithm transforms the data
according to the SensorModel.SensorPose property that you must specify. The input pose is
computed by integrating the odometry sensor data over time. If the change in pose is greater than
any of the specified update thresholds, UpdateThresholds, then the particles are updated and the
algorithm computes a new state estimate from the particle filter. The particles are updated using this
process:

1 The particles are propagated based on the change in the pose and the specified motion model,
MotionModel.

2 The particles are assigned weights based on the likelihood of receiving the range sensor reading
for each particle. These likelihood weights are based on the sensor model you specify in
SensorModel.

3 Based on the ResamplingInterval property, the particles are resampled from the posterior
distribution, and the particles of low weight are eliminated. For example, a resampling interval of
2 means that the particles are resampled after every other update.

The outputs of the object are the estimated pose and covariance, and the value of isUpdated. This
estimated state is the mean and covariance of the highest weighted cluster of particles. The output
pose is given in the map’s coordinate frame that is specified in the SensorModel.Map property. If
the change in pose is greater than any of the update thresholds, then the state estimate has been
updated and isUpdated is true. Otherwise, isUpdated is false and the estimate remains the
same. For continuous tracking the best estimate of a robot's state, repeat this process of propagating
particles, evaluating their likelihood, and resampling.

To estimate robot pose and covariance using lidar scan data:

1 Create the monteCarloLocalization object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
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Creation

Syntax
mcl = monteCarloLocalization
mcl = monteCarloLocalization(Name,Value)

Description

mcl = monteCarloLocalization returns an MCL object that estimates the pose of a vehicle using
a map, a range sensor, and odometry data. By default, an empty map is assigned, so a valid map
assignment is required before using the object.

mcl = monteCarloLocalization(Name,Value) creates an MCL object with additional options
specified by one or more Name,Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
InitialPose — Initial pose of vehicle
[0 0 0] (default) | three-element vector

Initial pose of the vehicle used to start localization, specified as a three-element vector, [x y
theta], that indicates the position and heading of the vehicle. Initializing the MCL object with an
initial pose estimate enables you to use a smaller value for the maximum number of particles and still
converge on a location.

InitialCovariance — Covariance of initial pose
diag([1 1 1]) (default) | diagonal matrix | three-element vector | scalar

Covariance of the Gaussian distribution for the initial pose, specified as a diagonal matrix. Three-
element vector and scalar inputs are converted to a diagonal matrix. This matrix gives an estimate of
the uncertainty of the InitialPose.

GlobalLocalization — Flag to start global localization
false (default) | true

Flag indicating whether to perform global localization, specified as false or true. The default value,
false, initializes particles using the InitialPose and InitialCovariance properties. A true
value initializes uniformly distributed particles in the entire map and ignores the InitialPose and
InitialCovariance properties. Global localization requires a large number of particles to cover
the entire workspace. Use global localization only when the initial estimate of vehicle location and
orientation is not available.

ParticleLimits — Minimum and maximum number of particles
[500 5000] (default) | two-element vector

Minimum and maximum number of particles, specified as a two-element vector, [min max].
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SensorModel — Likelihood field sensor model
likelihoodFieldSensor object

Likelihood field sensor model, specified as a likelihoodFieldSensor object. The default value
uses the default likelihoodFieldSensorModel object. After using the object to get output, call
release on the object to make changes to SensorModel. For example:

mcl = monteCarloLocalization;
sm = likelihoodFieldSensorModel;
sm.Map = binaryOccupancyMap(10,10,20);
mcl.SensorModel = sm;
[isUpdated,pose,covariance] = mcl([0 0 0],ones(1,10),linspace(-pi/2,pi/2,10));
% Release object before changing motion model
release(mcl);
mcl.SensorModel.NumBeams = 120;
mcl.MotionModel.Noise = [0.25 0.25 0.4 0.4];

MotionModel — Odometry motion model for differential drive
odometryMotionModel object

Odometry motion model for differential drive, specified as an odometryMotionModel object. The
default value uses the default odometryMotionModel object. After using the object to get output,
call release on the object to make changes to MotionModel. For example:

mcl = monteCarloLocalization;
sm = likelihoodFieldSensorModel;
sm.Map = binaryOccupancyMap(10,10,20);
mcl.SensorModel = sm;
[isUpdated,pose,covariance] = mcl([0 0 0],ones(1,10),linspace(-pi/2,pi/2,10));
% Release object before changing motion model
release(mcl);
mcl.SensorModel.NumBeams = 120;
mcl.MotionModel.Noise = [0.25 0.25 0.4 0.4];

UpdateThresholds — Minimum change in states required to trigger update
[0.2 0.2 0.2] (default) | three-element vector

Minimum change in states required to trigger update, specified as a three-element vector. The
localization updates the particles if the minimum change in any of the [x y theta] states is met.
The pose estimate updates only if the particle filter is updated.

ResamplingInterval — Number of filter updates between resampling of particles
1 (default) | positive integer

Number of filter updates between resampling of particles, specified as a positive integer.

UseLidarScan — Use lidarScan object as scan input
false (default) | true

Use a lidarScan object as scan input, specified as either false or true.

 monteCarloLocalization

2-749



Usage

Syntax
[isUpdated,pose,covariance] = mcl(odomPose,scan)

[isUpdated,pose,covariance] = mcl(odomPose,ranges,angles)

Description

[isUpdated,pose,covariance] = mcl(odomPose,scan) estimates the pose and covariance of
a vehicle using the MCL algorithm. The estimates are based on the pose calculated from the specified
vehicle odometry, odomPose, and the specified lidar scan sensor data, scan. mcl is the
monteCarloLocalization object. isUpdated indicates whether the estimate is updated based on
the UpdateThreshold property.

To enable this syntax, you must set the UseLidarScan property to true. For example:

mcl = monteCarloLocalization('UseLidarScan',true);
...
[isUpdated,pose,covariance] = mcl(odomPose,scan);

[isUpdated,pose,covariance] = mcl(odomPose,ranges,angles) specifies the lidar scan
data as ranges and angles.

Input Arguments

odomPose — Pose based on odometry
three-element vector

Pose based on odometry, specified as a three-element vector, [x y theta]. This pose is calculated
by integrating the odometry over time.

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Dependencies

To use this argument, you must set the UseLidarScan property to true.

mcl.UseLidarScan = true;

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector with elements measured in meters. These range
values are distances from a laser scan sensor at the specified angles. The ranges vector must have
the same number of elements as the corresponding angles vector.

angles — Angle values from scan data
vector
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Angle values from scan data, specified as a vector with elements measured in radians. These angle
values are the angles at which the specified ranges were measured. The angles vector must be the
same length as the corresponding ranges vector.

Output Arguments

isUpdated — Flag for pose update
logical

Flag for pose update, returned as a logical. If the change in pose is more than any of the update
thresholds, then the output is true. Otherwise, it is false. A true output means that updated pose
and covariance are returned. A false output means that pose and covariance are not updated and
are the same as at the last update.

pose — Current pose estimate
three-element vector

Current pose estimate, returned as a three-element vector, [x y theta]. The pose is computed as
the mean of the highest-weighted cluster of particles.

covariance — Covariance estimate for current pose
matrix

Covariance estimate for current pose, returned as a matrix. This matrix gives an estimate of the
uncertainty of the current pose. The covariance is computed as the covariance of the highest-
weighted cluster of particles.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to monteCarloLocalization
getParticles Get particles from localization algorithm

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Vehicle Pose from Range Sensor Data

Create a monteCarloLocalization object, assign a sensor model, and calculate a pose estimate.

Create a monteCarloLocalization object. Set the UseLidarScan property to true.
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mcl = monteCarloLocalization;
mcl.UseLidarScan = true;

Assign a sensor model with an occupancy grid map to the object.

sm = likelihoodFieldSensorModel;
p = zeros(200,200);
sm.Map = occupancyMap(p,20);
mcl.SensorModel = sm;

Create sample laser scan data input.

ranges = 10*ones(1,300);
ranges(1,130:170) = 1.0;
angles = linspace(-pi/2,pi/2,300);
odometryPose = [0 0 0];

Create a lidarScan object by specifying the ranges and angles.

scan = lidarScan(ranges,angles);

Estimate vehicle pose and covariance.

[isUpdated,estimatedPose,covariance] = mcl(odometryPose,scan)

isUpdated = logical
   1

estimatedPose = 1×3

   -0.0034   -0.0423   -0.0275

covariance = 3×3

    0.9379   -0.0365         0
   -0.0365    0.9656         0
         0         0    0.9870

Version History
Introduced in R2019b

References
[1] Thrun, Sebatian, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press, 2005.

[2] Dellaert, F., D. Fox, W. Burgard, and S. Thrun. "Monte Carlo Localization for Mobile Robots."
Proceedings 1999 IEEE International Conference on Robotics and Automation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
lidarScan | likelihoodFieldSensorModel | odometryMotionModel

Topics
“Localize TurtleBot Using Monte Carlo Localization Algorithm”
“Monte Carlo Localization Algorithm”
Class Attributes
Property Attributes

 monteCarloLocalization

2-753



getParticles
Get particles from localization algorithm

Syntax
[particles,weights] = getParticles(mcl)

Description
[particles,weights] = getParticles(mcl) returns the current particles used by the
monteCarloLocalization object. particles is an n-by-3 matrix that contains the location and
orientation of each particle. Each row has a corresponding weight value specified in weights. The
number of rows can change with each iteration of the MCL algorithm. Use this method to extract the
particles and analyze them separately from the algorithm.

Examples

Get Particles from Monte Carlo Localization Algorithm

Get particles from the particle filter used in the Monte Carlo Localization object.

Create a map and a Monte Carlo localization object.

map = binaryOccupancyMap(10,10,20);
mcl = monteCarloLocalization(map);

Create robot data for the range sensor and pose.

ranges = 10*ones(1,300);
ranges(1,130:170) = 1.0;
angles = linspace(-pi/2,pi/2,300);
odometryPose = [0 0 0];

Initialize particles using step.

[isUpdated,estimatedPose,covariance] = step(mcl,odometryPose,ranges,angles);

Get particles from the updated object.

[particles,weights] = getParticles(mcl);

Input Arguments
mcl — monteCarloLocalization object
handle

monteCarloLocalization object, specified as an object handle.
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Output Arguments
particles — Estimation particles
n-by-3 vector

Estimation particles, returned as an n-by-3 vector, [x y theta]. Each row corresponds to the
position and orientation of a single particle. The length can change with each iteration of the
algorithm.

weights — Weights of particles
n-by-1 vector

Weights of particles, returned as a n-by-1 vector. Each row corresponds to the weight of the particle
in the matching row of particles. These weights are used in the final estimate of the pose of the
vehicle. The length can change with each iteration of the algorithm.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
monteCarloLocalization

Topics
“Monte Carlo Localization Algorithm”
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multiLayerMap
Manage multiple map layers

Description
The multiLayerMap object groups and stores multiple map layers as mapLayer, occupancyMap, or
binaryOccupancyMap objects.

Once added to this object, map layers can be modified by either using the multiLayerMap object
functions or by performing actions on individual map layers using their object functions or the layer
name as input. Any modification to common properties on the multiLayerMap object are reflected
across all associated layers.

Creation

Syntax
map = multiLayerMap
map = multiLayerMap(maps)
map = multiLayerMap(names,mapData)
map = multiLayerMap(names,width,height)
map = multiLayerMap(names,width,height,cellDims)
map = multiLayerMap(names,rows,cols,'grid')
map = multiLayerMap(names,rows,cols,cellDims,'grid')
map = multiLayerMap(sourceMap)
map = multiLayerMap( ___ ,Name,Value)

Description

map = multiLayerMap creates an empty map object occupying 10-by-10 meters of space with a
resolution of 1 cell per meter.

map = multiLayerMap(maps) creates a multilayer map from a cell array of mapLayer,
occupancyMap, or binaryOccupancyMap objects. Objects combined into a multilayer map must be
defined with the same resolution and cover the same region in space, but can represent different
categories of information over the shared region.

map = multiLayerMap(names,mapData) creates a multilayer map from the cell array of layer
names and associated cell array of map matrices. Matrices must have the same first two dimensions
to cover the same shared region. Default resolution is 1 cell per meter.

map = multiLayerMap(names,width,height) creates a multilayer map with the cell array of
layer names covering the specified width and height as scalars in meters.

map = multiLayerMap(names,width,height,cellDims) creates a multilayer map where the
size of the data stored in each cell of the map is defined by the array of integers, cellDims. For
multiple layers, cellDims is a cell array of integer arrays.
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map = multiLayerMap(names,rows,cols,'grid') specifies the map width and height as a grid
size specified in the rows and cols inputs.

map = multiLayerMap(names,rows,cols,cellDims,'grid') creates a map with a specified
grid size and the size of the data stored in each cell is defined by the array of integers or cell array of
integer arrays cellDims.

map = multiLayerMap(sourceMap) creates a new object using the layers copied from another
multiLayerMap object.

map = multiLayerMap( ___ ,Name,Value) specifies property values using name-value pairs.

For example, multiLayerMap(__,'LocalOriginInWorld',[15 20]) sets the local origin to a
specific world location.

Properties
DataSize — Size of the data in each map layer data array
cell array of integer vectors

Size of the data in each map layer data array, specified as a cell array of integer vectors. In each
vector, the first two dimensions define the footprint of the map layer, and all subsequent dimensions
dictate the size and layout of the data stored in each cell.

If the map stores an n-element vector of values in each cell, this property would be [width height
n].

If the map stores a 10-by-10 grid with each cell containing a 3-by-3-by-3 matrix array, the data size
would be [10 10 3 3 3].

After you create the object, this property is read-only.
Data Types: cell | double

DataType — Data type of the values stored
cell array of string scalars

Data type of the values stored in each layer, specified as a cell array of character vectors.

When you create this object, the specified map layers determine each data type. After you create the
object, this property is read-only.
Data Types: cell | char

DefaultValue — Default value for unspecified map locations
{0} (default) | cell array of numeric scalars

Default value for unspecified map locations for each layer, specified as a cell array of numeric scalars.
This default value is returned for areas outside the map as well.
Data Types: cell | double

GridLocationInWorld — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]
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Location of the bottom-left corner of the grid in world coordinates, specified as a two-element vector,
[xWorld yWorld].

You can set this property when you create the object.
Data Types: double

GridOriginInLocal — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xLocal yLocal]

Location of the bottom-left corner of the grid in local coordinates, specified as a two-element vector,
[xLocal yLocal].

You can set this property when you create the object.
Data Types: double

GridSize — Number of rows and columns in grid
two-element integer-valued vector

This property is read-only.

Number of rows and columns in grid, stored as a 1-by-2 real-valued vector representing the number
of rows and columns, in that order.
Data Types: double

LayerNames — Name of each layer
cell array of string scalars

Name of each layer, specified as a cell array of string scalars. The order of these names are
associated with the order of other properties that are cell arrays.

You can set this property when you create the object. After you create the object, this property is
read-only.
Data Types: cell | string

LocalOriginInWorld — Location of the local frame in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the origin of the local frame in world coordinates, specified as a two-element vector,
[xLocal yLocal]. Use the move function to shift the local frame as your vehicle moves.

You can set this property when you create the object.
Data Types: double

NumLayers — Number of map layers
1 (default) | positive integer

This property is read-only.

Number of map layers, stored as a positive integer.
Data Types: double

Resolution — Grid resolution
1 (default) | scalar
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This property is read-only.

Grid resolution, stored as a scalar in cells per meter representing the number and size of grid
locations.

You can set this property when you create the object. After you create the object, this property is
read-only.
Data Types: double

XLocalLimits — Minimum and maximum values of x-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of x-coordinates in local frame, stored as a two-element horizontal
vector of the form [min max]. Local frame is defined by LocalOriginInWorld property.
Data Types: double

YLocalLimits — Minimum and maximum values of y-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of y-coordinates in local frame, stored as a two-element horizontal
vector of the form [min max]. Local frame is defined by LocalOriginInWorld property.
Data Types: double

XWorldLimits — Minimum and maximum world range values of x-coordinates
two-element vector

This property is read-only.

Minimum and maximum world range values of x-coordinates, stored as a 1-by-2 vector representing
the minimum and maximum values, in that order.
Data Types: double

YWorldLimits — Minimum and maximum world range values of y-coordinates
two-element vector

This property is read-only.

Minimum and maximum world range values of y-coordinates, stored as a 1-by-2 vector representing
the minimum and maximum values, in that order.
Data Types: double

Object Functions
getLayer Return individual layers from multilayer map
getMapData Retrieve data from map layers
grid2local Convert grid indices to local coordinates
grid2world Convert grid indices to world coordinates
local2grid Convert local coordinates to grid indices
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local2world Convert local coordinates to world coordinates
move Move map in world frame
setMapData Assign data to map layers
syncWith Sync map with overlapping map
world2grid Convert world coordinates to grid indices
world2local Convert world coordinates to local coordinates

Examples

Create Listeners Using Dependent Map Layers

The multiLayerMap object enables you to group multiple map layers and define behavior for those
layers when setting and getting data. Using separate map layers, you can store various map data and
specify different behaviors for each. You can also define the SetTransformFcn and
GetTransformFcn function handles for a map layer so that dependencies are created between
layers. This example shows how to store data in a map layer and implement event listeners which
update other maps. These maps store how many times the data is updated or accessed.

Dependent Layers

Create two independent map layers.

mapAccessed = mapLayer(zeros(10,10),"LayerName","GetListener");
mapModified = mapLayer(zeros(10,10),"LayerName","SetListener");

Specify function handles for the get and set transform functions used in the main map layer. These
functions increment the value of a grid location when you get or set map data in the input map
mainMap. See Listener Function Handles on page 2-762 for the function implementation.

getHookFcn = @(mainMap,values,varargin)exampleHelperGetHookFcn(mapAccessed,mainMap,values,varargin{:});
setHookFcn = @(mainMap,values,varargin)exampleHelperSetHookFcn(mapModified,mainMap,values,varargin{:});

Create the main map layer with default values of 0.5. Specify the function handles to create the layer
depencies.

map = mapLayer(repmat(0.5,10,10), ...
                'GetTransformFcn',getHookFcn, ...
                'SetTransformFcn',setHookFcn);

Add all maps to the same multiLayerMap object.

multiMapLayers = multiLayerMap({map,mapAccessed,mapModified})

multiMapLayers = 
  multiLayerMap with properties:

   Map Properties
              NumLayers: 3
               GridSize: [10 10]
             Resolution: 1
    GridLocationInWorld: [0 0]
      GridOriginInLocal: [0 0]
     LocalOriginInWorld: [0 0]
           XLocalLimits: [0 10]
           YLocalLimits: [0 10]
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           XWorldLimits: [0 10]
           YWorldLimits: [0 10]

   Layer Properties
             LayerNames: {'mapLayer'  'GetListener'  'SetListener'}
               DataSize: {[10 10]  [10 10]  [10 10]}
               DataType: ["double"    "double"    "double"]
           DefaultValue: {[0]  [0]  [0]}

Set the (0,0) map location with a value of zero using the setMapData object function of
multiLayerMap object.

setMapData(multiMapLayers,"mapLayer",[0 0],0)

Check that SetListener map layer incremented their value.

getMapData(multiMapLayers,"SetListener",[0 0])

ans = 1

Get the data you just set to the main map layer. The expected value of zero is returned.

getMapData(multiMapLayers,"mapLayer",[0 0])

ans = 0

Check that GetListener map layer incremented their value.

getMapData(multiMapLayers,"GetListener",[0 0])

ans = 1

Update the entire map with a matrix of values. Access the data as well.

setMapData(multiMapLayers,"mapLayer",rand(10,10))
getMapData(multiMapLayers,"mapLayer")

ans = 10×10

    0.8147    0.1576    0.6557    0.7060    0.4387    0.2760    0.7513    0.8407    0.3517    0.0759
    0.9058    0.9706    0.0357    0.0318    0.3816    0.6797    0.2551    0.2543    0.8308    0.0540
    0.1270    0.9572    0.8491    0.2769    0.7655    0.6551    0.5060    0.8143    0.5853    0.5308
    0.9134    0.4854    0.9340    0.0462    0.7952    0.1626    0.6991    0.2435    0.5497    0.7792
    0.6324    0.8003    0.6787    0.0971    0.1869    0.1190    0.8909    0.9293    0.9172    0.9340
    0.0975    0.1419    0.7577    0.8235    0.4898    0.4984    0.9593    0.3500    0.2858    0.1299
    0.2785    0.4218    0.7431    0.6948    0.4456    0.9597    0.5472    0.1966    0.7572    0.5688
    0.5469    0.9157    0.3922    0.3171    0.6463    0.3404    0.1386    0.2511    0.7537    0.4694
    0.9575    0.7922    0.6555    0.9502    0.7094    0.5853    0.1493    0.6160    0.3804    0.0119
    0.9649    0.9595    0.1712    0.0344    0.7547    0.2238    0.2575    0.4733    0.5678    0.3371

Check that GetListener and SetListener map layers incremented their values.

getMapData(multiMapLayers,"SetListener")

ans = 10×10

     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
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     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     2     1     1     1     1     1     1     1     1     1

getMapData(multiMapLayers,"GetListener")

ans = 10×10

     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     2     1     1     1     1     1     1     1     1     1

The bottom-left location returns two and all other values are one. This confirms the listener functions
are working as intended.

Listener Function Handles

These functions implement the get and set example helper functions that update the other map
layers.

function valuesOut = exampleHelperSetHookFcn(modifiedMap,sourceLayer,valueIn,varargin)
    % Pass output through
    valuesOut = valueIn;
    
    % If no additional inputs are passed, return immediately.
    if numel(varargin) == 0
        return;
    else
        % Otherwise, increment the value in the modifiedMap.
        if numel(varargin) == 1
            currentValue = getMapData(modifiedMap);
            setMapData(modifiedMap,currentValue+1);
        else        
            currentValue = getMapData(modifiedMap,varargin{1},varargin{3:end});
            % setMapData syntax <<<<>>>>
            setMapData(modifiedMap,varargin{1},currentValue+1,varargin{3:end});
        end
    end
end

function data = exampleHelperGetHookFcn(accessedMap,sourceLayer,valuesIn,varargin)
    
    data = valuesIn;
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    % If no additional inputs are passed, check if the values in
    if numel(varargin) == 0
        if isequal(size(valuesIn),sourceLayer.DataSize)
            % Increment the depedent map.
            currentValue = getMapData(accessedMap);
            setMapData(accessedMap,currentValue+1);
        end
    else
        currentValue = getMapData(accessedMap,varargin{:});
        setMapData(accessedMap,varargin{1},currentValue+1,varargin{3:end});
    end
end

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

As of MATLAB R2022a, default map behavior during code generation has changed, which may result
in backwards compatibility issues. Maps such as multiLayerMap now support fixed-size code
generation (DynamicMemoryAllocation="off").

1 Maps that are either default-constructed or constructed with compile-time constant size
information (or matrices that are of compile-time constant size) produce fixed-size maps.

2 To restore the previous behavior, use the coder.ignoreConst function when specifying size
inputs, or coder.varsize matrix variable name specified as a string scalar or character vector,
prior to constructing the map.

See Also
Objects
mapLayer | occupancyMap3D | occupancyMap | binaryOccupancyMap

Functions
getMapData | setMapData | move | syncWith

Topics
“Fuse Multiple Lidar Sensors Using Map Layers”
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getLayer
Return individual layers from multilayer map

Syntax
mapLayer = getLayer(map,layerName)

Description
mapLayer = getLayer(map,layerName) returns the individual map layer, specified by the layer
name layerName. For a list of all layer names, see the LayerNames property of the multiLayerMap
object map.

Examples

Get Individual Map Layers from Multilayer Map

Create two occupancy map layers. Then, combine the map layers into a multiLayerMap object.

map1 = occupancyMap(10,10,"LayerName","Layer1");
map2 = occupancyMap(repmat(0:0.1:0.9,10,1),"LayerName","Layer2");
multiMap = multiLayerMap({map1,map2});

Get the first map layer from the multilayer map.

mapLayer1 = getLayer(multiMap,"Layer1");
show(mapLayer1)
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Get the second map layer from the multilayer map.

mapLayer2 = getLayer(multiMap,"Layer2");
show(mapLayer2)
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Input Arguments
map — Multilayer map
multiLayerMap object

Multilayer map, specified as a multiLayerMap object.

layerName — Name of individual map layer
string scalar | character vector

Name of individual map layer, specified as a string scalar or character vector.
Data Types: char | string

Output Arguments
mapLayer — Individual map layer
binaryOccupancyMap object | occupancyMap object | mapLayer object

Individual map layer, returned as a binaryOccupancyMap, occupancyMap, or mapLayer object as a
handle. For more information, see “Handle Object Behavior”.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
mapLayer | occupancyMap3D | occupancyMap | binaryOccupancyMap

Functions
getMapData | setMapData | move | syncWith

Topics
“Fuse Multiple Lidar Sensors Using Map Layers”

 getLayer

2-767



getMapData
Retrieve data from map layers

Syntax
mapData = getMapData(map)
mapData = getMapData(map,layername)
mapData = getMapData(map,layername,layerinputs)

Description
mapData = getMapData(map) returns a cell array of matrices for the data in each layer of the
specified multiLayerMap object. For binary or occupancy map layers, the values of this function are
passed to the getOccupancy function. mapData is returned as an cell-array of matrices for each
layer.

mapData = getMapData(map,layername) returns all the map data for the specified layer name.
mapData is returned as a matrix equal to the DataSize of the specified layer.

mapData = getMapData(map,layername,layerinputs) takes the layerinputs arguments
and passes them to the getMapData object function for the specified map layer name. To access
individual cells or blocks of data in the world, local, or grid coordinates, see the syntaxes of
getMapData.

Examples

Create Listeners Using Dependent Map Layers

The multiLayerMap object enables you to group multiple map layers and define behavior for those
layers when setting and getting data. Using separate map layers, you can store various map data and
specify different behaviors for each. You can also define the SetTransformFcn and
GetTransformFcn function handles for a map layer so that dependencies are created between
layers. This example shows how to store data in a map layer and implement event listeners which
update other maps. These maps store how many times the data is updated or accessed.

Dependent Layers

Create two independent map layers.

mapAccessed = mapLayer(zeros(10,10),"LayerName","GetListener");
mapModified = mapLayer(zeros(10,10),"LayerName","SetListener");

Specify function handles for the get and set transform functions used in the main map layer. These
functions increment the value of a grid location when you get or set map data in the input map
mainMap. See Listener Function Handles on page 2-770 for the function implementation.

getHookFcn = @(mainMap,values,varargin)exampleHelperGetHookFcn(mapAccessed,mainMap,values,varargin{:});
setHookFcn = @(mainMap,values,varargin)exampleHelperSetHookFcn(mapModified,mainMap,values,varargin{:});
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Create the main map layer with default values of 0.5. Specify the function handles to create the layer
depencies.

map = mapLayer(repmat(0.5,10,10), ...
                'GetTransformFcn',getHookFcn, ...
                'SetTransformFcn',setHookFcn);

Add all maps to the same multiLayerMap object.

multiMapLayers = multiLayerMap({map,mapAccessed,mapModified})

multiMapLayers = 
  multiLayerMap with properties:

   Map Properties
              NumLayers: 3
               GridSize: [10 10]
             Resolution: 1
    GridLocationInWorld: [0 0]
      GridOriginInLocal: [0 0]
     LocalOriginInWorld: [0 0]
           XLocalLimits: [0 10]
           YLocalLimits: [0 10]
           XWorldLimits: [0 10]
           YWorldLimits: [0 10]

   Layer Properties
             LayerNames: {'mapLayer'  'GetListener'  'SetListener'}
               DataSize: {[10 10]  [10 10]  [10 10]}
               DataType: ["double"    "double"    "double"]
           DefaultValue: {[0]  [0]  [0]}

Set the (0,0) map location with a value of zero using the setMapData object function of
multiLayerMap object.

setMapData(multiMapLayers,"mapLayer",[0 0],0)

Check that SetListener map layer incremented their value.

getMapData(multiMapLayers,"SetListener",[0 0])

ans = 1

Get the data you just set to the main map layer. The expected value of zero is returned.

getMapData(multiMapLayers,"mapLayer",[0 0])

ans = 0

Check that GetListener map layer incremented their value.

getMapData(multiMapLayers,"GetListener",[0 0])

ans = 1

Update the entire map with a matrix of values. Access the data as well.

setMapData(multiMapLayers,"mapLayer",rand(10,10))
getMapData(multiMapLayers,"mapLayer")
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ans = 10×10

    0.8147    0.1576    0.6557    0.7060    0.4387    0.2760    0.7513    0.8407    0.3517    0.0759
    0.9058    0.9706    0.0357    0.0318    0.3816    0.6797    0.2551    0.2543    0.8308    0.0540
    0.1270    0.9572    0.8491    0.2769    0.7655    0.6551    0.5060    0.8143    0.5853    0.5308
    0.9134    0.4854    0.9340    0.0462    0.7952    0.1626    0.6991    0.2435    0.5497    0.7792
    0.6324    0.8003    0.6787    0.0971    0.1869    0.1190    0.8909    0.9293    0.9172    0.9340
    0.0975    0.1419    0.7577    0.8235    0.4898    0.4984    0.9593    0.3500    0.2858    0.1299
    0.2785    0.4218    0.7431    0.6948    0.4456    0.9597    0.5472    0.1966    0.7572    0.5688
    0.5469    0.9157    0.3922    0.3171    0.6463    0.3404    0.1386    0.2511    0.7537    0.4694
    0.9575    0.7922    0.6555    0.9502    0.7094    0.5853    0.1493    0.6160    0.3804    0.0119
    0.9649    0.9595    0.1712    0.0344    0.7547    0.2238    0.2575    0.4733    0.5678    0.3371

Check that GetListener and SetListener map layers incremented their values.

getMapData(multiMapLayers,"SetListener")

ans = 10×10

     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     2     1     1     1     1     1     1     1     1     1

getMapData(multiMapLayers,"GetListener")

ans = 10×10

     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     2     1     1     1     1     1     1     1     1     1

The bottom-left location returns two and all other values are one. This confirms the listener functions
are working as intended.

Listener Function Handles

These functions implement the get and set example helper functions that update the other map
layers.

function valuesOut = exampleHelperSetHookFcn(modifiedMap,sourceLayer,valueIn,varargin)
    % Pass output through
    valuesOut = valueIn;
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    % If no additional inputs are passed, return immediately.
    if numel(varargin) == 0
        return;
    else
        % Otherwise, increment the value in the modifiedMap.
        if numel(varargin) == 1
            currentValue = getMapData(modifiedMap);
            setMapData(modifiedMap,currentValue+1);
        else        
            currentValue = getMapData(modifiedMap,varargin{1},varargin{3:end});
            % setMapData syntax <<<<>>>>
            setMapData(modifiedMap,varargin{1},currentValue+1,varargin{3:end});
        end
    end
end

function data = exampleHelperGetHookFcn(accessedMap,sourceLayer,valuesIn,varargin)
    
    data = valuesIn;

    % If no additional inputs are passed, check if the values in
    if numel(varargin) == 0
        if isequal(size(valuesIn),sourceLayer.DataSize)
            % Increment the depedent map.
            currentValue = getMapData(accessedMap);
            setMapData(accessedMap,currentValue+1);
        end
    else
        currentValue = getMapData(accessedMap,varargin{:});
        setMapData(accessedMap,varargin{1},currentValue+1,varargin{3:end});
    end
end

Input Arguments
map — Multilayer map
multiLayerMap object

Multilayer map, specified as a multiLayerMap object.

layername — Map layer name
string scalar | character array

Map layer name, specified as a string scalar or character array. Map layers have their name specified
when creating the multiLayerMap object.

layerinputs — Variable-length inputs to map layer
varargin

Variable-length inputs to getMapData function of map layer, specified as varargin. To specify
individual cells or blocks of data in the world, local, or grid coordinates, see the syntaxes of
getMapData.
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Output Arguments
mapData — Data values from map layer
matrix

Data values from map layer, returned as a matrix. By default, the function returns all data on the
layer as an M-by-N-by-DataDims matrix. M and N are the grid height and width respectively.
DataDims are the dimensions of the map data, map.DataSize(3,:).

For other syntaxes, the map data may be given as an array of values with size N-by-DataDims or as a
subregion of the full matrix.

Version History
Introduced in R2021a

See Also
Objects
multiLayerMap | mapLayer | occupancyMap3D | occupancyMap | binaryOccupancyMap

Functions
setMapData | move | syncWith
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setMapData
Assign data to map layers

Syntax
setMapData(map,layername,layerinputs)
inBounds = setMapData(map,layername,layerinputs)

Description
setMapData(map,layername,layerinputs) takes the layerinputs arguments and passes them
to the setMapData object function for the specified map layer name. To specify individual cells or
blocks of data in the world, local, or grid coordinates, see the syntaxes of setMapData.

inBounds = setMapData(map,layername,layerinputs) returns an array of values for the
given locations in the layerinputs input argument.

Examples

Create Listeners Using Dependent Map Layers

The multiLayerMap object enables you to group multiple map layers and define behavior for those
layers when setting and getting data. Using separate map layers, you can store various map data and
specify different behaviors for each. You can also define the SetTransformFcn and
GetTransformFcn function handles for a map layer so that dependencies are created between
layers. This example shows how to store data in a map layer and implement event listeners which
update other maps. These maps store how many times the data is updated or accessed.

Dependent Layers

Create two independent map layers.

mapAccessed = mapLayer(zeros(10,10),"LayerName","GetListener");
mapModified = mapLayer(zeros(10,10),"LayerName","SetListener");

Specify function handles for the get and set transform functions used in the main map layer. These
functions increment the value of a grid location when you get or set map data in the input map
mainMap. See Listener Function Handles on page 2-775 for the function implementation.

getHookFcn = @(mainMap,values,varargin)exampleHelperGetHookFcn(mapAccessed,mainMap,values,varargin{:});
setHookFcn = @(mainMap,values,varargin)exampleHelperSetHookFcn(mapModified,mainMap,values,varargin{:});

Create the main map layer with default values of 0.5. Specify the function handles to create the layer
depencies.

map = mapLayer(repmat(0.5,10,10), ...
                'GetTransformFcn',getHookFcn, ...
                'SetTransformFcn',setHookFcn);

Add all maps to the same multiLayerMap object.
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multiMapLayers = multiLayerMap({map,mapAccessed,mapModified})

multiMapLayers = 
  multiLayerMap with properties:

   Map Properties
              NumLayers: 3
               GridSize: [10 10]
             Resolution: 1
    GridLocationInWorld: [0 0]
      GridOriginInLocal: [0 0]
     LocalOriginInWorld: [0 0]
           XLocalLimits: [0 10]
           YLocalLimits: [0 10]
           XWorldLimits: [0 10]
           YWorldLimits: [0 10]

   Layer Properties
             LayerNames: {'mapLayer'  'GetListener'  'SetListener'}
               DataSize: {[10 10]  [10 10]  [10 10]}
               DataType: ["double"    "double"    "double"]
           DefaultValue: {[0]  [0]  [0]}

Set the (0,0) map location with a value of zero using the setMapData object function of
multiLayerMap object.

setMapData(multiMapLayers,"mapLayer",[0 0],0)

Check that SetListener map layer incremented their value.

getMapData(multiMapLayers,"SetListener",[0 0])

ans = 1

Get the data you just set to the main map layer. The expected value of zero is returned.

getMapData(multiMapLayers,"mapLayer",[0 0])

ans = 0

Check that GetListener map layer incremented their value.

getMapData(multiMapLayers,"GetListener",[0 0])

ans = 1

Update the entire map with a matrix of values. Access the data as well.

setMapData(multiMapLayers,"mapLayer",rand(10,10))
getMapData(multiMapLayers,"mapLayer")

ans = 10×10

    0.8147    0.1576    0.6557    0.7060    0.4387    0.2760    0.7513    0.8407    0.3517    0.0759
    0.9058    0.9706    0.0357    0.0318    0.3816    0.6797    0.2551    0.2543    0.8308    0.0540
    0.1270    0.9572    0.8491    0.2769    0.7655    0.6551    0.5060    0.8143    0.5853    0.5308
    0.9134    0.4854    0.9340    0.0462    0.7952    0.1626    0.6991    0.2435    0.5497    0.7792
    0.6324    0.8003    0.6787    0.0971    0.1869    0.1190    0.8909    0.9293    0.9172    0.9340
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    0.0975    0.1419    0.7577    0.8235    0.4898    0.4984    0.9593    0.3500    0.2858    0.1299
    0.2785    0.4218    0.7431    0.6948    0.4456    0.9597    0.5472    0.1966    0.7572    0.5688
    0.5469    0.9157    0.3922    0.3171    0.6463    0.3404    0.1386    0.2511    0.7537    0.4694
    0.9575    0.7922    0.6555    0.9502    0.7094    0.5853    0.1493    0.6160    0.3804    0.0119
    0.9649    0.9595    0.1712    0.0344    0.7547    0.2238    0.2575    0.4733    0.5678    0.3371

Check that GetListener and SetListener map layers incremented their values.

getMapData(multiMapLayers,"SetListener")

ans = 10×10

     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     2     1     1     1     1     1     1     1     1     1

getMapData(multiMapLayers,"GetListener")

ans = 10×10

     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1     1
     2     1     1     1     1     1     1     1     1     1

The bottom-left location returns two and all other values are one. This confirms the listener functions
are working as intended.

Listener Function Handles

These functions implement the get and set example helper functions that update the other map
layers.

function valuesOut = exampleHelperSetHookFcn(modifiedMap,sourceLayer,valueIn,varargin)
    % Pass output through
    valuesOut = valueIn;
    
    % If no additional inputs are passed, return immediately.
    if numel(varargin) == 0
        return;
    else
        % Otherwise, increment the value in the modifiedMap.
        if numel(varargin) == 1
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            currentValue = getMapData(modifiedMap);
            setMapData(modifiedMap,currentValue+1);
        else        
            currentValue = getMapData(modifiedMap,varargin{1},varargin{3:end});
            % setMapData syntax <<<<>>>>
            setMapData(modifiedMap,varargin{1},currentValue+1,varargin{3:end});
        end
    end
end

function data = exampleHelperGetHookFcn(accessedMap,sourceLayer,valuesIn,varargin)
    
    data = valuesIn;

    % If no additional inputs are passed, check if the values in
    if numel(varargin) == 0
        if isequal(size(valuesIn),sourceLayer.DataSize)
            % Increment the depedent map.
            currentValue = getMapData(accessedMap);
            setMapData(accessedMap,currentValue+1);
        end
    else
        currentValue = getMapData(accessedMap,varargin{:});
        setMapData(accessedMap,varargin{1},currentValue+1,varargin{3:end});
    end
end

Input Arguments
map — Multilayer map
multiLayerMap object

Multilayer map, specified as a multiLayerMap object.

layername — Map layer name
string scalar | character array

Map layer name, specified as a string scalar or character array. Map layers have their name specified
when creating the multiLayerMap object.

layerinputs — Variable-length inputs to map layer
varargin

Variable-length inputs to setMapData function of the map layer, specified as varargin. To specify
individual cells or blocks of data in the world, local, or grid coordinates, see the syntaxes of
setMapData.

Output Arguments
inBounds — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map limits return a value of 1. Locations outside the map limits return a value of 0.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | mapLayer | occupancyMap3D | occupancyMap | binaryOccupancyMap

Functions
getMapData | move | syncWith
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gpsdev

Connect to a GPS receiver connected to host computer

Description
The gpsdev System object connects to a GPS receiver connected to the host computer.

To connect to a GPS receiver:

1 Create the gpsdev object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gps = gpsdev(port)
gps = gpsdev(serialobj)
gps = gpsdev( ___ ,Name,Value)

Description

gps = gpsdev(port) connects to a GPS Receiver at the specified serial port of host computer.

gps = gpsdev(serialobj) connects to a GPS Receiver specified by a serial object.

gps = gpsdev( ___ ,Name,Value) connects to a GPS Receiver on the specified port or specified
through a serial object, using one or more name-value pairs.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

BaudRate — Baud rate
9600

This property is read-only.

2 Classes

2-778



The baud rate for serial communication. The baud rate is set at 9600 bits/sec. The GPS receiver must
be configured to work at 9600 bits/sec . If your GPS receiver is configured to some other baud rate,
reconfigure it to 9600 bits/sec to use gpsdev function.

ReadMode — Specify which data samples to be returned
'latest' (default) | 'oldest'

Specify whether to return the latest or the oldest data samples. The number of samples depends on
the SamplesPerRead value. The data read from the GPS receiver is stored in the MATLAB buffer.

• latest — Provides the latest data samples available in the buffer. All previous data samples in
the buffer are discarded. For example, if SamplesPerRead = 3, the latest three data samples
read by the GPS receiver are returned.

• oldest — Provides the oldest data samples available in the buffer. In this case, no data samples
are discarded. For example, if SamplesPerRead = 3, the first three data samples read are
returned for the first read, the next three data samples are returned for the second read, and so
on.

Tunable: No
Data Types: character vector | string

SamplesRead — Samples read
double

This property is read-only.

Number of samples read from the GPS receiver using the read function, after the object is locked.
The gpsdev object gets locked either at the first call of the read function after the object creation or
at the first call of the read function after the execution of the release function.
Data Types: double

SamplesAvailable — Samples in the host buffer
double

This property is read-only.

Samples available in the host buffer. When you release the object, SamplesAvailable is set to 0.
Data Types: double

SamplesPerRead — Samples per read
1 (default)

Samples read from the first read, specified as a positive integer in the range [1 10].

Tunable: No
Data Types: double

OutputFormat — Set output format
'timetable' (default) | 'matrix'

Set the output format of the data returned by executing the read function.

When the OutputFormat is set to timetable, the timetable returned has the following fields:
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• LLA (Latitude, Longitude, Altitude)
• Ground Speed
• Course over ground
• Dilution of Precisions(DOPs), VDOP,HDOP,PDOP
• GPS Receiver Time
• Time — System time when the data is read, in datetime or duration format

When the OutputFormat is set to matrix, the data is returned as matrices of Time, LLA, Ground
Speed, Course over ground, DOPs, and GPS receiver time. The units for the GPS receiver readings
are the same as the timetable format.

Tunable: Yes
Data Types: character vector | string

TimeFormat — Set the format of the time displayed when the GPS data is read
'datetime' (default) | 'duration'

Set the format of the time displayed when the GPS data is read.

• datetime — Displays the date and time at which the data is read.
• duration — Displays the time elapsed in seconds after the GPS object is locked. The gpsdev

object gets locked either at the first call of the read function after the object creation or at the
first call of the read function after the execution of the release function.

Tunable: Yes
Data Types: character vector | string

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

flush Flush all GPS data accumulated in the buffers and reset properties
info Read update rate, GPS lock information and number of satellites in view for the GPS

receiver
read Read data from GPS receiver
release Release the GPS object
writeBytes Write raw commands to the GPS receiver

Examples

Plot Geographic Position Using GPS Connected to Host Computer

Get the geographic location using the GPS receiver connected to the host computer on a specific
serial port and plot the location in a map.
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Required Hardware

To run this example, you need:

• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires

Hardware Connection

Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Create a gpsdev object for the GPS module connected to a specific port.

gps = gpsdev('COM4')

gps = 
  gpsdev with properties:

                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)
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                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Read the GPS data

Read the GPS data and extract latitude, longitude, and time from it. GPS returns UTC datetime.
Convert it to system time zone.

[gpsData,~] = read(gps);
latitude = gpsData.LLA(1);
longitude = gpsData.LLA(2);
gpsTime = gpsData.GPSReceiverTime;
gpsTime.TimeZone = 'local';

Plot the position in a map along with the timestamp

Plot the position in geographic axes with the data obtained from the GPS module. GPS should have fix
to get valid values for latitude, longitude and gpsTime.

If the GPS module does not have fix, the above commands give NaNs for latitude and longitude and
NaT for gpsTime. In this case, make sure the antenna is exposed to clear sky and wait for some time
and try the above steps again.

if(~isnan(latitude) && ~isnan(longitude))
 % plot the position in geographic coordinates
 fig = geoplot(latitude,longitude,'Marker',"o",'MarkerSize',6,'Color','red','MarkerFaceColor','red');

 % Sets the latitude and longitude limits of the base Map   
 geolimits([latitude-0.05 latitude+0.05],[longitude-0.05 longitude+0.05]) ;

 % Selects the basemap   
 geobasemap streets;
 timeString = strcat("Timestamp: ",string(gpsTime));

 % Create annotation and display time received from GPS
 annotation('textbox',[0.005 0.98 0.6 0.01],'FitBoxToText','on','string',timeString,'Color','blue','FontSize',10);
end

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;

Write Configuration Commands to GPS Receiver

Write configuration commands to the GPS receiver connected to the host computer using
serialport object.

Required Hardware

To run this example, you need:
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• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires

Hardware Connection

Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Connect to the GPS receiver using serialport object. Specify the port name and the baud rate.

s = serialport('COM4',9600)

s = 
  Serialport with properties:

                 Port: "COM4"
             BaudRate: 9600
    NumBytesAvailable: 0

  Show all properties, functions
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gps = gpsdev(s)

gps = 
  gpsdev with properties:

                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)

                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Write Configuration Commands

In the default configuration the GPS receiver returns the following NMEA messages: GPRMC,
GPVTG, GPGGA, GPGSA, GPGSV, and GPGLL. The receiver can be configured to have a user defined
set of output messages.

Read few lines of default messages from the serial port the GPS receiver is connected.

for i = 1:10    
data = readline(s);
disp(data);
end

$GPRMC,,V,,,,,,,,,,N*53
$GPVTG,,,,,,,,,N*30
$GPGGA,,,,,,0,00,99.99,,,,,,*48
$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
$GPGSV,2,1,08,01,,,18,08,,,12,09,,,12,15,,,19*77
$GPGSV,2,2,08,23,,,13,24,,,09,25,,,10,27,,,25*79
$GPGLL,,,,,,V,N*64
$GPRMC,,V,,,,,,,,,,N*53
$GPVTG,,,,,,,,,N*30
$GPGGA,,,,,,0,00,99.99,,,,,,*48

Write the version monitor command to the GPS receiver to return the software and hardware version
of the GPS receiver.

configCMD = [0xB5 0x62 0x0A 0x04 0x00 0x00 0x0E 0x34];
% writeBytes(gps,cfg)
write(s,configCMD,'uint8')

Read few lines of messages again to verify the version message.

for i = 1:10    
data = readline(s);
disp(data);
end

$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
$GPGSV,2,1,05,01,,,13,09,,,11,15,,,16,23,,,12*74
$GPGSV,2,2,05,25,,,10*7A
$GPGLL,,,,,,V,N*64
µb
( 7.03 (45969)                  00040007  °$GPRMC,,V,,,,,,,,,,N*53
$GPVTG,,,,,,,,,N*30
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$GPGGA,,,,,,0,00,99.99,,,,,,*48
$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
$GPGSV,2,1,06,01,,,11,09,,,11,23,,,14,24,,,21*75

It can be observed from the output, 7.03 (45969) is the software version and 00040007 is the
hardware version.

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;
clear s;

Read Data from GPS Receiver as Timetable

Read data from the GPS receiver connected to the host computer on a specific serial port.

Required Hardware

To run this example, you need:

• UBlox Neo-6M GPS module
• GPS antenna
• USB to UART module
• USB cable
• Connecting wires

Hardware Connection

Connect the pins on the UBlox Neo-6M GPS module to the pins on your USB to UART module. The
connections are:

• VCC - +5V
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• RX - TXO
• TX - RXI
• GND - GND

Connect the GPS antenna to the GPS module. Connect the USB to UART module to the host computer
with a USB cable. GPS Fix can be easily acquired in locations that have a clear view of the sky. Wait
for the GPS module to acquire satelite signals (Fix).This can be verified by checking the Fix LED (D1)
of your GPS module.

Create GPS Object

Create a gpsdev object for the GPS receiver connected to a specific port. Specify the output format
of the data as a timetable.

gps = gpsdev('COM4','OutputFormat',"timetable")

gps = 
  gpsdev with properties:

                         SerialPort: COM4    
                           BaudRate: 9600 (bits/s)

                     SamplesPerRead: 1     
                           ReadMode: "latest"     
                        SamplesRead: 0     
Show all properties all functions

Read the GPS data

Read the GPS data and return them as a timetable.

[tt,overruns] = read(gps)

tt=1×5 timetable
              Time                         LLA               GroundSpeed    Course            DOPs                GPSReceiverTime     
    ________________________    _________________________    ___________    ______    ____________________    ________________________

    22-Mar-2021 15:31:15.190    17.47    78.343     449.6      0.25619       NaN      9.31    1.48    9.19    22-Mar-2021 10:01:14.000

overruns = 0

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 1

gps.SamplesAvailable

ans = 0

Release the GPS object to configure the non tunable properties. The release function also clears the
buffer and resets the SamplesRead and SamplesAvailable properties.

release(gps)
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Specify the number of samples per read to 2. Read the GPS data.

gps.SamplesPerRead = 2;
read(gps)

ans=2×5 timetable
              Time                         LLA               GroundSpeed    Course            DOPs                GPSReceiverTime     
    ________________________    _________________________    ___________    ______    ____________________    ________________________

    22-Mar-2021 15:31:17.178    17.47    78.343       450     0.063791       NaN      9.32    1.48     9.2    22-Mar-2021 10:01:16.000
    22-Mar-2021 15:31:17.178    17.47    78.343       450     0.063791       NaN      9.32    1.48     9.2    22-Mar-2021 10:01:16.000

Display number of samples read and the samples available in the host buffer.

gps.SamplesRead

ans = 1

gps.SamplesAvailable

ans = 0

Clean Up

When the connection is no longer needed, clear the associated object.

delete(gps);
clear gps;

More About
GPS Modules

To verify the functionality, the following GPS modules were used:

• Adafruit Ultimate GPS
• Ublox NEO 6M
• Ublox NEO 7M

Version History
Introduced in R2020b

See Also
nmeaParser
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nmeaParser
Parse data from standard and manufacturer-specific NMEA sentences sent from marine electronic
devices

Description
The nmeaParser System object parses data from any NMEA (National Marine Electronics
Association) sentences. The sentences that need parsing of data can be any standard sentences
compliant with the NMEA 0183® specifications (which are sent from a GNSS (Global Navigation
Satellite System) receiver), or other manufacturer-specific sentences approved by the NMEA (which
are sent from other marine electronic devices).

The nmeaParser System object provides:

• Built-in support to parse data sent from GNSS receivers and identified by these nine NMEA
message types: RMC, GGA, GSA, VTG, GLL, GST, ZDA, GSV, and HDT

• Additional configuration using the CustomSentence name-value pair to parse NMEA data from
multiple device categories, including manufacturer-specific sentences from different hardware
manufacturers

To parse data from NMEA sentences:

1 Create the nmeaParser object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

The nmeaParser System object outputs an array of structures corresponding to the values extracted
from the specified NMEA sentences.

Creation
Syntax
pnmea = nmeaParser
pnmea = nmeaParser("MessageIDs", 'msgID')
pnmea = nmeaParser("CustomSentence",
{['CustomMessageId1','parserFunctionName1'],
['CustomMessageId2','parserFunctionName2']})
pnmea = nmeaParser("MessageIDs", {'msgID1','msgID2'},"CustomSentence",
{['CustomMessageId1','parserFunctionName1'],
['CustomMessageId2','parserFunctionName2']})

Description

pnmea = nmeaParser returns a nmeaParser System object, pnmea, with default properties, that
extracts data from these standard NMEA messages: RMC, GGA, and GSA. The order of structure
arrays in the extracted output data is also: RMC, GGA, and GSA.
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pnmea = nmeaParser("MessageIDs", 'msgID') returns a nmeaParser System object, pnmea,
that extracts data from one of the nine standard NMEA messages with built-in support, specified
using the Message IDs. Specify msgID as "RMC", "GGA", "GSA", "GSV", "VTG", "GLL", "GST",
"ZDA", and "HDT", or a combination of these IDs (for example: ["VTG","GLL","HDT"]). The order
in which you specify the Message IDs determines the order of the structure arrays in the extracted
output data. The default value is ["RMC","GGA","GSA"].

pnmea = nmeaParser("CustomSentence",
{['CustomMessageId1','parserFunctionName1'],
['CustomMessageId2','parserFunctionName2']}) sets properties using the
CustomSentence name-value pair and returns a nmeaParser System object, pnmea, that extracts
data from any custom NMEA message (either standard NMEA message or manufacturer-specific
NMEA message), specified using the message IDs.

The CustomSentence name-value pair accepts a nested cell array where each element is a pair of
message ID name (either standard NMEA message ID name or manufacturer-specific message ID)
and the corresponding user-defined parser function, which is created by including the
extractNMEASentence function in a function file. The order in which you specify the message IDs
determines the order of the structure arrays in the extracted output data.

pnmea = nmeaParser("MessageIDs", {'msgID1','msgID2'},"CustomSentence",
{['CustomMessageId1','parserFunctionName1'],
['CustomMessageId2','parserFunctionName2']}) returns a nmeaParser System object,
pnmea, that extracts data from two of the nine standard NMEA messages with built-in support and
also from custom NMEA messages that you specified using the CustomSentence name-value pair.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: pnmea = nmeaParser("CustomSentence",
{['CustomMessageId1','parserFunctionName1'],
['CustomMessageId2','parserFunctionName2']});

CustomSentence — Specify message ID of any sentence and the name of its parser function
cell array of character vectors

Specify the message ID of any NMEA sentence from which you want to extract data and the name of
the parser function. You can specify multiple message IDs and parser functions as a cell array of
character vectors. The parser function is defined in a function file, which can optionally include the
extractNMEASentence function.

Note The function file for the parser function must be present in the current directory or on MATLAB
path.

CustomSentence accepts function name or function handle. For example, both these formats are
valid:
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• pnmea = nmeaParser('CustomSentence', {['standardnmeaMessageId1','parserFunctionName1']}

• parserFunctionHandle=@parserFunctionName1
pnmea = nmeaParser('CustomSentence', {['standardnmeaMessageId1',parserFunctionHandle]}

Note Using CustomSentence name-value pair to parse data instead of the built-in parser function
results in override of the default fields when data is parsed. For example,
nmeaParser('CustomSentence',{["RMC","parserRMC"]}) overrides the default format of
parsed data as RMC is one of the nine sentences with built-in support for parsing data.

Data Types: char | string

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MessageIDs — Message IDs of nine standard NMEA sentences with built-in support to
extract data
["RMC","GGA","GSA"] (default) | RMC | GGA | GSA | GSV | VTG | GLL | GST | ZDA | HDT

Message IDs of nine NMEA sentences with built-in support, which are compliant with the NMEA
0183 Standard, from which you want to extract data. You can specify multiple message IDs as an
array of strings to extract data from NMEA sentences.
Data Types: char | string

Usage

Syntax
[rmcData,ggaData,gsaData,vtgData,gllData,gstData,gsvData,zdaData,hdtData] =
pnmea(rawData)
[customNmeaData1,customNmeaData2] = pnmea(rawData)

Description

[rmcData,ggaData,gsaData,vtgData,gllData,gstData,gsvData,zdaData,hdtData] =
pnmea(rawData) parses data from nine standard NMEA sentences with built-in support, and returns
an array of structures, where each structure corresponds to a single Message ID. The sequence that
you specify for the output arguments must be the same sequence that you specified for the Message
IDs when creating the nmeaParser System object.

[customNmeaData1,customNmeaData2] = pnmea(rawData) parses data from two custom
NMEA sentences (either standard NMEA sentence or manufacturer-specific NMEA sentence), and
returns an array of structures, where each structure corresponds to a single Message ID. The
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sequence that you specify for the output arguments must be the same sequence that you specified in
the CustomSentence name-value pair when creating the nmeaParser System object.

Input Arguments

rawData — NMEA data as obtained from a marine electronic device
string array

NMEA data, which is compliant with NMEA standard, as obtained from a marine electronic device.
Data Types: string | char

Output Arguments

rmcData — Data extracted from RMC sentence
structure

Data extracted from an RMC sentence. The output structure contains the information parsed from an
RMC sentence along with the parsing status. If multiple RMC sentences are found in the input data,
then an array of structures is returned. For more details, see “RMC Sentences” on page 2-802.

ggaData — Data extracted from GGA sentence
structure

Data extracted from a GGA sentence. The output structure contains the information parsed from a
GGA sentence along with the parsing status. If multiple GGA sentences are found in the input data,
then an array of structures is returned. For more details, see “GGA Sentences” on page 2-803.

gsaData — Data extracted from GSA sentence
structure

Data extracted from a GSA sentence. The output structure contains the information parsed from a
GSA sentence along with the parsing status. If multiple GSA sentences are found in the input data,
then an array of structures is returned. For more details, see “GSA Sentences” on page 2-805.

vtgData — Data extracted from VTG sentence
structure

Data extracted from a VTG sentence. The output structure contains the information parsed from a
VTG sentence along with the parsing status. If multiple VTG sentences are found in the input data,
then an array of structures is returned. For more details, see “VTG Sentences” on page 2-809.

gllData — Data extracted from GLL sentence
structure

Data extracted from a GLL sentence. The output structure contains the information parsed from a
GLL sentence along with the parsing status. If multiple GLL sentences are found in the input data,
then an array of structures is returned. For more details, see “GLL Sentences” on page 2-808.

gstData — Data extracted from GST sentence
structure

Data extracted from a GST sentence. The output structure contains the information parsed from a
GST sentence along with the parsing status. If multiple GST sentences are found in the input data,
then an array of structures is returned. For more details, see “GST Sentences” on page 2-810.
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gsvData — Data extracted from GSV sentence
structure

Data extracted from a GSV sentence. The output structure contains the information parsed from a
GSV sentence along with the parsing status. The complete satellite information is available in
multiple gsvData structures. Each gsvData structure can have a maximum of four satellite
information. For more details, see “GSV Sentences” on page 2-806.

zdaData — Data extracted from ZDA sentence
structure

Data extracted from a ZDA sentence. The output structure contains the information parsed from a
ZDA sentence along with the parsing status. If multiple ZDA sentences are found in the input data,
then an array of structures is returned. For more details, see “ZDA Sentences” on page 2-808.

hdtData — Data extracted from HDT sentence
structure

Data extracted from an HDT sentence. The output structure contains the information parsed from an
HDT sentence along with the parsing status. If multiple HDT sentences are found in the input data,
then an array of structures is returned. For more details, see “HDT Sentences” on page 2-811.

customNmeaData1 — Data extracted from any standard or manufacturer-specific NMEA
sentence
structure

Data extracted from any standard or manufacturer-specific NMEA sentence. The output structure
contains the information parsed from the custom sentence along with the parsing status. If multiple
sentences of the same NMEA message type are found in the input data, then an array of structures is
returned.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Examples

Extract Data from NMEA Sentences Using MessageID Property

Extract data from any of the nine standard NMEA sentences as part of the built-in support using the
MessageID property. The NMEA data is obtained from a GNSS receiver.

Extract Data from RMC Sentence

Create an nmeaParser System Object by specifying the Message ID as "RMC".

pnmea = nmeaParser("MessageID","RMC");

Provide the RMC sentence obtained from the GNSS receiver as the input and extract data.
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unparsedRMCLine='$GNRMC,143909.00,A,5107.0020216,N,11402.3294835,W,0.036,348.3,210307,0.0,E,A*31';
rmcData = pnmea(unparsedRMCLine)

rmcData = struct with fields:
             TalkerID: "GN"
            MessageID: "RMC"
            FixStatus: 'A'
             Latitude: 51.1167
            Longitude: -114.0388
          GroundSpeed: 0.0185
      TrueCourseAngle: 348.3000
          UTCDateTime: 21-Mar-2007 14:39:09.000
    MagneticVariation: 0
        ModeIndicator: 'A'
     NavigationStatus: "NA"
               Status: 0

Extract Data from Multiple NMEA Message Types

Provide GGA, GSA, and RMC sentences as the input.

unparsedGGALine = ['$GPGGA,111357.771,5231.364,N,01324.240,E,1,12,1.0,0.0,M,0.0,M,,*69'];
unparsedGSALine = ['$GPGSA,A,3,01,02,03,04,05,06,07,08,09,10,11,12,1.0,1.0,1.0*30'];
unparsedRMCLine = ['$GPRMC,111357.771,A,5231.364,N,01324.240,E,10903,221.5,020620,000.0,W*44'];

Create a string array to include the three sentences

rawNMEAData = [unparsedGGALine ,newline,  unparsedGSALine ,newline,  unparsedRMCLine]

rawNMEAData = 
    '$GPGGA,111357.771,5231.364,N,01324.240,E,1,12,1.0,0.0,M,0.0,M,,*69
     $GPGSA,A,3,01,02,03,04,05,06,07,08,09,10,11,12,1.0,1.0,1.0*30
     $GPRMC,111357.771,A,5231.364,N,01324.240,E,10903,221.5,020620,000.0,W*44'

However, consider that you need to extract data only from GGA and GSA sentences. So create the
nmeaParser System Object 'pnmea', and specify the 'GGA' and 'GSA' Message IDs as a string array.

pnmea=nmeaParser("MessageIDs",["GGA","GSA"]); 

Specify the output arguments for all the three sentences to extract the data as structures.

[ggaData,gsaData] =  pnmea(rawNMEAData)

ggaData = struct with fields:
                          TalkerID: "GP"
                         MessageID: "GGA"
                           UTCTime: 11:13:57.771
                          Latitude: 52.5227
                         Longitude: 13.4040
                  QualityIndicator: 1
                NumSatellitesInUse: 12
                              HDOP: 1
                          Altitude: 0
                   GeoidSeparation: 0
             AgeOfDifferentialData: NaN
    DifferentialReferenceStationID: NaN
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                            Status: 0

gsaData = struct with fields:
              TalkerID: "GP"
             MessageID: "GSA"
                  Mode: "A"
               FixType: 3
    SatellitesIDNumber: [1 2 3 4 5 6 7 8 9 10 11 12]
                  PDOP: 1
                  VDOP: 1
                  HDOP: 1
              SystemID: NaN
                Status: 0

The above output shows that only GGA and GSA sentences are extracted based on the Message IDs
specified as input.

Provide another GGA sentence as an additional input, and extract data. In this case, you need not
modify the System object as the Message ID has not changed.

unparsedGGALine1='$GNGGA,001043.00,4404.14036,N,12118.85961,W,1,12,0.98,1113.0,M,-21.3,M,,*47'

unparsedGGALine1 = 
'$GNGGA,001043.00,4404.14036,N,12118.85961,W,1,12,0.98,1113.0,M,-21.3,M,,*47'

rawNMEAData = [unparsedGGALine ,newline,  unparsedGSALine ,newline,  unparsedGGALine1]

rawNMEAData = 
    '$GPGGA,111357.771,5231.364,N,01324.240,E,1,12,1.0,0.0,M,0.0,M,,*69
     $GPGSA,A,3,01,02,03,04,05,06,07,08,09,10,11,12,1.0,1.0,1.0*30
     $GNGGA,001043.00,4404.14036,N,12118.85961,W,1,12,0.98,1113.0,M,-21.3,M,,*47'

[ggaData,gsaData] =  pnmea(rawNMEAData)

ggaData=2×1 struct array with fields:
    TalkerID
    MessageID
    UTCTime
    Latitude
    Longitude
    QualityIndicator
    NumSatellitesInUse
    HDOP
    Altitude
    GeoidSeparation
    AgeOfDifferentialData
    DifferentialReferenceStationID
    Status

gsaData = struct with fields:
              TalkerID: "GP"
             MessageID: "GSA"
                  Mode: "A"
               FixType: 3
    SatellitesIDNumber: [1 2 3 4 5 6 7 8 9 10 11 12]
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                  PDOP: 1
                  VDOP: 1
                  HDOP: 1
              SystemID: NaN
                Status: 0

A status of 0 indicates that the data was parsed successfully.

Extract Data from GSV Sentence

Create an nmeaParser System Object by specifying the Message ID as "GSV".

pnmea = nmeaParser("MessageID","GSV");

Provide the GSV sentence obtained from the GNSS receiver as the input and extract data.

unparsedGSVLine='$GPGSV,3,3,10,32,69,205,41,46,47,215,39*79';
gsvData = pnmea(unparsedGSVLine)

gsvData = struct with fields:
            TalkerID: "GP"
           MessageID: "GSV"
        NumSentences: 3
      SentenceNumber: 3
    SatellitesInView: 10
         SatelliteID: [32 46]
           Elevation: [69 47]
             Azimuth: [205 215]
                 SNR: [41 39]
            SignalID: NaN
              Status: 0

Extract Data from Multiple GSV Sentences

Provide multiple GSV sentences as the input.

unparsedGSVLine1 = '$GPGSV,3,1,10,01,,,31,03,28,325,40,10,,,33,12,20,047,30*70';
unparsedGSVLine2 = '$GPGSV,3,2,10,14,88,028,42,22,39,299,48,25,,,25,31,79,289,46*49';
unparsedGSVLine3 = '$GPGSV,3,3,10,32,69,205,41,46,47,215,39*79';

Create a string array to include the three sentences.

CRLF = [char(13),newline];
unparsedGSVLines = [unparsedGSVLine1,CRLF, unparsedGSVLine2, CRLF, unparsedGSVLine3];

Create the nmeaParser System Object 'pnmea', specify the 'GSV' Message ID, and extract data.

pnmea = nmeaParser("MessageIDs","GSV");
gsvData = pnmea(unparsedGSVLines)

gsvData=3×1 struct array with fields:
    TalkerID
    MessageID
    NumSentences
    SentenceNumber
    SatellitesInView
    SatelliteID
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    Elevation
    Azimuth
    SNR
    SignalID
    Status

Read Data from NMEA Log

Read data from a sample NMEA log, so that the data can be parsed using the nmeaParser System
Object.

The sample log file is nmeaLog.nmea, which is included in this example.

f = fopen('nmeaLog.nmea');
unParsedNMEAdata = fread(f);
pnmea = nmeaParser("MessageIDs",["RMC","GGA"]);
[rmcStruct, ggaStruct] = pnmea(unParsedNMEAdata)

rmcStruct=9×1 struct array with fields:
    TalkerID
    MessageID
    FixStatus
    Latitude
    Longitude
    GroundSpeed
    TrueCourseAngle
    UTCDateTime
    MagneticVariation
    ModeIndicator
    NavigationStatus
    Status

ggaStruct=9×1 struct array with fields:
    TalkerID
    MessageID
    UTCTime
    Latitude
    Longitude
    QualityIndicator
    NumSatellitesInUse
    HDOP
    Altitude
    GeoidSeparation
    AgeOfDifferentialData
    DifferentialReferenceStationID
    Status

Extract Data Using CustomSentence Name-Value Pair

You can extract data from any NMEA sentence using the CustomSentence name-value pair. The
NMEA data to be parsed is obtained from marine electronic devices.
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Identify the Structure of NMEA Sentence and Create the Parser Function

You need to identify the structure of the NMEA sentence, as defined in the specification, and use that
information to define the structure of output data to be used in the nmeaParser System object.

For example, let us consider an example sentence with Message ID, SSS.

After identifying the structure, you create a function file that defines the parser function, fsssParser.
In the function file, you define the output data as a structure array with its fields matching the
sequence as it appears in the specification.

The Navigation Toolbox™ provides an optional pre-configured function, extractNMEASentence,
that checks if the sentence is valid and convert the fields in the sentence into string array. You can
call extractNMEASentence inside the function file. You can also use any other function instead
(which outputs a string array from unparsed data), and then call it inside the function file.

The below image shows the function file with the code, with the assumption that the fields available
in SSS sentence are TalkerID, MessageID, UTC, and LatitudeError. Refer the additional comments for
details.
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In the above sample file, you define the mapping between the fields in the structure array and the
elements of string array. For certain fields (for example, UTC time), you may need to define a
character array to map the fields.

After you include the MATLAB code as mentioned above, save the function file (fsssParser.m) in the
MATLAB path, so that you can call it to obtain parsed data using the CustomSentence name-value
pair of nmeaParser System object.

To download another sample function file parserRMB.m that is used this example, click Open Live
Script. This is a function file specific to the fields of an RMB sentence (mentioned in NMEA
Standard, Version 4.1).

Extract Data from RMB Sentence

Create an nmeaParser System Object by using the CustomSentence name-value pair and specifying
the message ID as "RMB" and the function as "parserRMB" (downloaded in the previous step).

pnmea = nmeaParser("CustomSentence",{["RMB","parserRMB"]});

Provide the RMB sentence obtained from the GNSS receiver as the input and extract data.

unparsedRMBLine='$GPRMB,A,4.08,L,EGLL,EGLM,5130.02,N,00046.34,W,004.6,213.9,122.9,A*3D';
rmbData = pnmea(unparsedRMBLine)

rmbData = struct with fields:
                        TalkerID: "GP"
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                       MessageID: "RMB"
                      DataStatus: 'A'
                 CrossTrackError: 4.0800
                DirectionToSteer: NaN
                OriginWaypointID: NaN
           DestinationWaypointID: NaN
     DestinationWaypointLatitude: '5130.02 N'
    DestinationWaypointLongitude: '00046.34 W'
              RangeToDestination: 4.6000
            BearingToDestination: 213.9000
      DestinationClosingVelocity: 122.9000
                   ArrivalStatus: 'A'
                   ModeIndicator: "NA"
                          Status: 0

Extract Data from Multiple RMB Sentences

Provide multiple RMB sentences as the input.

unparsedRMBLine1 = ['$GPRMB,A,0.66,L,003,004,4917.24,N,12309.57,W,001.3,052.5,000.5,V*20'];
unparsedRMBLine2 = ['$GPRMB,A,4.08,L,EGLL,EGLM,5130.02,N,00046.34,W,004.6,213.9,122.9,A*3D'];

Create a character array to include the two sentences

rawNMEAData = [unparsedRMBLine1 ,newline,  unparsedRMBLine2]

rawNMEAData = 
    '$GPRMB,A,0.66,L,003,004,4917.24,N,12309.57,W,001.3,052.5,000.5,V*20
     $GPRMB,A,4.08,L,EGLL,EGLM,5130.02,N,00046.34,W,004.6,213.9,122.9,A*3D'

Specify the output argument for the RMB sentence to extract the data.

[rmbData] =  pnmea(rawNMEAData)

rmbData=2×1 struct array with fields:
    TalkerID
    MessageID
    DataStatus
    CrossTrackError
    DirectionToSteer
    OriginWaypointID
    DestinationWaypointID
    DestinationWaypointLatitude
    DestinationWaypointLongitude
    RangeToDestination
    BearingToDestination
    DestinationClosingVelocity
    ArrivalStatus
    ModeIndicator
    Status

Extract Data from a Sentence with Built-in Support (RMC) and RMB Sentence

Create an nmeaParser System Object by using the MessageID property (to parse a sentence with
built-in support - RMC) and also using the CustomSentence name-value pair (specifying the message
ID as "RMB" and the function as "parserRMB" (created in a previous step)).
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pnmea = nmeaParser("MessageID","RMC","CustomSentence",{["RMB","parserRMB"]});

Provide RMC and RMB sentences as the input.

unparsedRMCLine1 = ['$GNRMC,143909.00,A,5107.0020216,N,11402.3294835,W,0.036,348.3,210307,0.0,E,A*31'];
unparsedRMBLine2 = ['$GPRMB,A,4.08,L,EGLL,EGLM,5130.02,N,00046.34,W,004.6,213.9,122.9,A*3D'];

Create a string array to include the two sentences

rawNMEAData = [unparsedRMCLine1 ,newline,  unparsedRMBLine2]

rawNMEAData = 
    '$GNRMC,143909.00,A,5107.0020216,N,11402.3294835,W,0.036,348.3,210307,0.0,E,A*31
     $GPRMB,A,4.08,L,EGLL,EGLM,5130.02,N,00046.34,W,004.6,213.9,122.9,A*3D'

Specify the output argument for the RMB sentence to extract the data.

[rmcdata,rmbData] =  pnmea(rawNMEAData)

rmcdata = struct with fields:
             TalkerID: "GN"
            MessageID: "RMC"
            FixStatus: 'A'
             Latitude: 51.1167
            Longitude: -114.0388
          GroundSpeed: 0.0185
      TrueCourseAngle: 348.3000
          UTCDateTime: 21-Mar-2007 14:39:09.000
    MagneticVariation: 0
        ModeIndicator: 'A'
     NavigationStatus: "NA"
               Status: 0

rmbData = struct with fields:
                        TalkerID: "GP"
                       MessageID: "RMB"
                      DataStatus: 'A'
                 CrossTrackError: 4.0800
                DirectionToSteer: NaN
                OriginWaypointID: NaN
           DestinationWaypointID: NaN
     DestinationWaypointLatitude: '5130.02 N'
    DestinationWaypointLongitude: '00046.34 W'
              RangeToDestination: 4.6000
            BearingToDestination: 213.9000
      DestinationClosingVelocity: 122.9000
                   ArrivalStatus: 'A'
                   ModeIndicator: "NA"
                          Status: 0
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Extract Data from a Manufacturer-specific Sentence Using CustomSentence Name-Value
Pair

1 Identify Structure of Manufacturer-specific Sentence and Create Function File with
Parser Function

The structure of NMEA sentence to be parsed is available in the specification of the device from
the manufacturer. You need to identify the structure and use the information to define the
structure of output data to be used in the nmeaParser System object.

For example, the structure of the NMEA sentence from a hardware manufacturer may look like
this:

$PMMCZ,hhmmss.ss,Latitude,N,Longitude,E,NavSatellite,DR*hh<CR><LF>

Here, P denotes that the sentence is manufacturer-specific, MMC is the manufacturer mnemonic
code, and Z is the sentence type. Each field thereafter indicates a specific data (position, velocity,
time, and so on). Some manufacturers use two characters for the sentence type, followed by the
data fields.

After identifying the structure, create the parser function, parserMMCZ, using the optional
extractNMEASentence function, as shown below (you can also use other functions to extract
the unparsed data to strings, instead of extractNMEASentence).

function OutputData = parserMMCZ(unparsedData, MessageID)
 
  OutputData = struct("MessageID",MessageID,...
  "UTC","NA",...
  "Latitude",NaN,...
  "Longitude",NaN,...
  "NavigationSatellites",NaN,...
  "Status",uint8(1));
 
  [isValid, splitString] = extractNMEASentence(unparsedData, MessageID);
  
if(isValid)
    OutputData.MessageID = splitString(1);
    temp = char(splitString(2));
    utcOutput = [temp(1:2), ':', temp(3:4), ':', temp(5:6)];
    OutputData.UTC = utcOutput;
    OutputData.Latitude = str2double(splitString{3});
    OutputData.Longitude = str2double(splitString{5});
    OutputData.NavigationSatellites = str2double(splitString{7});
    OutputData.Status = uint8(0);
  end
end

Save parserMMCZ.m in the MATLAB path.
2 Extract Data from Manufacturer-specific Sentence

Create an nmeaParser System Object by using the CustomSentence name-value pair and
specifying the message ID as "MMCZ" and the function as "parserMMCZ" (created in the
previous step).

pnmea = nmeaParser("CustomSentence",{["MMCZ","parserMMCZ"]});

Provide an MMC sentence obtained from the device as the input and extract data:
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unparsedMMCLine='$PMMCZ,225444,4917.24,N,00046.34,E,3,DR*7C';
mmcData = pnmea(unparsedMMCLine)

mmcData = 

  struct with fields:

               MessageID: "MMCZ"
                     UTC: '22:54:44'
                Latitude: 4.9172e+03
               Longitude: 46.3400
    NavigationSatellites: 3
                  Status: 0

More About
Status Field

The status field displayed along with the extracted values in each output structure can be used to
determine the parsing status:

• Status: 0 — Sentence is valid (checksum validation is successful and the extracted data is as
per the requested Message ID)

• Status: 1 — Checksum of the sentence to be parsed is invalid
• Status: 2 — The requested sentence is not found in the input data

Note If a value is not available in the input sentence, the corresponding output value is displayed as
“NA” for string values and "NaN" for numeric values.

RMC Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
MessageID Type of NMEA message – RMC

Data type: string
FixStatus Possible values:

• A – Data is valid
• V – Navigation receiver warning

Data type: string
Latitude Latitude in degrees. North is considered positive.

Data type: double
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Name of field displayed in the output
structure after parsing is complete

Description

Longitude Longitude in degrees. East is considered positive.

Data type: double
GroundSpeed Speed over ground in meters per second (m/s)

Data type: double
TrueCourseAngle Course over ground in degrees.

Data type: double
UTCDateTime UTC date and time

Data type: datetime
MagneticVariation Magnetic variation value. Direction W is

considered as negative

Data type: double
ModeIndicator Possible values:

• N – No fix
• E – Estimated/Dead reckoning fix
• A – Autonomous GNSS fix
• D – Differential GNSS fix
• F – RTK float
• M – Manual input mode
• P – Precision mode

Data type: string
NavigationStatus Possible values:

• S – Safe
• C – Caution
• U = Unsafe
• V = Navigational Status not valid

Data type: string

GGA Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
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Name of field displayed in the output
structure after parsing is complete

Description

MessageID Type of NMEA message – GGA

Data type: string
UTCTime UTC Time (hhmmss.ss)

Data type: datetime
Latitude Latitude in degrees. North is considered positive.

Data type: double
Longitude Longitude in degrees. East is considered positive.

Data type: double
QualityIndicator Possible values:

• 0 – No fix
• 1 – Fix Valid
• 2 – Differential GPS, SPS mode fix
• 4 – RTK fix
• 5 – RTK float
• 6 – Estimated/Dead reckoning fix
• 7 – Manual input mode
• 8 – Simulator mode

Data type: uint8
NumSatellitesInUse Number of satellites used. This could be different

from number of satellites in view.

Data type: uint8
HDOP Horizontal dilution of precision

Data type: double
Altitude Altitude above mean sea level in meters

Data type: double
GeoidSeparation Difference between ellipsoid and mean sea level

in meters

Data type: double
AgeOfDifferentialData Age of differential corrections

Data type: double
DifferentialReferenceStationID ID of station providing differential corrections

Data type: uint16
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GSA Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
MessageID Type of NMEA message – GSA

Data type: string
Mode Possible values:

• M – Manually set to operate in 2-D or 3-D mode
• A – Automatic switching between 2-D or 3-D

mode

Data type: string
FixType Possible values:

• 1 – No fix
• 2 – 2-D fix
• 3 – 3-D fix

Data type: uint8
SatellitesIDNumber Satellite numbers (array of 12 bytes). Empty

fields will be displayed as Nan.

Data type: uint8
PDOP Position dilution of precision

Data type: double
VDOP Vertical dilution of precision

Data type: double
HDOP Horizontal Dilution of Precision

Data type: double
SystemID NMEA defined GNSS System ID

Data type: uint8
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GSV Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
MessageID Type of NMEA message – GSV

Data type: string
NumSentences Total number of sentences. The complete satellite

information is available in multiple GSV
sentences. This field indicates the total number of
gsvData structures containing the complete
information per update.

Data type: double
SentenceNumber Sentence number of the currently parsed GSV

line

Data type: double
SatellitesInView Total number of satellites in view

Data type: double
SatelliteID Satellite ID numbers specified as a row vector of

size 1-by-N, where N is the number of satellite
information available in one sentence. The
maximum allowed valued of N is 4.

Data type: double
Elevation Elevation in degrees, specified as a row vector of

size 1-by-N, where N is the number of satellite
information available in one sentence. The
maximum allowed valued of N is 4.

The maximum value of Elevation is 90 degrees.

Data type: double
Azimuth Azimuth in degrees, specified as a row vector of

size 1-by-N, where N is the number of satellite
information available in one sentence. The
maximum allowed valued of N is 4.

The range of Azimuth value is [0-359] degrees.

Data type: double
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Name of field displayed in the output
structure after parsing is complete

Description

SNR Signal-to-noise ratio in dB-Hz, specified as a row
vector of size 1-by-N, where N is the number of
satellite information available in one sentence.
The maximum allowed valued of N is 4.

The range of SNR value is [0,99] dB.

Data type: double
SignalID Signal ID corresponding to the SatelliteID.

This value is displayed only if the sentences
conform to NMEA 0183 Standard, Version 4.1.
Otherwise, the value displayed is NaN.

Data type: double

The possible values of SignalID and the corresponding Signal Channel are listed in this table.

System TalkerID
displayed in the
parsed data

SatelliteID SignalID Signal Channel

GPS GP • 1 – 32 (for GPS)
• 33 – 64 (for

SBAS)

0 All signals
1 L1 C/A
2 L1 P (Y)
3 L1 M
4 L2 P (Y)
5 L2C-M
6 L2C-L
7 L5-I
8 L5-Q

GLONASS GL • 33 – 64 (for
SBAS)

• 65 – 99 (for
GLONASS)

0 All signals
1 G1 C/A
2 G1 P
3 G2 C/A
4 GLONASS (M) G2

P
GALILEO GA • 1 – 36 (for

Galileo
satellites)

• 37 – 64 (for
Galileo SBAS)

0 All signals
1 E5a
2 E5b
3 E5a and E5b
4 E6-A
5 E6-BC

 nmeaParser

2-807



System TalkerID
displayed in the
parsed data

SatelliteID SignalID Signal Channel

6 L1-A
7 L1-BC

ZDA Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
MessageID Type of NMEA message – ZDA

Data type: string
UTCTime UTC Time

Data type: datetime
UTCDay UTC Day

Data type: uint8
UTCMonth UTC Month

Data type: uint8
UTCYear UTC Year

Data type: uint8
LocalZoneHours Local zone hours ranging from 00 to +/-13

Data type: int8
LocalZoneMinutes Local zone minutes ranging from 00 to 59

Data type: uint8

GLL Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
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Name of field displayed in the output
structure after parsing is complete

Description

MessageID Type of NMEA message – GLL

Data type: string
Latitude Latitude in degrees. North is considered positive.

Data type: double
Longitude Longitude in degrees. East is considered positive.

Data type: double
UTCTime UTC Time

Data type: datetime
DataValidity Data validity status:

• A – Data valid
• V – Data invalid

Data type: string
PositioningMode Possible values:

• N – Data not Valid
• E – Estimated/Dead reckoning mode
• A – Autonomous mode
• D – Differential mode
• S – Simulator Mode
• M – Manual input mode

Data type: string

VTG Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
MessageID Type of NMEA message – VTG

Data type: string
TrueCourseAngle Course over ground (true) in degrees

Data type: double
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Name of field displayed in the output
structure after parsing is complete

Description

MagneticCourseAngle Course over ground (magnetic) in degrees

Data type: double
GroundSpeed Speed over ground in meters per second (m/s)

Data type: double
ModeIndicator Possible values:

• N – No fix
• E – Estimated/Dead reckoning mode
• A – Autonomous mode
• D – Differential mode
• M – Manual input mode
• N – Data not valid
• P – Precise
• S – Simulator mode

Data type: string

GST Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
MessageID Type of NMEA message – GST

Data type: string
UTCTime UTC Time

Data type: datetime
RMSStdDeviationOfRanges RMS value of the standard deviation of the

ranges in meters.

Data type: double
StdDeviationSemiMajorAxis Standard deviation of semi-major axis in meters

Data type: double
StdDeviationSemiMinorAxis Standard deviation of semi-minor axis in meters

Data type: double
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Name of field displayed in the output
structure after parsing is complete

Description

OrientationSemiMajorAxis Orientation of semi-major axis, in degrees

Data type: double
StdDeviationLatitudeError Standard deviation of latitude error, in meters

Data type: double
StdDeviationLongitudeError Standard deviation of longitude error in meters

Data type: double
StdDeviationAltitudeError Standard deviation of altitude error in meters

Data type: double

HDT Sentences

Name of field displayed in the output
structure after parsing is complete

Description

TalkerID Identify the type of device that transmits data.
For example, for a GPS receiver, the TalkerID is
GP

Data type: string
MessageID Type of NMEA message – HDT

Data type: string
TrueHeadingAngle Heading in degrees with respect to true north

Data type: double

Version History
Introduced in R2020b

See Also
skyplot | extractNMEASentence

Topics
“Plot Position of GNSS Receiver Using Live NMEA Data or NMEA Log File”
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navGraph
Create navGraph object

Description
The navGraph object is a graph data structure for Navigation Toolbox™ that aids search-based
planners.

The navGraph object enables you to create a graph and perform computations on it. The navGraph
object supports functionalities that are frequently used by graph search algorithms. You can easily
implement Dijkstra, A*, or variants using navGraph.

In graph theory, states represent nodes and links represent edges. The states and links are
represented by their corresponding row index in the table. The navGraph is a directed graph that
currently supports unique names, with no self-loops in edges.

Creation
Syntax
graph = navGraph(states,links)
graph = navGraph( ___ ,Name=Value)
graph = navGraph(digraph)
graph = navGraph(stateTable,linkTable)
graph = navGraph( ___ ,Name=Value)

Description

graph = navGraph(states,links) creates a navGraph object with nodes specified as a matrix
of states and edges specified as a matrix of links (or end nodes). The states and links inputs set
the values of the States and Links properties, respectively.

graph = navGraph( ___ ,Name=Value) specifies additional parameters using the Name and
Weight name-value arguments in addition to the argument from the previous syntax.

graph = navGraph(digraph) creates a navGraph object from the data present in the specified
digraph object.

graph = navGraph(stateTable,linkTable) creates a navGraph object with the specified state
table and link table, which contain the metadata for the graph. The stateTable and linkTable
inputs set the value of the States and Links properties, respectively.

graph = navGraph( ___ ,Name=Value) specifies additional parameters using the
LinkWeightFcn name-value argument in addition to the arguments from the previous syntaxes.

Input Arguments

states — State vectors
matrix
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State vectors, specified as a matrix in which each row represents a state vector.
Example: [9 10 0.42; 10 10 0.92; 7 10 0.65]
Data Types: double

links — Link vectors
matrix

Link vectors, specified as a matrix in which each row represents a pair of state IDs as a two-element
row vector of positive integers.
Example: [6 1; 7 7; 6 6]
Data Types: double

digraph — Directed graph
digraph object

Directed graph, specified as a digraph object. The first column must be StateVector in the
digraph object node table.

stateTable — State table of graph nodes
table

State table of graph nodes, specified as a table with rows containing variables describing the nodes
(states) of the graph. The first column must be StateVector, which represents the state vectors of
the environment. You can optionally include other metadata columns, such as a Name column
representing the names of the states.
Example: table([9 10 0.42; 10 10 0.92; 7 10
0.65],VariableNames={'StateVector'})

Data Types: table

linkTable — Link table of graph edges
table

Link table of graph edges, specified as a table with rows containing variables describing edges (links)
of the graph. The first column must be EndStates, which represents the connecting states. You can
optionally include other metadata columns, such as a Weight column representing the costs of
traversing the links.
Example: table([6 1; 7 7; 6 6],VariableNames={'EndStates'})
Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: LinkWeightFcn=@nav.algs.distanceManhattan

Name — State names
column vector of characters | column vector of strings | cell array of characters
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State names, specified as a column vector of characters, column vector of strings, or cell array of
characters. The number of rows must be equal to the number of states, and the value of each row
must be unique.
Example: Name=['A'; 'B'; 'C']
Example: Name=["A"; "B"; "C"]
Example: Name={'A'; 'B'; 'C'}
Data Types: char | string | cell

Weight — Link weights
numeric column vector

Link weights, specified as a numeric column vector. The number of rows must be equal to the number
of links.
Example: Weight=[2.22; 24.41; 42.76]
Data Types: single | double

LinkWeightFcn — Link weights function
@nav.algs.distanceEuclidean (default) | @nav.algs.distanceManhattan |
@nav.algs.distanceEuclideanSquared | function handle

Link weights function, specified as a function handle that computes the link weights in the absence of
the Weight argument. The LinkWeightFcn argument sets the value of the LinkWeightFcn property.

The function handle must be one of these types:

1 COST = @(STATE1,STATE2)fcn, where STATE1 and STATE2 are state vectors.
2 COST = @(STATEID1,STATEID2,GRAPHOBJ)fcn, where STATEID1 and STATEID2 are state

indices.

STATE1 and STATEID1 can have a single row or N rows, while STATE2 and STATEID2 must have N
rows.

Note For best performance, vectorize the function handle.

Example: LinkWeightFcn=@nav.algs.distanceManhattan
Data Types: function_handle

Properties
States — State table of graph nodes
table

This property is read-only.

State table of graph nodes, specified as a table with rows containing variables describing the nodes
(states) of the graph. The first column must be StateVector, which represents the state vectors of
the environment. You can optionally include other metadata columns, such as a Name column
representing the names of the states.
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Data Types: table

Links — Link table of graph edges
table

This property is read-only.

Link table of graph edges, specified as a table with rows containing variables describing edges (links)
of the graph. The first column must be EndStates, which represents the connecting states. You can
optionally include other metadata columns, such as a Weight column representing the costs of
traversing the links.
Data Types: table

LinkWeightFcn — Link weight function
@nav.algs.distanceEuclidean (default) | @nav.algs.distanceManhattan |
@nav.algs.distanceEuclideanSquared | function handle

Link weight function, specified as a function handle that computes the cost of traversing the link.

The function handle must be one of these types:

1 COST = @(STATE1,STATE2)fcn, where STATE1 and STATE2 are state vectors.
2 COST = @(STATEID1,STATEID2,GRAPHOBJ)fcn, where STATEID1 and STATEID2 are state

indices.

STATE1 and STATEID1 can have a single row or N rows, while STATE2 and STATEID2 must have N
rows.

Note For best performance, vectorize the function handle.

Example: graph.LinkWeightFcn=@nav.algs.distanceManhattan
Data Types: function_handle

Object Functions
findlink Find IDs of links
findstate Find IDs of states
index2state Find state vectors of state indices
state2index Find indices for queried state vectors
successors Find successive state indices and costs
show Plot graph representation
copy Create deep copy of navGraph object

Examples

Create navGraph Object with State and Link Tables

Load data for states and links.

load navGraphData.mat
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Create state and link tables.

stateTable = table(data.states,data.names,data.numLanes, ...
    VariableNames=["StateVector","Name","Lanes"]);
linkTable = table(data.links,data.linkWt,data.curvature, ...
    VariableNames=["EndStates","Weight","Curvature"]);

Create a navGraph object from the state and link tables.

graphObj = navGraph(stateTable,linkTable);

Create a deep copy of the navGraph object.

graph2 = copy(graphObj)

graph2 = 
  navGraph with properties:

           States: [8x3 table]
            Links: [7x3 table]
    LinkWeightFcn: @nav.algs.distanceEuclidean

Visualize the navGraph object.

show(graphObj)
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Find the link IDs of two state pairs. The function returns the link ID for the state pair ["G","A"].
However, it returns 0 as the link ID for the state pair ["C","D"] as the link does not exist in the
navGraph object.

linkIDS = findlink(navGraphObj,["G","A"; "C","D"])

linkIDS = 2×1

     5
     0

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To use LinkWeightFcn in code generation workflow, this property must be set to a function handle
during object creation.

• DynamicMemoryAllocation="off" is not supported.

See Also
Objects
plannerAStar | digraph

Functions
findlink | findstate | index2state | state2index | successors | show | copy
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navPath
Planned path

Description
The navPath object stores paths that are typically created by geometric path planners. Path points
are stored as states in an associated state space.

Creation

Syntax
path = navPath
path = navPath(space)
path = navPath(space,states)
path = navPath(space,states,maxNumStates)

Description

path = navPath creates a path object, path, using the SE(2) state space with default settings.

path = navPath(space) creates a path object with state space specified by space. The space
input also sets the value of the StateSpace property.

path = navPath(space,states) allows you to initialize the path with state samples given by
states. Specify states as a matrix of state samples. States that are outside of the StateBounds of
the state space object are reduced to the bounds. The states input also sets the value of the States
property.

path = navPath(space,states,maxNumStates) creates a path object with the specified
maximum number of states allowed in path maxNumStates. The maxNumStates input also sets the
value of the MaxNumStates property.

Properties
StateSpace — State space for path
stateSpaceSE2 (default) | state space object

State space for the path, specified as a state space object. Each state in the path is a sample from the
specified state space. You can use objects such as stateSpaceSE2, stateSpaceDubins,
stateSpaceReedsShepp, or stateSpaceSE3 as a state space object. You can also customize a state
space object using the nav.StateSpace object.

States — States of path
zeros(0,StateSpace.NumStateVariables) (default) | real-valued M-by-N matrix
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States of the path, specified as a real-valued M-by-N matrix. M is the number of states in the path,
and N is the dimension of each state. You can only set this property during object creation or using
the append function.
Example: [0 0 0; 1 1 0; 2 2 0]
Example: [0 0 0 1 0 0 0; 1 1 1 1 0 0 0; 2 2 1 1 0 0 0]
Data Types: double

NumStates — Number of state samples in path
0 (default) | nonnegative integer

This property is read-only.

Number of state samples in the path, specified as a nonnegative integer. The number is the same as
the number of rows of the state matrix specified in the States property.
Data Types: double

MaxNumStates — Maximum number of states allowed in path
inf (default) | positive scalar integer

Maximum number of states allowed in the path, specified as a positive scalar integer.

When specified as inf, the path is explicitly resizeable. For code generation,
DynamicMemoryAllocation must be set to 'On'.

When specified as a positive scalar integer, the maximum number of states in the object is limited to
the specified value. Use this to create a resizeable path when enabling DynamicMemoryAllocation
is not allowed during code generation.
Data Types: double

Object Functions
append Add states to end of path
copy Create copy of path object
interpolate Interpolate points along path
pathLength Length of path

Examples

Create navPath Based on Multiple Waypoints

Create a navPath object based on multiple waypoints in a Dubins space.

dubinsSpace = stateSpaceDubins([0 25; 0 25; -pi pi])

dubinsSpace = 
  stateSpaceDubins with properties:

   SE2 Properties
                 Name: 'SE2 Dubins'
          StateBounds: [3x2 double]
    NumStateVariables: 3

 navPath

2-819



   Dubins Vehicle Properties
     MinTurningRadius: 1

pathobj = navPath(dubinsSpace)

pathobj = 
  navPath with properties:

      StateSpace: [1x1 stateSpaceDubins]
          States: [0x3 double]
       NumStates: 0
    MaxNumStates: Inf

waypoints = [8 10 pi/2;
             7 14 pi/4;
             10 17 pi/2;
             10 10 -pi];
append(pathobj,waypoints)

Interpolate that path so that it contains exactly 250 points.

interpolate(pathobj,250)

Visualize the interpolated path and the original waypoints.

figure
grid on
axis equal
hold on
plot(pathobj.States(:,1),pathobj.States(:,2),".b")
plot(waypoints(:,1),waypoints(:,2),"*r","MarkerSize",10)

2 Classes

2-820



Calculate length of path.

len = pathLength(pathobj);
disp("Path length = " + num2str(len))

Path length = 19.4722

Create navPath Based on Multiple Waypoints in SE(3) State Space

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a navPath object based on multiple waypoints in an SE(3) state space.
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path = navPath(ss);
waypoints = [40 180 15 0.7 0.2 0 0.1;
             55 120 20 0.6 0.2 0 0.1;
             100 100 25 0.5 0.2 0 0.1;
             130 90 30 0.4 0 0.1 0.6;
             150 33 35 0.3 0 0.1 0.6];
append(path,waypoints)

Interpolate that path so that it contains exactly 250 points.

interpolate(path,250)

Visualize the interpolated path and the original waypoints.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(waypoints(1,1),waypoints(1,2),waypoints(1,3),"g","filled")
% Goal state
scatter3(waypoints(end,1),waypoints(end,2),waypoints(end,3),"r","filled")
% Intermediate waypoints
scatter3(waypoints(2:end-1,1),waypoints(2:end-1,2), ...
         waypoints(2:end-1,3),"y","filled")
% Path
plot3(path.States(:,1),path.States(:,2),path.States(:,3), ...
      "r-",LineWidth=2)
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Calculate length of path.

len = pathLength(path);
disp("Path length = " + num2str(len))

Path length = 204.1797

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
stateSpaceSE2 | stateSpaceReedsShepp | stateSpaceDubins | stateSpaceSE3 |
pathmetrics

Classes
nav.StateSpace

Functions
append | copy | interpolate | pathLength
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append
Add states to end of path

Syntax
append(path,states)

Description
append(path,states) appends the state samples, states, to the end of the path.

Examples

Create navPath Based on Multiple Waypoints

Create a navPath object based on multiple waypoints in a Dubins space.

dubinsSpace = stateSpaceDubins([0 25; 0 25; -pi pi])

dubinsSpace = 
  stateSpaceDubins with properties:

   SE2 Properties
                 Name: 'SE2 Dubins'
          StateBounds: [3x2 double]
    NumStateVariables: 3

   Dubins Vehicle Properties
     MinTurningRadius: 1

pathobj = navPath(dubinsSpace)

pathobj = 
  navPath with properties:

      StateSpace: [1x1 stateSpaceDubins]
          States: [0x3 double]
       NumStates: 0
    MaxNumStates: Inf

waypoints = [8 10 pi/2;
             7 14 pi/4;
             10 17 pi/2;
             10 10 -pi];
append(pathobj,waypoints)

Interpolate that path so that it contains exactly 250 points.

interpolate(pathobj,250)
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Visualize the interpolated path and the original waypoints.

figure
grid on
axis equal
hold on
plot(pathobj.States(:,1),pathobj.States(:,2),".b")
plot(waypoints(:,1),waypoints(:,2),"*r","MarkerSize",10)

Calculate length of path.

len = pathLength(pathobj);
disp("Path length = " + num2str(len))

Path length = 19.4722

Create navPath Based on Multiple Waypoints in SE(3) State Space

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.
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inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a navPath object based on multiple waypoints in an SE(3) state space.

path = navPath(ss);
waypoints = [40 180 15 0.7 0.2 0 0.1;
             55 120 20 0.6 0.2 0 0.1;
             100 100 25 0.5 0.2 0 0.1;
             130 90 30 0.4 0 0.1 0.6;
             150 33 35 0.3 0 0.1 0.6];
append(path,waypoints)

Interpolate that path so that it contains exactly 250 points.

interpolate(path,250)

Visualize the interpolated path and the original waypoints.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(waypoints(1,1),waypoints(1,2),waypoints(1,3),"g","filled")
% Goal state
scatter3(waypoints(end,1),waypoints(end,2),waypoints(end,3),"r","filled")
% Intermediate waypoints
scatter3(waypoints(2:end-1,1),waypoints(2:end-1,2), ...
         waypoints(2:end-1,3),"y","filled")
% Path
plot3(path.States(:,1),path.States(:,2),path.States(:,3), ...
      "r-",LineWidth=2)
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Calculate length of path.

len = pathLength(path);
disp("Path length = " + num2str(len))

Path length = 204.1797

Input Arguments
path — path object
navPath object

Path object, specified as a navPath object.

states — states of path
real-valued M-by-N matrix

States of the path, specified as a real-valued M-by-N matrix. M is the number of states appended to
the path, and N is the dimension of each state. The dimension of each state is governed by the state
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space defined in the StateSpace property of navPath. States outside of the StateBounds of the
state space of path are pruned to the bounds.
Example: [0 0 0; 1 1 0; 2 2 0]
Example: [0 0 0 1 0 0 0; 1 1 1 1 0 0 0; 2 2 1 1 0 0 0]
Data Types: double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navPath

Functions
copy | interpolate | pathLength

 append

2-829



interpolate
Interpolate points along path

Syntax
interpolate(path,numStates)

Description
interpolate(path,numStates) inserts a number of states in the path and ensures the
distribution of all the points in the path to be uniform. The function preserves all the existing states in
the path. The value of numStates must be greater than or equal to the number of existing states in
the path.

Examples

Create navPath Based on Multiple Waypoints

Create a navPath object based on multiple waypoints in a Dubins space.

dubinsSpace = stateSpaceDubins([0 25; 0 25; -pi pi])

dubinsSpace = 
  stateSpaceDubins with properties:

   SE2 Properties
                 Name: 'SE2 Dubins'
          StateBounds: [3x2 double]
    NumStateVariables: 3

   Dubins Vehicle Properties
     MinTurningRadius: 1

pathobj = navPath(dubinsSpace)

pathobj = 
  navPath with properties:

      StateSpace: [1x1 stateSpaceDubins]
          States: [0x3 double]
       NumStates: 0
    MaxNumStates: Inf

waypoints = [8 10 pi/2;
             7 14 pi/4;
             10 17 pi/2;
             10 10 -pi];
append(pathobj,waypoints)

Interpolate that path so that it contains exactly 250 points.
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interpolate(pathobj,250)

Visualize the interpolated path and the original waypoints.

figure
grid on
axis equal
hold on
plot(pathobj.States(:,1),pathobj.States(:,2),".b")
plot(waypoints(:,1),waypoints(:,2),"*r","MarkerSize",10)

Calculate length of path.

len = pathLength(pathobj);
disp("Path length = " + num2str(len))

Path length = 19.4722

Create navPath Based on Multiple Waypoints in SE(3) State Space

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;
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Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a navPath object based on multiple waypoints in an SE(3) state space.

path = navPath(ss);
waypoints = [40 180 15 0.7 0.2 0 0.1;
             55 120 20 0.6 0.2 0 0.1;
             100 100 25 0.5 0.2 0 0.1;
             130 90 30 0.4 0 0.1 0.6;
             150 33 35 0.3 0 0.1 0.6];
append(path,waypoints)

Interpolate that path so that it contains exactly 250 points.

interpolate(path,250)

Visualize the interpolated path and the original waypoints.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(waypoints(1,1),waypoints(1,2),waypoints(1,3),"g","filled")
% Goal state
scatter3(waypoints(end,1),waypoints(end,2),waypoints(end,3),"r","filled")
% Intermediate waypoints
scatter3(waypoints(2:end-1,1),waypoints(2:end-1,2), ...
         waypoints(2:end-1,3),"y","filled")
% Path
plot3(path.States(:,1),path.States(:,2),path.States(:,3), ...
      "r-",LineWidth=2)
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Calculate length of path.

len = pathLength(path);
disp("Path length = " + num2str(len))

Path length = 204.1797

Input Arguments
path — Path object
navpath object

Path object, specified as a navPath object.

numStates — Number of states
nonnegative integer

Number of states inserted in the path, specified as a nonnegative integer. Its value must be greater
than or equal to the number of existing states in the path.
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Data Types: double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navPath

Functions
append | copy | pathLength
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pathLength
Length of path

Syntax
len = pathLength(path)

Description
len = pathLength(path) returns the total length of path by summing the distances between
every sequential pair of states in the path. The function uses the state space object associated with
path to calculate the distance between each state pair.

Examples

Create navPath Based on Multiple Waypoints

Create a navPath object based on multiple waypoints in a Dubins space.

dubinsSpace = stateSpaceDubins([0 25; 0 25; -pi pi])

dubinsSpace = 
  stateSpaceDubins with properties:

   SE2 Properties
                 Name: 'SE2 Dubins'
          StateBounds: [3x2 double]
    NumStateVariables: 3

   Dubins Vehicle Properties
     MinTurningRadius: 1

pathobj = navPath(dubinsSpace)

pathobj = 
  navPath with properties:

      StateSpace: [1x1 stateSpaceDubins]
          States: [0x3 double]
       NumStates: 0
    MaxNumStates: Inf

waypoints = [8 10 pi/2;
             7 14 pi/4;
             10 17 pi/2;
             10 10 -pi];
append(pathobj,waypoints)

Interpolate that path so that it contains exactly 250 points.
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interpolate(pathobj,250)

Visualize the interpolated path and the original waypoints.

figure
grid on
axis equal
hold on
plot(pathobj.States(:,1),pathobj.States(:,2),".b")
plot(waypoints(:,1),waypoints(:,2),"*r","MarkerSize",10)

Calculate length of path.

len = pathLength(pathobj);
disp("Path length = " + num2str(len))

Path length = 19.4722

Create navPath Based on Multiple Waypoints in SE(3) State Space

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

2 Classes

2-836



Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a navPath object based on multiple waypoints in an SE(3) state space.

path = navPath(ss);
waypoints = [40 180 15 0.7 0.2 0 0.1;
             55 120 20 0.6 0.2 0 0.1;
             100 100 25 0.5 0.2 0 0.1;
             130 90 30 0.4 0 0.1 0.6;
             150 33 35 0.3 0 0.1 0.6];
append(path,waypoints)

Interpolate that path so that it contains exactly 250 points.

interpolate(path,250)

Visualize the interpolated path and the original waypoints.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(waypoints(1,1),waypoints(1,2),waypoints(1,3),"g","filled")
% Goal state
scatter3(waypoints(end,1),waypoints(end,2),waypoints(end,3),"r","filled")
% Intermediate waypoints
scatter3(waypoints(2:end-1,1),waypoints(2:end-1,2), ...
         waypoints(2:end-1,3),"y","filled")
% Path
plot3(path.States(:,1),path.States(:,2),path.States(:,3), ...
      "r-",LineWidth=2)
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Calculate length of path.

len = pathLength(path);
disp("Path length = " + num2str(len))

Path length = 204.1797

Input Arguments
path — Path object
navpath object

Path object, specified as a navPath object.

Output Arguments
len — Length of path
nonnegative scalar
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Length of the path, returned as a nonnegative scalar in meters.
Data Types: double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navPath

Functions
append | copy | interpolate
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navPathControl
Path representing control-based kinematic trajectory

Description
The navPathControl object stores paths that are typically created by control-based path planners
like the plannerControlRRT object. The navPathControl object represents paths as a sequence
of states, controls, durations, and targets. This object associates each path with a specific state
propagator, which propagates the control commands to determine the resulting states.

This object specifies states and targets in the path in the state space of propagator. Controls are
outputs from a controller that are used to update your systems state during propagation. This object
applies each control for an associated duration. Controls can be reference signals or direct inputs to
an integrator depending on your system design.

Creation

Syntax
pathObj = navPathControl(propagator)
pathObj = navPathControl(propagator,states,controls,targets,durations)

Description

pathObj = navPathControl(propagator) creates a path object with the specified state
propagator. The propagator argument specifies the StatePropagator

pathObj = navPathControl(propagator,states,controls,targets,durations)
initializes the path with a sequence of specified states, controls, targets, and durations. The input
states must have one more row than the other input vectors and matrices.

Properties
StatePropagator — State propagator
object of subclass of nav.StatePropagator

State propagator, specified as an object of a subclass of nav.StatePropagator. For example, the
mobileRobotPropagator object represents the state space and kinematic control behavior for
different mobile robot vehicle models.
Data Types: double

States — Series of states for path
[] (default) | n-by-m matrix

Series of states for the path, specified as an n-by-m matrix. n is the number of points in the path. m is
the dimension of the state vector.
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You can specify this property at object creation by using the states argument.
Data Types: double

Controls — Control input for each state
[] (default) | (n–1)-by-m matrix

Control input for each state, specified as an (n–1)-by-m matrix. n is the number of points in the path.
m is the dimension of the state vector.

You can specify this property at object creation by using the controls argument.
Data Types: double

TargetStates — Target state for each state in path
[] (default) | (n–1)-by-m matrix

Target state for each state in the path, specified as an (n–1)-by-m matrix. n is the number of points in
the path. m is the dimension of the state vector.

You can specify this property at object creation by using the targets argument.
Data Types: double

Durations — Duration of each control input
[] (default) | (n–1)-element vector in seconds

Duration of each control input, specified as an (n–1)-element vector in seconds. n is the number of
points in the path.

You can specify this property at object creation by using the durations argument.
Data Types: double

NumStates — Number of states in path
0 (default) | nonnegative integer

Number of states in the path, specified as a positive integer.
Data Types: double

NumSegments — Number of segments between states
0 (default) | nonnegative integer

Number of segments between states in the path, specified as a positive integer, which must be one
less than the number of states.
Data Types: double

Object Functions
append Add states to end of path
interpolate Interpolate path based on propagator step size
pathDuration Total elapsed duration of control path

Examples
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Plan Kinodynamic Path with Controls for Mobile Robot

Plan control paths for a bicycle kinematic model with the mobileRobotPropagator object. Specify
a map for the environment, set state bounds, and define a start and goal location. Plan a path using
the control-based RRT algorithm, which uses a state propagator for planning motion and the required
control commands.

Set State and State Propagator Parameters

Load a ternary map matrix and create an occupancyMap object. Create the state propagator using
the map. By default, the state propagator uses a bicycle kinematic model.

load('exampleMaps','ternaryMap')
map = occupancyMap(ternaryMap,10);

propagator = mobileRobotPropagator(Environment=map); % Bicycle model

Set the state bounds on the state space based on the map world limits.

propagator.StateSpace.StateBounds(1:2,:) = ...
                    [map.XWorldLimits; map.YWorldLimits];

Plan Path

Create the path planner from the state propagator.

planner = plannerControlRRT(propagator);

Specify the start and goal states.

start = [10 15 0];
goal  = [40 30 0];

Plan a path between the states. For repeatable results, reset the random number generator before
planning. The plan function outputs a navPathControl object, which contains the states, control
commands, and durations.

rng("default")
path = plan(planner,start,goal)

path = 
  navPathControl with properties:

    StatePropagator: [1x1 mobileRobotPropagator]
             States: [192x3 double]
           Controls: [191x2 double]
          Durations: [191x1 double]
       TargetStates: [191x3 double]
          NumStates: 192
        NumSegments: 191

Visualize Results

Visualize the map and plot the path states.

show(map)
hold on
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plot(start(1),start(2),"rx")
plot(goal(1),goal(2),"go")
plot(path.States(:,1),path.States(:,2),"b")
hold off

Display the [v psi] control inputs of forward velocity and steering angle.

plot(path.Controls)
ylim([-1 1])
legend(["Velocity (m/s)","Steering Angle (rad)"])
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Version History
Introduced in R2021b

See Also
Objects
navPath | mobileRobotPropagator

Functions
append | interpolate | pathDuration

2 Classes

2-844



append
Add states to end of path

Syntax
append(pathObj,states,controls,targets,durations)

Description
append(pathObj,states,controls,targets,durations) adds a sequence of states states,
controls controls, targets targets, and durations durations, to the end of the path. If the path is
empty, the states input must have one more row than the other input vectors and matrices. If the
path contains points already, the function applies the first control to the last state in the current path.

Input Arguments
pathObj — Control path
navControlPath

Control path, specified as a navPathControl object.
Data Types: double

states — Series of states for path
n-by-m matrix

Series of states for the path, specified as an n-by-m matrix. n is the number of points to add to the
path. m is the dimension of the state vector.

Note If the path object is empty, the states input should be an (n+1)-by-m matrix.

Data Types: double

controls — Control input for each state
n-by-m matrix

Control input for each state, specified as an n-by-m matrix. n is the number of points to add to the
path. m is the dimension of the state vector.
Data Types: double

targets — Target state for each state in path
n-element vector in seconds

Target state for each state in the path,specified as an n-by-m matrix. n is the number of points to add
to the path. m is the dimension of the state vector.
Data Types: double
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durations — Duration of each control input
n-element vector in seconds

Duration of each control input, specified as an n-element vector in seconds. n is the number of points
to add to the path.
Data Types: double

Version History
Introduced in R2021b

See Also
Objects
navPathControl | navPath | mobileRobotPropagator

Functions
interpolate | pathDuration
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interpolate
Interpolate path based on propagator step size

Syntax
interpolate(pathObj)

Description
interpolate(pathObj) evaluates the path based on the ControlStepSize property of pathObj,
and adds all intermediate points to the path.

Examples

Create navPath Based on Multiple Waypoints

Create a navPath object based on multiple waypoints in a Dubins space.

dubinsSpace = stateSpaceDubins([0 25; 0 25; -pi pi])

dubinsSpace = 
  stateSpaceDubins with properties:

   SE2 Properties
                 Name: 'SE2 Dubins'
          StateBounds: [3x2 double]
    NumStateVariables: 3

   Dubins Vehicle Properties
     MinTurningRadius: 1

pathobj = navPath(dubinsSpace)

pathobj = 
  navPath with properties:

      StateSpace: [1x1 stateSpaceDubins]
          States: [0x3 double]
       NumStates: 0
    MaxNumStates: Inf

waypoints = [8 10 pi/2;
             7 14 pi/4;
             10 17 pi/2;
             10 10 -pi];
append(pathobj,waypoints)

Interpolate that path so that it contains exactly 250 points.

interpolate(pathobj,250)
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Visualize the interpolated path and the original waypoints.

figure
grid on
axis equal
hold on
plot(pathobj.States(:,1),pathobj.States(:,2),".b")
plot(waypoints(:,1),waypoints(:,2),"*r","MarkerSize",10)

Calculate length of path.

len = pathLength(pathobj);
disp("Path length = " + num2str(len))

Path length = 19.4722

Input Arguments
pathObj — Control path object
navControlPath object

Control path, specified as a navPathControl object.
Data Types: double
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Version History
Introduced in R2021b

See Also
Objects
navPathControl | navPath | mobileRobotPropagator

Functions
append | pathDuration
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pathDuration
Total elapsed duration of control path

Syntax
totalTime = pathDuration(pathObj)

Description
totalTime = pathDuration(pathObj) returns the total elapsed duration of the control path.

Input Arguments
pathObj — Control path object
navControlPath object

Control path, specified as a navPathControl object.
Data Types: double

Output Arguments
totalTime — Total duration of control path
positive scalar

Total duration of the control path, returned as a positive scalar in seconds.
Data Types: double

Version History
Introduced in R2021b

See Also
Objects
navPathControl | navPath | mobileRobotPropagator

Functions
append | interpolate
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nav.StatePropagator class
Package: nav

State propagator for control-based planning

Description
The nav.StatePropagator class is an interface for all state propagators used with the kinodynamic
path planners derived from nav.StateSpace. Derive from this class if you are defining a propagator
for your custom motion model or control system. For a concrete implementation for mobile robots,
see the mobileRobotPropagator object.

This class generates controls, propagates state, and estimates cost or distance between states.
Controlled systems utilize two main equations for two steps:

Initial Control

• [u(i),steps] = controlFcn(q(i-1),u(i-1),qTgt) generates the next control command
from the previous state, control input, and target state.

Propagate the System

• q(i) = q(i-1) + integrate(q,u(i),steps) propagates the state q(i-1) using the
generated command u(i) for the specified number of steps. The propagator uses a fixed step
size, specified by the ControlStepSize property.

The propagateWhileValid method defines the integration and optionally, the control behavior, and
also checks whether the generated states are valid within the state space. To skip state validation,
use the propagate method.

When creating an instance of class, specify the StateSpace property, which defines the number of
state variables, state bounds, and sampling behavior of the propagator. Also, specify the control limits
on creation, which determines the value of the NumControlOutput property.

When you change properties, such as the state space, you may need to change the internal behavior
of the propagator. To do this, implement the changes in the setup method and call setup(obj)
before calling other methods again.

The nav.StatePropagator class is a handle class.

Creation
Syntax
propagatorObj = nav.StatePropagator(stateSpace,stepSize,numControlOutput)

Description

propagatorObj = nav.StatePropagator(stateSpace,stepSize,numControlOutput)
creates a state propagator object for propagating a kinodynamic system.
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Properties
Public Properties

StateSpace — State space for sampling during planning
object of subclass of nav.StateSpace

State space for sampling during planning, specified as an object of a subclass of nav.StateSpace.

The state space is responsible for representing configuration space of a system. The class should
include all state information related to the propagated system. Systems employing multi-layer
cascade controllers can append persistent low-level control information directly to the state vector,
whereas the state propagator directly manages top-level control commands.

ControlStepSize — Duration of each control command
0.1 (default) | positive scalar

Duration of each control command, specified as a positive scalar.

Protected Properties

NumControlOutput — Number of variables in control command
positive integer

Number of variables in the control command, specified as a positive integer.

Attributes:

GetAccess protected
SetAccess immutable

Methods
Public Methods
distance Estimate cost of propagating to target state
propagate Propagate system without validation
propagateWhileValid Propagate system and return valid motion
sampleControl Generate control command and step count
setup Estimate cost of propagating to target state

Version History
Introduced in R2021b

See Also
Classes
nav.StateSpace | nav.StateValidator

Objects
stateSpaceSE2 | stateSpaceDubins | stateSpaceReedsShepp | validatorOccupancyMap |
validatorVehicleCostmap
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distance
Class: nav.StatePropagator
Package: nav

Estimate cost of propagating to target state

Syntax
h = distance(q1,q2)

Description
h = distance(q1,q2) estimates the cost of propagating from an initial set of states q1 to final
states q2. Each row in q1 and q2 represents a specific state in the system and the number of columns
matches the number of state variables. The function outputs an n-element vector h for each q1-q2
pair.

Input Arguments
q1 — Initial states
n-by-s matrix

Initial states, specified as an n-by-s matrix.

q2 — Final states
n-by-s matrix

Final states, specified as an n-by-s matrix.

Output Arguments
h — Cost values
n-element vector

Cost values, returned as an n-element vector, where n is the number of q1-q2 pairs.

Cost values returned by this function are typically used to find the nearest neighbor for sampled
target states when planning.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Version History
Introduced in R2021b
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See Also
Classes
nav.StatePropagator | nav.StateSpace | nav.StateValidator

Functions
propagate | propagateWhileValid | sampleControl | setup
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propagate
Class: nav.StatePropagator
Package: nav

Propagate system without validation

Syntax
[q,u,steps] = propagate(spObj,q0,u0,qTgt,maxSteps)

Description
[q,u,steps] = propagate(spObj,q0,u0,qTgt,maxSteps) iteratively propagates the system
from the current state q0 towards a target state qTgt with an initial control input u0for a maximum
number of steps maxSteps. All propagations are validated and the function returns system
information between q0 and the last valid state.

At the end of each propagation step i, the system returns:

• q(i,:) — Current state of the system
• u(i,:) — Control input for step i+1
• steps(i) — Number of steps between i-1 and i

Input Arguments
spObj — State propagator object
handle from child class of nav.StatePropagator

State propagator object, specified as a handle from a child class of nav.StatePropagator.

q0 — Initial state
s-element vector

Initial state of the system, specified as an s-element vector, where s is the number of state variables
in the state space.

u0 — Initial control on the initial state
c-element vector

Initial control input, specified as an c-element vector, where c is the number of control inputs.

qTgt — Target state
s-element vector

Target state of the system, specified as an s-element vector, where s is the number of state variables
in the state space.

maxSteps — Maximum number of steps
positive scalar
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Maximum number of steps, specified as a positive scalar.

Output Arguments
q — Propagated states
n-by-s matrix

Initial state of the system, specified as an s-element vector, where s is the number of state variables
in the state space.

u — Control inputs for propagating states
n-by-c matrix

Control inputs for propagating states, specified as an s-element vector, where c is the number of
control inputs.

steps — Number of steps between each state and control input
n-element vector of positive integers

Number of steps between each state and control input, specified as an n-element vector of positive
integers.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Version History
Introduced in R2021b

See Also
Classes
nav.StatePropagator | nav.StateSpace | nav.StateValidator

Functions
distance | propagateWhileValid | sampleControl | setup
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propagateWhileValid
Class: nav.StatePropagator
Package: nav

Propagate system and return valid motion

Syntax
[q,u,steps] = propagateWhileValid(spObj,q0,u0,qTgt,maxSteps)

Description
[q,u,steps] = propagateWhileValid(spObj,q0,u0,qTgt,maxSteps) iteratively propagates
the system from the current state q0 towards a target state qTgt with an initial control input u0for a
maximum number of steps maxSteps. All propagations are validated and the function returns system
information between q0 and the last valid state.

At the end of each propagation step i, the system returns:

• q(i,:) — Current state of the system
• u(i,:) — Control input for step i+1
• steps(i) — Number of steps between i-1 and i

Input Arguments
spObj — State propagator object
handle from child class of nav.StatePropagator

State propagator object, specified as a handle from a child class of nav.StatePropagator.

q0 — Initial state
s-element vector

Initial state of the system, specified as an s-element vector, where s is the number of state variables
in the state space.

u0 — Initial control on the initial state
c-element vector

Initial control input, specified as an c-element vector, where c is the number of control inputs.

qTgt — Target state
s-element vector

Target state of the system, specified as an s-element vector, where s is the number of state variables
in the state space.

maxSteps — Maximum number of steps
positive scalar
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Maximum number of steps, specified as a positive scalar.

Output Arguments
q — Propagated states
n-by-s matrix

Initial state of the system, specified as an s-element vector, where s is the number of state variables
in the state space.

u — Control inputs for propagating states
n-by-c matrix

Control inputs for propagating states, specified as an s-element vector, where c is the number of
control inputs.

steps — Number of steps between each state and control input
n-element vector of positive integers

Number of steps between each state and control input, specified as an n-element vector of positive
integers.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Version History
Introduced in R2021b

See Also
Classes
nav.StatePropagator | nav.StateSpace | nav.StateValidator

Functions
distance | propagate | sampleControl | setup
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sampleControl
Class: nav.StatePropagator
Package: nav

Generate control command and step count

Syntax
[u,steps] = sampleControl(spObj,q0,u0,qTgt)

Description
[u,steps] = sampleControl(spObj,q0,u0,qTgt) generates a series of control commands and
number of steps to move from the current state q0 with control command u0 towards the target state
qTgt

Input Arguments
spObj — State propagator object
handle from child class of nav.StatePropagator

State propagator object, specified as a handle from a child class of nav.StatePropagator.

q0 — Initial state
s-element vector

Initial state of the system, specified as an s-element vector, where s is the number of state variables
in the state space.

u0 — Initial control on the initial state
c-element vector

Initial control input, specified as an c-element vector, where c is the number of control inputs.

qTgt — Target state
s-element vector

Target state of the system, specified as an s-element vector, where s is the number of state variables
in the state space.

Output Arguments
u — Control inputs for propagating states
n-by-c matrix

Control inputs for propagating states, specified as an s-element vector, where c is the number of
control inputs.

steps — Number of steps between each state and control input
n-element vector of positive integers
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Number of steps between each state and control input, specified as an n-element vector of positive
integers.

Attributes
Abstract true

To learn about attributes of methods, see Method Attributes.

Version History
Introduced in R2021b

See Also
Classes
nav.StatePropagator | nav.StateSpace | nav.StateValidator

Functions
distance | propagate | propagateWhileValid | setup
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setup
Class: nav.StatePropagator
Package: nav

Estimate cost of propagating to target state

Syntax
setup(mobileProp)

Description
setup(mobileProp) sets up the nav.StatePropagator object based on the specified parameters.
If you change properties on the object, call this method before you sample controls, propagate the
system, or calculate distances.

Input Arguments
spObj — State propagator object
handle from child class of nav.StatePropagator

State propagator object, specified as a handle from a child class of nav.StatePropagator.

Version History
Introduced in R2021b

See Also
Classes
nav.StatePropagator | nav.StateSpace | nav.StateValidator

Functions
distance | propagate | propagateWhileValid | sampleControl
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nav.StateSpace class
Package: nav

Create state space for path planning

Description
The nav.StateSpace class is an interface for state spaces used for path planning. Derive from this
class if you want to define your own state space. This representation allows for sampling,
interpolation, and calculating distances between spaces in the state space.

To create a sample template for generating your own state space class, call
createPlanningTemplate. For specific implementations of the state validator class for general
application, see State Spaces in “Motion Planning”.

The nav.StateSpace class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation

Syntax
ssObj = nav.StateSpace(Name,NumStateVariables,StateBounds)

Description

ssObj = nav.StateSpace(Name,NumStateVariables,StateBounds) creates a state space
object with a given name, number of state variables, and state bounds. This constructor can only be
called from a derived class. Create your own class definition using createPlanningTemplate.

Properties
Public Properties

NumStateVariables — Number of variables in state space
positive numeric scalar

Number of variables in the state space, specified as a positive numeric scalar. This property is the
dimension of the state space.
Example: 3
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Attributes:

SetAccess immutable

StateBounds — Minimum and maximum bounds of state variables
[min max] | n-by-2 matrix

Minimum and maximum bounds of state variables, specified as a [min max] n-by-2 matrix. This
property depends on NumStateVariables, where n is the number of state variables. When
specifying on construction, use the Bounds input.
Example: [-10 10; -10 10; -pi pi]
Attributes:

GetAccess public
SetAccess protected
Dependent true

Data Types: double

Protected Properties

Name — Name of state space object
string scalar | character vector

Name of the state space object, specified as a string scalar or character vector.
Example: "customSE2StateSpace"
Attributes:

GetAccess protected
SetAccess protected

Methods
Public Methods
copy Copy array of handle objects
distance Distance between two states
enforceStateBounds Limit state to state bounds
interpolate Interpolate between states
sampleGaussian Sample state using Gaussian distribution
sampleUniform Sample state using uniform distribution

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state space definition and sampler to use with path planning algorithms. A
simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation.
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createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateSpace class. For this example, create a property for the uniform and normal
distributions. You can specify any additional user-defined properties here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and define its
boundaries. Alternatively, you can add input arguments to the function and pass the variables in when
you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values using
predefined NormalDistribution and UniformDistribution classes.

• Specify any other user-defined property values here.

methods
    function obj = MyCustomStateSpace
        spaceName = "MyCustomStateSpace";
        numStateVariables = 3;
        stateBounds = [-100 100;  % [min max]
                       -100 100;
                       -100 100];
        
        obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
        
        obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
        obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
        % User-defined property values here
    end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same name, state bounds, and distributions.

function copyObj = copy(obj)
    copyObj = feval(class(obj));
    copyObj.StateBounds = obj.StateBounds;
    copyObj.UniformDistribution = obj.UniformDistribution.copy;
    copyObj.NormalDistribution = obj.NormalDistribution.copy;
end
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Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the state values
get saturated at the minimum or maximum values for the state bounds.

function boundedState = enforceStateBounds(obj, state)
    nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
    boundedState = state;
    boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
        obj.StateBounds(:,2)');
    
end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to
constrain the uniform distribution to a nearby state within a certain distance and sample multiple
states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the varying
input arguments.

 function state = sampleUniform(obj, varargin)
    narginchk(1,4);
    [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
    
    obj.UniformDistribution.RandomVariableLimits = stateBounds;
    state = obj.UniformDistribution.sample(numSamples);
 end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for
sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

function state = sampleGaussian(obj, meanState, stdDev, varargin)    
    narginchk(3,4);
    
    [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
    
    obj.NormalDistribution.Mean = meanState;
    obj.NormalDistribution.Covariance = diag(stdDev.^2);
    
    state = obj.NormalDistribution.sample(numSamples);
    state = obj.enforceStateBounds(state);
    
end
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Interpolate Between States

Define how to interpolate between two states in your state space. Use an input, fraction, to
determine how to sample along the path between two states. For this example, define a basic linear
interpolation method using the difference between states.

function interpState = interpolate(obj, state1, state2, fraction)
    narginchk(4,4);
    [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
    
    stateDiff = state2 - state1;
    interpState = state1 + fraction' * stateDiff;
end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the state1 and
state2 inputs to define the start and end positions. Both inputs can be a single state (row vector) or
multiple states (matrix of row vectors). For this example, calculate the distance based on the
Euclidean distance between each pair of state positions.

function dist = distance(obj, state1, state2)
    
    narginchk(3,3);
    
    nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
    nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

    stateDiff = bsxfun(@minus, state2, state1);
    dist = sqrt( sum( stateDiff.^2, 2 ) );
end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an object for
your state space.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nav.StateValidator | stateSpaceSE2 | stateSpaceDubins | stateSpaceReedsShepp
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distance
Class: nav.StateSpace
Package: nav

Distance between two states

Syntax
dist = distance(ssObj,state1,state2)

Description
dist = distance(ssObj,state1,state2) calculates the distance between two states.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

state1 — Initial state position
n-element vector | m-by-n matrix of row vectors

Initial state position, specified as a n-element vector or m-by-n matrix of row vectors. n is the
dimension of the state space specified in the NumStateVariables property of ssObj. m is the
number of state positions provided.

If specified as a matrix, state1 and state2 should have the same dimensions.

state2 — Final state position
n-element vector | m-by-n matrix of row vectors

Final state position, specified as a n-element vector or m-by-n matrix of row vectors. n is the
dimension of the state space specified in the NumStateVariables property of ssObj. m is the
number of state positions provided.

If specified as a matrix, state1 and state2 should have the same dimensions.

Output Arguments
dist — Distance between two states
numeric scalar | m-element vector

Distance between two states, returned as a numeric scalar or m-element vector. This distance
calculation is the main component of evaluating costs of paths.

Examples
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Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state space definition and sampler to use with path planning algorithms. A
simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateSpace class. For this example, create a property for the uniform and normal
distributions. You can specify any additional user-defined properties here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and define its
boundaries. Alternatively, you can add input arguments to the function and pass the variables in when
you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values using
predefined NormalDistribution and UniformDistribution classes.

• Specify any other user-defined property values here.

methods
    function obj = MyCustomStateSpace
        spaceName = "MyCustomStateSpace";
        numStateVariables = 3;
        stateBounds = [-100 100;  % [min max]
                       -100 100;
                       -100 100];
        
        obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
        
        obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
        obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
        % User-defined property values here
    end
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Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same name, state bounds, and distributions.

function copyObj = copy(obj)
    copyObj = feval(class(obj));
    copyObj.StateBounds = obj.StateBounds;
    copyObj.UniformDistribution = obj.UniformDistribution.copy;
    copyObj.NormalDistribution = obj.NormalDistribution.copy;
end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the state values
get saturated at the minimum or maximum values for the state bounds.

function boundedState = enforceStateBounds(obj, state)
    nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
    boundedState = state;
    boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
        obj.StateBounds(:,2)');
    
end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to
constrain the uniform distribution to a nearby state within a certain distance and sample multiple
states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the varying
input arguments.

 function state = sampleUniform(obj, varargin)
    narginchk(1,4);
    [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
    
    obj.UniformDistribution.RandomVariableLimits = stateBounds;
    state = obj.UniformDistribution.sample(numSamples);
 end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for
sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

function state = sampleGaussian(obj, meanState, stdDev, varargin)    
    narginchk(3,4);
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    [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
    
    obj.NormalDistribution.Mean = meanState;
    obj.NormalDistribution.Covariance = diag(stdDev.^2);
    
    state = obj.NormalDistribution.sample(numSamples);
    state = obj.enforceStateBounds(state);
    
end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input, fraction, to
determine how to sample along the path between two states. For this example, define a basic linear
interpolation method using the difference between states.

function interpState = interpolate(obj, state1, state2, fraction)
    narginchk(4,4);
    [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
    
    stateDiff = state2 - state1;
    interpState = state1 + fraction' * stateDiff;
end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the state1 and
state2 inputs to define the start and end positions. Both inputs can be a single state (row vector) or
multiple states (matrix of row vectors). For this example, calculate the distance based on the
Euclidean distance between each pair of state positions.

function dist = distance(obj, state1, state2)
    
    narginchk(3,3);
    
    nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
    nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

    stateDiff = bsxfun(@minus, state2, state1);
    dist = sqrt( sum( stateDiff.^2, 2 ) );
end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an object for
your state space.

Version History
Introduced in R2019b
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See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 | stateSpaceDubins |
stateSpaceReedsShepp
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enforceStateBounds
Class: nav.StateSpace
Package: nav

Limit state to state bounds

Syntax
boundedState = enforceStateBounds(ssObj,state)

Description
boundedState = enforceStateBounds(ssObj,state) returns a bounded state that lies inside
the state bounds based on the given state. Use this method to define specific bounding behavior like
wrapping angular states. The bounds are specified in the StateBounds property of ssObj.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

state — State position
n-element vector | m-by-n matrix of row vectors

State position, specified as a n-element vector or an m-by-n matrix of row vectors. n is the dimension
of the state space specified in the NumStateVariables property of ssObj.

Output Arguments
boundedState — State position with enforced state bounds
n-element vector | m-by-n matrix of row vectors

State position with enforced state bounds, specified as a n-element vector or m-by-n matrix of row
vectors. n is the dimension of the state space specified in the NumStateVariables property of
ssObj.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state space definition and sampler to use with path planning algorithms. A
simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation.
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createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateSpace class. For this example, create a property for the uniform and normal
distributions. You can specify any additional user-defined properties here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and define its
boundaries. Alternatively, you can add input arguments to the function and pass the variables in when
you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values using
predefined NormalDistribution and UniformDistribution classes.

• Specify any other user-defined property values here.

methods
    function obj = MyCustomStateSpace
        spaceName = "MyCustomStateSpace";
        numStateVariables = 3;
        stateBounds = [-100 100;  % [min max]
                       -100 100;
                       -100 100];
        
        obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
        
        obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
        obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
        % User-defined property values here
    end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same name, state bounds, and distributions.

function copyObj = copy(obj)
    copyObj = feval(class(obj));
    copyObj.StateBounds = obj.StateBounds;
    copyObj.UniformDistribution = obj.UniformDistribution.copy;
    copyObj.NormalDistribution = obj.NormalDistribution.copy;
end
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Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the state values
get saturated at the minimum or maximum values for the state bounds.

function boundedState = enforceStateBounds(obj, state)
    nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
    boundedState = state;
    boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
        obj.StateBounds(:,2)');
    
end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to
constrain the uniform distribution to a nearby state within a certain distance and sample multiple
states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the varying
input arguments.

 function state = sampleUniform(obj, varargin)
    narginchk(1,4);
    [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
    
    obj.UniformDistribution.RandomVariableLimits = stateBounds;
    state = obj.UniformDistribution.sample(numSamples);
 end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for
sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

function state = sampleGaussian(obj, meanState, stdDev, varargin)    
    narginchk(3,4);
    
    [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
    
    obj.NormalDistribution.Mean = meanState;
    obj.NormalDistribution.Covariance = diag(stdDev.^2);
    
    state = obj.NormalDistribution.sample(numSamples);
    state = obj.enforceStateBounds(state);
    
end
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Interpolate Between States

Define how to interpolate between two states in your state space. Use an input, fraction, to
determine how to sample along the path between two states. For this example, define a basic linear
interpolation method using the difference between states.

function interpState = interpolate(obj, state1, state2, fraction)
    narginchk(4,4);
    [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
    
    stateDiff = state2 - state1;
    interpState = state1 + fraction' * stateDiff;
end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the state1 and
state2 inputs to define the start and end positions. Both inputs can be a single state (row vector) or
multiple states (matrix of row vectors). For this example, calculate the distance based on the
Euclidean distance between each pair of state positions.

function dist = distance(obj, state1, state2)
    
    narginchk(3,3);
    
    nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
    nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

    stateDiff = bsxfun(@minus, state2, state1);
    dist = sqrt( sum( stateDiff.^2, 2 ) );
end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an object for
your state space.

Version History
Introduced in R2019b

See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 | stateSpaceDubins |
stateSpaceReedsShepp
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interpolate
Class: nav.StateSpace
Package: nav

Interpolate between states

Syntax
interpStates = interpolate(ssObj,state1,state2,ratios)

Description
interpStates = interpolate(ssObj,state1,state2,ratios) interpolates between two
states in your state space based on the given ratios.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

state1 — Initial state position
n-element vector

Initial state position, specified as a n-element vector. n is the dimension of the state space specified in
the NumStateVariables property of ssObj.

state2 — Final state position
n-element vector | m-by-n matrix of row vectors

Final state position, specified as a n-element vector. n is the dimension of the state space specified in
the NumStateVariables property of ssObj.

ratios — Ratio values for interpolating along path
m-element vector

Ratio values for interpolating along path, specified as an m-element vector. These ratios determine
how to sample between the two states.

Output Arguments
interpStates — Interpolated states
m-by-n matrix of row vectors

Interpolated states, returned as an m-by-n matrix of row vectors. m is the length of ratios and n is
the dimension of the state space specified in the NumStateVariables property of ssObj.
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Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state space definition and sampler to use with path planning algorithms. A
simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateSpace class. For this example, create a property for the uniform and normal
distributions. You can specify any additional user-defined properties here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and define its
boundaries. Alternatively, you can add input arguments to the function and pass the variables in when
you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values using
predefined NormalDistribution and UniformDistribution classes.

• Specify any other user-defined property values here.

methods
    function obj = MyCustomStateSpace
        spaceName = "MyCustomStateSpace";
        numStateVariables = 3;
        stateBounds = [-100 100;  % [min max]
                       -100 100;
                       -100 100];
        
        obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
        
        obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
        obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
        % User-defined property values here
    end
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Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same name, state bounds, and distributions.

function copyObj = copy(obj)
    copyObj = feval(class(obj));
    copyObj.StateBounds = obj.StateBounds;
    copyObj.UniformDistribution = obj.UniformDistribution.copy;
    copyObj.NormalDistribution = obj.NormalDistribution.copy;
end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the state values
get saturated at the minimum or maximum values for the state bounds.

function boundedState = enforceStateBounds(obj, state)
    nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
    boundedState = state;
    boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
        obj.StateBounds(:,2)');
    
end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to
constrain the uniform distribution to a nearby state within a certain distance and sample multiple
states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the varying
input arguments.

 function state = sampleUniform(obj, varargin)
    narginchk(1,4);
    [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
    
    obj.UniformDistribution.RandomVariableLimits = stateBounds;
    state = obj.UniformDistribution.sample(numSamples);
 end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for
sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

function state = sampleGaussian(obj, meanState, stdDev, varargin)    
    narginchk(3,4);
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    [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
    
    obj.NormalDistribution.Mean = meanState;
    obj.NormalDistribution.Covariance = diag(stdDev.^2);
    
    state = obj.NormalDistribution.sample(numSamples);
    state = obj.enforceStateBounds(state);
    
end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input, fraction, to
determine how to sample along the path between two states. For this example, define a basic linear
interpolation method using the difference between states.

function interpState = interpolate(obj, state1, state2, fraction)
    narginchk(4,4);
    [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
    
    stateDiff = state2 - state1;
    interpState = state1 + fraction' * stateDiff;
end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the state1 and
state2 inputs to define the start and end positions. Both inputs can be a single state (row vector) or
multiple states (matrix of row vectors). For this example, calculate the distance based on the
Euclidean distance between each pair of state positions.

function dist = distance(obj, state1, state2)
    
    narginchk(3,3);
    
    nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
    nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

    stateDiff = bsxfun(@minus, state2, state1);
    dist = sqrt( sum( stateDiff.^2, 2 ) );
end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an object for
your state space.

Version History
Introduced in R2019b
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See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 | stateSpaceDubins |
stateSpaceReedsShepp
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sampleGaussian
Class: nav.StateSpace
Package: nav

Sample state using Gaussian distribution

Syntax
states = sampleGaussian(ssObj,meanState,stdDev)
states = sampleGaussian(ssObj,meanState,stdDev,numSamples)

Description
states = sampleGaussian(ssObj,meanState,stdDev) samples a single state in your state
space from a Gaussian distribution centered on meanState with specified standard deviation.

states = sampleGaussian(ssObj,meanState,stdDev,numSamples) samples multiple states
based on numSamples.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

meanState — Mean state position
n-element vector | m-by-n matrix of row vectors

Mean state position, specified as a n-element vector or m-by-n matrix of row vectors, where n is the
dimension of the state space specified in the NumStateVariables property of ssObj. m is the
number of samples specified in numSamples.

stdDev — Standard deviation around mean state
n-element vector | m-by-n matrix of row vectors

Standard deviation around mean state, specified as an n-element vector or m-by-n matrix of row
vectors, where each element corresponds to an element in meanState.

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer. By default, the function assumes numSamples is
1.

Output Arguments
states — Sampled states from state space
n-element vector | m-by-n matrix of row vectors
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Sampled states from state space, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in the NumStateVariables property of ssObj. m is the
number of samples specified in numSamples. All states are sampled within the StateBounds
property of ssObj.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state space definition and sampler to use with path planning algorithms. A
simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateSpace class. For this example, create a property for the uniform and normal
distributions. You can specify any additional user-defined properties here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and define its
boundaries. Alternatively, you can add input arguments to the function and pass the variables in when
you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values using
predefined NormalDistribution and UniformDistribution classes.

• Specify any other user-defined property values here.

methods
    function obj = MyCustomStateSpace
        spaceName = "MyCustomStateSpace";
        numStateVariables = 3;
        stateBounds = [-100 100;  % [min max]
                       -100 100;
                       -100 100];
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        obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
        
        obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
        obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
        % User-defined property values here
    end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same name, state bounds, and distributions.

function copyObj = copy(obj)
    copyObj = feval(class(obj));
    copyObj.StateBounds = obj.StateBounds;
    copyObj.UniformDistribution = obj.UniformDistribution.copy;
    copyObj.NormalDistribution = obj.NormalDistribution.copy;
end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the state values
get saturated at the minimum or maximum values for the state bounds.

function boundedState = enforceStateBounds(obj, state)
    nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
    boundedState = state;
    boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
        obj.StateBounds(:,2)');
    
end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to
constrain the uniform distribution to a nearby state within a certain distance and sample multiple
states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the varying
input arguments.

 function state = sampleUniform(obj, varargin)
    narginchk(1,4);
    [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
    
    obj.UniformDistribution.RandomVariableLimits = stateBounds;
    state = obj.UniformDistribution.sample(numSamples);
 end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for
sampling a single state or multiple states.
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STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

function state = sampleGaussian(obj, meanState, stdDev, varargin)    
    narginchk(3,4);
    
    [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
    
    obj.NormalDistribution.Mean = meanState;
    obj.NormalDistribution.Covariance = diag(stdDev.^2);
    
    state = obj.NormalDistribution.sample(numSamples);
    state = obj.enforceStateBounds(state);
    
end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input, fraction, to
determine how to sample along the path between two states. For this example, define a basic linear
interpolation method using the difference between states.

function interpState = interpolate(obj, state1, state2, fraction)
    narginchk(4,4);
    [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
    
    stateDiff = state2 - state1;
    interpState = state1 + fraction' * stateDiff;
end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the state1 and
state2 inputs to define the start and end positions. Both inputs can be a single state (row vector) or
multiple states (matrix of row vectors). For this example, calculate the distance based on the
Euclidean distance between each pair of state positions.

function dist = distance(obj, state1, state2)
    
    narginchk(3,3);
    
    nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
    nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

    stateDiff = bsxfun(@minus, state2, state1);
    dist = sqrt( sum( stateDiff.^2, 2 ) );
end

Terminate the methods and class sections.

    end
end
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Save your state space class definition. You can now use the class constructor to create an object for
your state space.

Version History
Introduced in R2019b

See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 | stateSpaceDubins |
stateSpaceReedsShepp
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sampleUniform
Class: nav.StateSpace
Package: nav

Sample state using uniform distribution

Syntax
states = sampleUniform(ssObj)
states = sampleUniform(ssObj,numSamples)
states = sampleUniform(ssObj,meanState,distance)
states = sampleUniform(ssObj,meanState,distance,numSamples)

Description
states = sampleUniform(ssObj) samples throughout your entire state space using a uniform
distribution.

states = sampleUniform(ssObj,numSamples) samples multiple states based on numSamples.

states = sampleUniform(ssObj,meanState,distance) samples near a given mean state
within a certain distance.

states = sampleUniform(ssObj,meanState,distance,numSamples) samples multiple states
near a given mean state based on numSamples.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

meanState — Mean state position
n-element vector

Mean state position for sampling near, specified as a n-element vector, where n is the dimension of
the state space specified in the NumStateVariables property of ssObj. m is the number of samples
specified in numSamples.

distance — Max distance from mean state position
n-element vector

Max distance from mean state position, nearState, specified as a n-element vector, where
nearState defines the center of the sampled region and distance is the maximum distance from
nearState allowed in each dimension.

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer.
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Output Arguments
states — Sampled states from state space
n-element vector | m-by-n matrix of row vectors

Sampled states from state space, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in the NumStateVariables property of ssObj. m is the
number of samples specified in numSamples. All states are sampled within the StateBounds
property of ssObj.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state space definition and sampler to use with path planning algorithms. A
simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateSpace class. For this example, create a property for the uniform and normal
distributions. You can specify any additional user-defined properties here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and define its
boundaries. Alternatively, you can add input arguments to the function and pass the variables in when
you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values using
predefined NormalDistribution and UniformDistribution classes.

• Specify any other user-defined property values here.

methods
    function obj = MyCustomStateSpace
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        spaceName = "MyCustomStateSpace";
        numStateVariables = 3;
        stateBounds = [-100 100;  % [min max]
                       -100 100;
                       -100 100];
        
        obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
        
        obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
        obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
        % User-defined property values here
    end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same name, state bounds, and distributions.

function copyObj = copy(obj)
    copyObj = feval(class(obj));
    copyObj.StateBounds = obj.StateBounds;
    copyObj.UniformDistribution = obj.UniformDistribution.copy;
    copyObj.NormalDistribution = obj.NormalDistribution.copy;
end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the state values
get saturated at the minimum or maximum values for the state bounds.

function boundedState = enforceStateBounds(obj, state)
    nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
    boundedState = state;
    boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
        obj.StateBounds(:,2)');
    
end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to
constrain the uniform distribution to a nearby state within a certain distance and sample multiple
states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the varying
input arguments.

 function state = sampleUniform(obj, varargin)
    narginchk(1,4);
    [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
    
    obj.UniformDistribution.RandomVariableLimits = stateBounds;
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    state = obj.UniformDistribution.sample(numSamples);
 end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for
sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

function state = sampleGaussian(obj, meanState, stdDev, varargin)    
    narginchk(3,4);
    
    [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
    
    obj.NormalDistribution.Mean = meanState;
    obj.NormalDistribution.Covariance = diag(stdDev.^2);
    
    state = obj.NormalDistribution.sample(numSamples);
    state = obj.enforceStateBounds(state);
    
end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input, fraction, to
determine how to sample along the path between two states. For this example, define a basic linear
interpolation method using the difference between states.

function interpState = interpolate(obj, state1, state2, fraction)
    narginchk(4,4);
    [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
    
    stateDiff = state2 - state1;
    interpState = state1 + fraction' * stateDiff;
end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the state1 and
state2 inputs to define the start and end positions. Both inputs can be a single state (row vector) or
multiple states (matrix of row vectors). For this example, calculate the distance based on the
Euclidean distance between each pair of state positions.

function dist = distance(obj, state1, state2)
    
    narginchk(3,3);
    
    nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
    nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

    stateDiff = bsxfun(@minus, state2, state1);
    dist = sqrt( sum( stateDiff.^2, 2 ) );
end

Terminate the methods and class sections.
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    end
end

Save your state space class definition. You can now use the class constructor to create an object for
your state space.

Version History
Introduced in R2019b

See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 | stateSpaceDubins |
stateSpaceReedsShepp
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nav.StateValidator class
Package: nav

Create state validator for path planning

Description
nav.StateValidator is an interface for all state validators used for path planning. Derive from this
class if you want to define your own state validator. This representation allows for state and motion
validation.

To create a sample template for generating your own state space class, call
createPlanningTemplate("StateValidator"). For specific implementations of the state
validator class for general application, see State Validation in “Motion Planning”.

The nav.StateValidator class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation

Syntax
ssObj = nav.StateValidator(stateSpace)

Description

ssObj = nav.StateValidator(stateSpace) creates a state validator object that validates
states in the given state space. This constructor can only be called from a derived class. Create your
own class definition using createPlanningTemplate.

Properties
StateSpace — State space definition
object of a subclass from nav.StateSpace

State space definition, specified as an object of a subclass from nav.StateSpace. Specify this
property using the stateSpace input on construction. You can also specify any of our predefined
objects in the State Validation section from “Motion Planning”.
Example: stateSpaceSE2
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Attributes:

GetAccess public
SetAccess immutable

Methods
Public Methods
copy Copy array of handle objects
isMotionValid Check if path between states is valid
isStateValid Check if state is valid

Examples

Create Custom State Space Validator for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state validation class. State validation is used with path planning algorithms to
ensure valid paths. The template function provides a basic implementation for example purposes.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation. Save this file.

createPlanningTemplate("StateValidator")

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateValidator class. You can specify any additional user-defined properties here.

classdef MyCustomStateValidator < nav.StateValidator & ...
        matlabshared.planning.internal.EnforceScalarHandle
    properties
       % User-defined properties
    end

Save your custom state validator class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space validator and specify the state space object.
Set a default value for the state space if one is not provided. Call the constructor of the base class.
Initialize any other user-defined properties. This example uses a default of MyCustomStateSpace,
which was illustrated in the previous example.

methods
        function obj = MyCustomStateValidator(space)
            narginchk(0,1)
            
            if nargin == 0
                space = MyCustomStateSpace;
            end

            obj@nav.StateValidator(space);
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           % Initialize user-defined properties
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same type.

        function copyObj = copy(obj)
            copyObj = feval(class(obj), obj.StateSpace);
        end

Check State Validity

Define how a given state is validated. The state input can either be a single row vector, or a matrix
of row vectors for multiple states. Customize this function for any special validation behavior for your
state space like collision checking against obstacles.

        function isValid = isStateValid(obj, state) 
            narginchk(2,2);
            nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ...
                "isStateValid", "state");
            
            bounds = obj.StateSpace.StateBounds';
            inBounds = state >= bounds(1,:) & state <= bounds(2,:);
            isValid = all(inBounds, 2);
            
        end

Check Motion Validity

Define how to generate the motion between states and determine if it is valid. For this example, use
linspace to evenly interpolate between states and check if these states are valid using
isStateValid. Customize this function to sample between states or consider other analytical
methods for determining if a vehicle can move between given states.

        function [isValid, lastValid] = isMotionValid(obj, state1, state2)
            narginchk(3,3);
            state1 = nav.internal.validation.validateStateVector(state1, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state1");
            state2 = nav.internal.validation.validateStateVector(state2, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state2");
            
            if (~obj.isStateValid(state1))
                error("statevalidator:StartStateInvalid", "The start state of the motion is invalid.");
            end
            
            % Interpolate at a fixed interval between states and check state validity
            numInterpPoints = 100;
            interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints));
            interpValid = obj.isStateValid(interpStates);
            
            % Look for invalid states. Set lastValid state to index-1.
            firstInvalidIdx = find(~interpValid, 1);
            if isempty(firstInvalidIdx)
                isValid = true;
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                lastValid = state2;
            else
                isValid = false;
                lastValid = interpStates(firstInvalidIdx-1,:);
            end
            
        end

Terminate the methods and class sections.

    end
end

Save your state space validator class definition. You can now use the class constructor to create an
object for validation of states for a given state space.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nav.StateSpace | validatorOccupancyMap | validatorVehicleCostmap
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isMotionValid
Class: nav.StateValidator
Package: nav

Check if path between states is valid

Syntax
[isValid,lastValid] = isMotionValid(validatorObj,state1,state2)

Description
[isValid,lastValid] = isMotionValid(validatorObj,state1,state2) determines if the
motion between two states is valid by interpolating between states. The function also returns the last
valid state along the path.

A default implementation for this method is provided when you call createPlanningTemplate.

Input Arguments
validatorObj — State validator object
object from a subclass of nav.StateValidator

State validator object, specified as an object from a subclass of nav.StateValidator. For provided
state validator objects, see validatorOccupancyMap or validatorVehicleCostmap.

state1 — Initial state position
n-element vector | m-by-n matrix of row vectors

Initial state position, specified as a n-element vector or m-by-n matrix of row vectors. n is the
dimension of the state space specified in the state space property in validatorObj.

state2 — Final state position
n-element vector | m-by-n matrix of row vectors

Final state position, specified as a n-element vector or m-by-n matrix of row vectors. n is the
dimension of the state space specified in the state space property in validatorObj.

Output Arguments
isValid — Valid states
m-element vector of 1s and 0s

Valid states, specified as a m-element vector of 1s and 0s.
Data Types: logical

lastValid — Final valid state along path
n-element vector
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Final valid state along path, specified as a n-element vector. n is the dimension of the state space
specified in the state space property in validatorObj.

Examples

Create Custom State Space Validator for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state validation class. State validation is used with path planning algorithms to
ensure valid paths. The template function provides a basic implementation for example purposes.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation. Save this file.

createPlanningTemplate("StateValidator")

Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateValidator class. You can specify any additional user-defined properties here.

classdef MyCustomStateValidator < nav.StateValidator & ...
        matlabshared.planning.internal.EnforceScalarHandle
    properties
       % User-defined properties
    end

Save your custom state validator class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space validator and specify the state space object.
Set a default value for the state space if one is not provided. Call the constructor of the base class.
Initialize any other user-defined properties. This example uses a default of MyCustomStateSpace,
which was illustrated in the previous example.

methods
        function obj = MyCustomStateValidator(space)
            narginchk(0,1)
            
            if nargin == 0
                space = MyCustomStateSpace;
            end

            obj@nav.StateValidator(space);
            
           % Initialize user-defined properties
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same type.
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        function copyObj = copy(obj)
            copyObj = feval(class(obj), obj.StateSpace);
        end

Check State Validity

Define how a given state is validated. The state input can either be a single row vector, or a matrix
of row vectors for multiple states. Customize this function for any special validation behavior for your
state space like collision checking against obstacles.

        function isValid = isStateValid(obj, state) 
            narginchk(2,2);
            nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ...
                "isStateValid", "state");
            
            bounds = obj.StateSpace.StateBounds';
            inBounds = state >= bounds(1,:) & state <= bounds(2,:);
            isValid = all(inBounds, 2);
            
        end

Check Motion Validity

Define how to generate the motion between states and determine if it is valid. For this example, use
linspace to evenly interpolate between states and check if these states are valid using
isStateValid. Customize this function to sample between states or consider other analytical
methods for determining if a vehicle can move between given states.

        function [isValid, lastValid] = isMotionValid(obj, state1, state2)
            narginchk(3,3);
            state1 = nav.internal.validation.validateStateVector(state1, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state1");
            state2 = nav.internal.validation.validateStateVector(state2, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state2");
            
            if (~obj.isStateValid(state1))
                error("statevalidator:StartStateInvalid", "The start state of the motion is invalid.");
            end
            
            % Interpolate at a fixed interval between states and check state validity
            numInterpPoints = 100;
            interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints));
            interpValid = obj.isStateValid(interpStates);
            
            % Look for invalid states. Set lastValid state to index-1.
            firstInvalidIdx = find(~interpValid, 1);
            if isempty(firstInvalidIdx)
                isValid = true;
                lastValid = state2;
            else
                isValid = false;
                lastValid = interpStates(firstInvalidIdx-1,:);
            end
            
        end

Terminate the methods and class sections.
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    end
end

Save your state space validator class definition. You can now use the class constructor to create an
object for validation of states for a given state space.

Version History
Introduced in R2019b

See Also
nav.StateValidator | nav.StateSpace | validatorOccupancyMap |
validatorVehicleCostmap
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isStateValid
Class: nav.StateValidator
Package: nav

Check if state is valid

Syntax
isValid = isStateValid(validatorObj,states)

Description
isValid = isStateValid(validatorObj,states) determines if the states are valid.

Input Arguments
validatorObj — State validator object
object from a subclass of nav.StateValidator

State validator object, specified as an object from a subclass of nav.StateValidator. For provided
state validator objects, see validatorOccupancyMap or validatorVehicleCostmap.

states — State positions
n-element vector | m-by-n matrix of row vectors

Initial state position, specified as a n-element vector or m-by-n matrix of row vectors. n is the
dimension of the state space specified in validatorObj. m is the number of states to validate.

Output Arguments
isValid — Valid states
m-element vector of 1s and 0s

Valid states, specified as a m-element vector of 1s and 0s.

Examples

Create Custom State Space Validator for Path Planning

This example shows how to use the createPlanningTemplate function to generate a template for
customizing your own state validation class. State validation is used with path planning algorithms to
ensure valid paths. The template function provides a basic implementation for example purposes.

Call the create template function. This function generates a class definition file for you to modify for
your own implementation. Save this file.

createPlanningTemplate("StateValidator")
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Class and Property Definition

The first part of the template specifies the class definition and any properties for the class. Derive
from the nav.StateValidator class. You can specify any additional user-defined properties here.

classdef MyCustomStateValidator < nav.StateValidator & ...
        matlabshared.planning.internal.EnforceScalarHandle
    properties
       % User-defined properties
    end

Save your custom state validator class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space validator and specify the state space object.
Set a default value for the state space if one is not provided. Call the constructor of the base class.
Initialize any other user-defined properties. This example uses a default of MyCustomStateSpace,
which was illustrated in the previous example.

methods
        function obj = MyCustomStateValidator(space)
            narginchk(0,1)
            
            if nargin == 0
                space = MyCustomStateSpace;
            end

            obj@nav.StateValidator(space);
            
           % Initialize user-defined properties
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into a new
object, so copyObj is a deep copy. The default behavior given in this example creates a new copy of
the object with the same type.

        function copyObj = copy(obj)
            copyObj = feval(class(obj), obj.StateSpace);
        end

Check State Validity

Define how a given state is validated. The state input can either be a single row vector, or a matrix
of row vectors for multiple states. Customize this function for any special validation behavior for your
state space like collision checking against obstacles.

        function isValid = isStateValid(obj, state) 
            narginchk(2,2);
            nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ...
                "isStateValid", "state");
            
            bounds = obj.StateSpace.StateBounds';
            inBounds = state >= bounds(1,:) & state <= bounds(2,:);
            isValid = all(inBounds, 2);
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        end

Check Motion Validity

Define how to generate the motion between states and determine if it is valid. For this example, use
linspace to evenly interpolate between states and check if these states are valid using
isStateValid. Customize this function to sample between states or consider other analytical
methods for determining if a vehicle can move between given states.

        function [isValid, lastValid] = isMotionValid(obj, state1, state2)
            narginchk(3,3);
            state1 = nav.internal.validation.validateStateVector(state1, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state1");
            state2 = nav.internal.validation.validateStateVector(state2, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state2");
            
            if (~obj.isStateValid(state1))
                error("statevalidator:StartStateInvalid", "The start state of the motion is invalid.");
            end
            
            % Interpolate at a fixed interval between states and check state validity
            numInterpPoints = 100;
            interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints));
            interpValid = obj.isStateValid(interpStates);
            
            % Look for invalid states. Set lastValid state to index-1.
            firstInvalidIdx = find(~interpValid, 1);
            if isempty(firstInvalidIdx)
                isValid = true;
                lastValid = state2;
            else
                isValid = false;
                lastValid = interpStates(firstInvalidIdx-1,:);
            end
            
        end

Terminate the methods and class sections.

    end
end

Save your state space validator class definition. You can now use the class constructor to create an
object for validation of states for a given state space.

Version History
Introduced in R2019b

See Also
nav.StateValidator | nav.StateSpace | validatorOccupancyMap |
validatorVehicleCostmap

 isStateValid

2-901



insfilterNonholonomic
Estimate pose with nonholonomic constraints

Description
The insfilterNonholonomic object implements sensor fusion of inertial measurement unit (IMU)
and GPS data to estimate pose in the NED (or ENU) reference frame. IMU data is derived from
gyroscope and accelerometer data. The filter uses a 16-element state vector to track the orientation
quaternion, velocity, position, and IMU sensor biases. The insfilterNonholonomic object uses an
extended Kalman filter to estimate these quantities.

Creation

Syntax
filter = insfilterNonholonomic
filter = insfilterNonholonomic('ReferenceFrame',RF)
filter = insfilterNonholonomic( ___ ,Name,Value)

Description

filter = insfilterNonholonomic creates an insfilterErrorState object with default
property values.

filter = insfilterNonholonomic('ReferenceFrame',RF) allows you to specify the
reference frame, RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-
Up). The default value is 'NED'.

filter = insfilterNonholonomic( ___ ,Name,Value) also allows you set properties of the
created filter using one or more name-value pairs. Enclose each property name in single quotes.

Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the IMU in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location units are [degrees degrees meters].
Data Types: single | double
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DecimationFactor — Decimation factor for kinematic constraint correction
2 (default) | positive integer scalar

Decimation factor for kinematic constraint correction, specified as a positive integer scalar.
Data Types: single | double

GyroscopeNoise — Multiplicative process noise variance from gyroscope (rad/s)2

[4.8e-6 4.8e-6 4.8e-6] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise in the x, y,
and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to the x, y, and z axes of
the gyroscope.

Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope bias (rad/s)2

[4e-14 4e-14 4e-14] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar or 3-
element row vector of positive real finite numbers. Gyroscope bias is modeled as a lowpass filtered
white noise process.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to the x, y, and z
axes of the gyroscope.

Data Types: single | double

GyroscopeBiasDecayFactor — Decay factor for gyroscope bias
0.999 (default) | scalar in the range [0,1]

Decay factor for gyroscope bias, specified as a scalar in the range [0,1]. A decay factor of 0 models
gyroscope bias as a white noise process. A decay factor of 1 models the gyroscope bias as a random
walk process.
Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from accelerometer (m/s2)2

[4.8e-2 4.8e-2 4.8e-2] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double
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AccelerometerBiasNoise — Multiplicative process noise variance from accelerometer bias
(m/s2)2

[4e-14 4e-14 4e-14] (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as a scalar or
3-element row vector of positive real numbers. Accelerometer bias is modeled as a lowpass filtered
white noise process.

• If AccelerometerBiasNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to each axis.

AccelerometerBiasDecayFactor — Decay factor for accelerometer bias
0.9999 (default) | scalar in the range [0,1]

Decay factor for accelerometer bias, specified as a scalar in the range [0,1]. A decay factor of 0
models accelerometer bias as a white noise process. A decay factor of 1 models the accelerometer
bias as a random walk process.
Data Types: single | double

State — State vector of extended Kalman filter
[1;zeros(15,1)] | 16-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Gyroscope Bias (XYZ) rad/s 5:7
Position (NED or ENU) m 8:10
Velocity (NED or ENU) m/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16

Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(16) (default) | 16-by-16 matrix

State error covariance for the extended Kalman filter, specified as a 16-by-16-element matrix, or real
numbers.
Data Types: single | double

ZeroVelocityConstraintNoise — Velocity constraints noise (m/s)2

1e-2 (default) | nonnegative scalar

Velocity constraints noise in (m/s)2, specified as a nonnegative scalar.
Data Types: single | double

Object Functions
correct Correct states using direct state measurements for insfilterNonholonomic
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residual Residuals and residual covariances from direct state measurements for
insfilterNonholonomic

fusegps Correct states using GPS data for insfilterNonholonomic
residualgps Residuals and residual covariance from GPS measurements for insfilterNonholonomic
pose Current orientation and position estimate for insfilterNonholonomic
predict Update states using accelerometer and gyroscope data for insfilterNonholonomic
reset Reset internal states for insfilterNonholonomic
stateinfo Display state vector information for insfilterNonholonomic
tune Tune insfilterNonholonomic parameters to reduce estimation error
copy Create copy of insfitlerNonholonomic

Examples

Estimate Pose of Ground Vehicle

This example shows how to estimate the pose of a ground vehicle from logged IMU and GPS sensor
measurements and ground truth orientation and position.

Load the logged data of a ground vehicle following a circular trajectory.

load('loggedGroundVehicleCircle.mat','imuFs','localOrigin','initialState','initialStateCovariance','accelData',...
      'gyroData','gpsFs','gpsLLA','Rpos','gpsVel','Rvel','trueOrient','truePos');

Initialize the insfilterNonholonomic object.

filt = insfilterNonholonomic;
filt.IMUSampleRate = imuFs;
filt.ReferenceLocation = localOrigin;
filt.State = initialState;
filt.StateCovariance = initialStateCovariance;
    
imuSamplesPerGPS = imuFs/gpsFs;

Log data for final metric computation. Use the predict object function to estimate filter state based
on accelerometer and gyroscope data. Then correct the filter state according to GPS data.

numIMUSamples = size(accelData,1);
estOrient = quaternion.ones(numIMUSamples,1);
estPos = zeros(numIMUSamples,3);
    
gpsIdx = 1;

for idx = 1:numIMUSamples
    predict(filt,accelData(idx,:),gyroData(idx,:));       %Predict filter state
    
    if (mod(idx,imuSamplesPerGPS) == 0)                   %Correct filter state
        fusegps(filt,gpsLLA(gpsIdx,:),Rpos,gpsVel(gpsIdx,:),Rvel);
        gpsIdx = gpsIdx + 1;
    end
    
    [estPos(idx,:),estOrient(idx,:)] = pose(filt);        %Log estimated pose
end

Calculate and display RMS errors.
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posd = estPos - truePos;
quatd = rad2deg(dist(estOrient,trueOrient));
msep = sqrt(mean(posd.^2));

fprintf('Position RMS Error\n\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',msep(1),msep(2),msep(3));   

Position RMS Error
    X: 0.15, Y: 0.11, Z: 0.01 (meters)

    
fprintf('Quaternion Distance RMS Error\n\t%.2f (degrees)\n\n',sqrt(mean(quatd.^2)));

Quaternion Distance RMS Error
    0.26 (degrees)

Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterNonholonomic uses a 16-axis error state Kalman filter structure to estimate pose in the
NED reference frame. The state is defined as:

x =

q0
q1
q2
q3

gyrobiasX
gyrobiasY
gyrobiasZ
positionN
positionE
positionD

vN
vE
vD

accelbiasX
accelbiasY
accelbiasZ

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame
rotation from the platform's current orientation to the local NED coordinate system.

• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
• positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.
• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
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• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.

Given the conventional formulation of the state transition function,

xk k− 1 = f (x k− 1 k− 1)

the predicted state estimate is:
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xk k− 1 =

q0 + Δt ∗ q1(gyrobiasX/2− gyroX/2) + Δt ∗ q2 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q3 ∗ (gyrobiasZ/2− gyroZ/2)
q1− Δt ∗ q0(gyrobiasX/2− gyroX/2) + Δt ∗ q3 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q2 ∗ (gyrobiasZ/2− gyroZ/2)
q2− Δt ∗ q3(gyrobiasX/2− gyroX/2)− Δt ∗ q0 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q1 ∗ (gyrobiasZ/2− gyroZ/2)
q3 + Δt ∗ q2(gyrobiasX/2− gyroX/2)− Δt ∗ q1 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q0 ∗ (gyrobiasZ/2− gyroZ/2)

−gryobiasX ∗ (Δt ∗ λgyro− 1)
−gryobiasY ∗ (Δt ∗ λgyro− 1)
−gryobiasZ ∗ (Δt ∗ λgyro− 1)

positionN + Δt ∗ vN
positionE + Δt ∗ vE
positionD + Δt ∗ vD

vN + Δt ∗

q0 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ − gN +
q2 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q1 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ −
q3 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ

vE + Δt ∗

q0 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ − gE−
q1 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q2 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ +
q3 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ

vD + Δt ∗

q0 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ − gD +
q1 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ −
q2 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ +
q3 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ

−accelbiasX ∗ (Δt ∗ λaccel− 1)
−accelbiasY ∗ (Δt ∗ λaccel− 1)
−accelbiasZ ∗ (Δt ∗ λaccel− 1)

2 Classes

2-908



where

• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.
• accelX, accelY, accelZ –– Acceleration vector in the body frame.
• λaccel –– Accelerometer bias decay factor.
• λgyro –– Gyroscope bias decay factor.

Version History
Introduced in R2018b

References
[1] Munguía, R. "A GPS-Aided Inertial Navigation System in Direct Configuration." Journal of applied

research and technology. Vol. 12, Number 4, 2014, pp. 803 – 814.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterMARG | insfilterErrorState | insfilterAsync
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correct
Correct states using direct state measurements for insfilterNonholonomic

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance based on the measurement and measurement covariance. The
measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

idx — State vector Index of measurement to correct
N-element vector of increasing integers in the range [1,16]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1,16].

The state values represent:

State Units Index
Orientation (quaternion parts)  1:4
Gyroscope bias (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix
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Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N is the
number of elements of the index argument, idx.
Data Types: single | double

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic
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copy
Create copy of insfitlerNonholonomic

Syntax
newFilter = copy(filter)

Description
newFilter = copy(filter) returns a copy of the insfilterNonholonomic, filter, with the
exactly same property values.

Input Arguments
filter — Filter to be copied
insfitlerNonholonomic

Filter to be copied, specified as an insfilterNonholonomic object.

Output Arguments
newFilter — New copied filter
insfitlerNonholonomic

New copied filter, returned as an insfilterNonholonomic object.

Version History
Introduced in R2020b

See Also
insfilterNonholonomic
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fusegps
Correct states using GPS data for insfilterNonholonomic

Syntax
[res,resCov] = fusegps(FUSE,position,positionCovariance)
[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = fusegps(FUSE,position,positionCovariance) fuses GPS position data to
correct the state estimate.

[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS position and velocity data to correct the state estimate.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix
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Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and course residual
1-by-4 vector of real values

Position and course residual, returned as a 1-by-6 vector of real values in m and rad/s, respectively.

resCov — Residual covariance
4-by-4 matrix of real values

Residual covariance, returned as a 4-by-4 matrix of real values.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic
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pose
Current orientation and position estimate for insfilterNonholonomic

Syntax
[position,orientation,velocity] = pose(FUSE)
[position,orientation,velocity] = pose(FUSE,format)

Description
[position,orientation,velocity] = pose(FUSE) returns the current estimate of the pose.

[position,orientation,velocity] = pose(FUSE,format)returns the current estimate of the
pose with orientation in the specified orientation format.

Input Arguments
FUSE — NHConstrainedIMUGPSFuser object
object

insfilterNonholonomic, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate expressed in the local coordinate system (m)
three-element row vector

Position estimate expressed in the local coordinate system of the filter in meters, returned as a three-
element row vector.
Data Types: single | double

orientation — Orientation estimate expressed in the local coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate expressed in the local coordinate system of the filter, returned as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix represents a frame rotation
from the local reference frame of the filter to the body reference frame.
Data Types: single | double | quaternion

velocity — Velocity estimate expressed in local coordinate system (m/s)
3-element row vector
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Velocity estimate expressed in the local coordinate system of the filter in m/s, returned as a 3-element
row vector.
Data Types: single | double

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic
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predict
Update states using accelerometer and gyroscope data for insfilterNonholonomic

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope data to
update the state estimate.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic
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reset
Reset internal states for insfilterNonholonomic

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their default values.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic
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residual
Residuals and residual covariances from direct state measurements for insfilterNonholonomic

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

idx — State vector Index of measurement to correct
N-element vector of increasing integers in the range [1,16]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1,16].

The state values represent:

State Units Index
Orientation (quaternion parts)  1:4
Gyroscope bias (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

measurementCovariance — Covariance of measurement
N-by-N matrix

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.

 residual

2-919



Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic
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residualgps
Residuals and residual covariance from GPS measurements for insfilterNonholonomic

Syntax
[res,resCov] = residualgps(FUSE,position,positionCovariance)
[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = residualgps(FUSE,position,positionCovariance) computes the
residual, res, and the residual covariance, resCov, based on the GPS position measurement and
covariance.

[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance) computes the residual, res, and the residual covariance, resCov, based on
the GPS position measurement and covariance.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix
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Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and course residual
1-by-3 vector of real values | 1-by-4 vector of real values

Position and course residual, returned as a 1-by-3 vector of real values the inputs only contain
position information, and returned as a 1-by-4 vector of real values if the inputs also contain velocity
information.

resCov — Residual covariance
3-by-3 matrix of real values | 4-by-4 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values if the inputs only contain position
information, and a 4-by-4 vector of real values if the inputs also contain velocity information.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterNonholonomic
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stateinfo
Display state vector information for insfilterNonholonomic

Syntax
stateinfo(FUSE)
info = stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the associated
units.

info = stateinfo(FUSE) returns a structure with fields containing descriptions of the elements of
the state vector of the filter, FUSE.

Examples

State information of insfilterNonholonomic

Create an insfilterNonholonomic object.

filter = insfilterErrorState;

Display the state information of the created filter.

stateinfo(filter)

States                            Units    Index
Orientation (quaternion parts)             1:4  
Position (NAV)                    m        5:7  
Velocity (NAV)                    m/s      8:10 
Gyroscope Bias (XYZ)              rad/s    11:13
Accelerometer Bias (XYZ)          m/s²     14:16
Visual Odometry Scale                      17   

Output the state information of the filter as a structure.

info = stateinfo(filter)

info = struct with fields:
            Orientation: [1 2 3 4]
               Position: [5 6 7]
               Velocity: [8 9 10]
          GyroscopeBias: [11 12 13]
      AccelerometerBias: [14 15 16]
    VisualOdometryScale: 17
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Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

Output Arguments
info — State information
structure

State information, returned as a structure. The field names of the structure are names of the
elements of the state vector in the filter. The values of each field are the corresponding indices of the
state vector.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic
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tune
Tune insfilterNonholonomic parameters to reduce estimation error

Syntax
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth)
tunedMeasureNoise = tune( ___ ,config)

Description
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth) adjusts the
properties of the insfilterNonholonomic filter object, filter, and measurement noises to
reduce the root-mean-squared (RMS) state estimation error between the fused sensor data and the
ground truth. The function also returns the tuned measurement noise, tunedMeasureNoise. The
function uses the property values in the filter and the measurement noise provided in the
measureNoise structure as the initial estimate for the optimization algorithm.

tunedMeasureNoise = tune( ___ ,config) specifies the tuning configuration based on a
tunerconfig object, config.

Examples

Tune insfilterNonholonomic to Optimize Pose Estimate

Load the recorded sensor data and ground truth data.

load('insfilterNonholonomicTuneData.mat');

Create tables for the sensor data and the truth data.

sensorData = table(Accelerometer, Gyroscope, ...
        GPSPosition, GPSVelocity);
groundTruth = table(Orientation, Position);

Create an insfilterNonholonimic filter object.

filter = insfilterNonholonomic('State', initialState, ...
        'StateCovariance', initialStateCovariance, ...
        'DecimationFactor', 1);

Create a tuner configuration object for the filter. Set the maximum number of iterations to 30.

config = tunerconfig('insfilterNonholonomic','MaxIterations',30);

Use the tunernoise function to obtain a set of initial sensor noises used in the filter.

measNoise = tunernoise('insfilterNonholonomic')

measNoise = struct with fields:
    GPSPositionNoise: 1
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    GPSVelocityNoise: 1

Tune the filter and obtain the tuned measurement noise.

tunedNoise = tune(filter,measNoise,sensorData,groundTruth,config);

    Iteration    Parameter                       Metric
    _________    _________                       ______
    1            GyroscopeNoise                  3.4877
    1            AccelerometerNoise              3.3961
    1            GyroscopeBiasNoise              3.3961
    1            GyroscopeBiasDecayFactor        3.3961
    1            AccelerometerBiasNoise          3.3961
    1            AccelerometerBiasDecayFactor    3.3961
    1            ZeroVelocityConstraintNoise     3.3935
    1            GPSPositionNoise                3.2848
    1            GPSVelocityNoise                3.2798
    2            GyroscopeNoise                  3.2641
    2            AccelerometerNoise              3.1715
    2            GyroscopeBiasNoise              3.1715
    2            GyroscopeBiasDecayFactor        2.9661
    2            AccelerometerBiasNoise          2.9661
    2            AccelerometerBiasDecayFactor    2.9661
    2            ZeroVelocityConstraintNoise     2.9617
    2            GPSPositionNoise                2.8438
    2            GPSVelocityNoise                2.8384
    3            GyroscopeNoise                  2.8373
    3            AccelerometerNoise              2.7382
    3            GyroscopeBiasNoise              2.7382
    3            GyroscopeBiasDecayFactor        2.7382
    3            AccelerometerBiasNoise          2.7382
    3            AccelerometerBiasDecayFactor    2.7382
    3            ZeroVelocityConstraintNoise     2.7335
    3            GPSPositionNoise                2.6105
    3            GPSVelocityNoise                2.6045
    4            GyroscopeNoise                  2.6023
    4            AccelerometerNoise              2.5001
    4            GyroscopeBiasNoise              2.5001
    4            GyroscopeBiasDecayFactor        2.5001
    4            AccelerometerBiasNoise          2.5001
    4            AccelerometerBiasDecayFactor    2.5001
    4            ZeroVelocityConstraintNoise     2.4953
    4            GPSPositionNoise                2.3692
    4            GPSVelocityNoise                2.3626
    5            GyroscopeNoise                  2.3595
    5            AccelerometerNoise              2.2561
    5            GyroscopeBiasNoise              2.2561
    5            GyroscopeBiasDecayFactor        2.2508
    5            AccelerometerBiasNoise          2.2508
    5            AccelerometerBiasDecayFactor    2.2508
    5            ZeroVelocityConstraintNoise     2.2469
    5            GPSPositionNoise                2.1265
    5            GPSVelocityNoise                2.1191
    6            GyroscopeNoise                  2.1148
    6            AccelerometerNoise              2.0150
    6            GyroscopeBiasNoise              2.0150
    6            GyroscopeBiasDecayFactor        2.0150
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    6            AccelerometerBiasNoise          2.0150
    6            AccelerometerBiasDecayFactor    2.0150
    6            ZeroVelocityConstraintNoise     2.0116
    6            GPSPositionNoise                1.8970
    6            GPSVelocityNoise                1.8888
    7            GyroscopeNoise                  1.8847
    7            AccelerometerNoise              1.7921
    7            GyroscopeBiasNoise              1.7921
    7            GyroscopeBiasDecayFactor        1.7845
    7            AccelerometerBiasNoise          1.7845
    7            AccelerometerBiasDecayFactor    1.7845
    7            ZeroVelocityConstraintNoise     1.7815
    7            GPSPositionNoise                1.6794
    7            GPSVelocityNoise                1.6708
    8            GyroscopeNoise                  1.6679
    8            AccelerometerNoise              1.5886
    8            GyroscopeBiasNoise              1.5886
    8            GyroscopeBiasDecayFactor        1.5866
    8            AccelerometerBiasNoise          1.5866
    8            AccelerometerBiasDecayFactor    1.5866
    8            ZeroVelocityConstraintNoise     1.5850
    8            GPSPositionNoise                1.5057
    8            GPSVelocityNoise                1.4965
    9            GyroscopeNoise                  1.4950
    9            AccelerometerNoise              1.4364
    9            GyroscopeBiasNoise              1.4364
    9            GyroscopeBiasDecayFactor        1.4364
    9            AccelerometerBiasNoise          1.4364
    9            AccelerometerBiasDecayFactor    1.4364
    9            ZeroVelocityConstraintNoise     1.4355
    9            GPSPositionNoise                1.3894
    9            GPSVelocityNoise                1.3790
    10           GyroscopeNoise                  1.3773
    10           AccelerometerNoise              1.3422
    10           GyroscopeBiasNoise              1.3422
    10           GyroscopeBiasDecayFactor        1.3421
    10           AccelerometerBiasNoise          1.3421
    10           AccelerometerBiasDecayFactor    1.3421
    10           ZeroVelocityConstraintNoise     1.3399
    10           GPSPositionNoise                1.3319
    10           GPSVelocityNoise                1.3190
    11           GyroscopeNoise                  1.3159
    11           AccelerometerNoise              1.3102
    11           GyroscopeBiasNoise              1.3102
    11           GyroscopeBiasDecayFactor        1.3100
    11           AccelerometerBiasNoise          1.3100
    11           AccelerometerBiasDecayFactor    1.3100
    11           ZeroVelocityConstraintNoise     1.3069
    11           GPSPositionNoise                1.2964
    11           GPSVelocityNoise                1.2762
    12           GyroscopeNoise                  1.2740
    12           AccelerometerNoise              1.2655
    12           GyroscopeBiasNoise              1.2655
    12           GyroscopeBiasDecayFactor        1.2641
    12           AccelerometerBiasNoise          1.2641
    12           AccelerometerBiasDecayFactor    1.2641
    12           ZeroVelocityConstraintNoise     1.2631
    12           GPSPositionNoise                1.2511
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    12           GPSVelocityNoise                1.2198
    13           GyroscopeNoise                  1.2184
    13           AccelerometerNoise              1.2058
    13           GyroscopeBiasNoise              1.2058
    13           GyroscopeBiasDecayFactor        1.2029
    13           AccelerometerBiasNoise          1.2029
    13           AccelerometerBiasDecayFactor    1.2029
    13           ZeroVelocityConstraintNoise     1.2029
    13           GPSPositionNoise                1.1874
    13           GPSVelocityNoise                1.1408
    14           GyroscopeNoise                  1.1403
    14           AccelerometerNoise              1.1236
    14           GyroscopeBiasNoise              1.1236
    14           GyroscopeBiasDecayFactor        1.1186
    14           AccelerometerBiasNoise          1.1186
    14           AccelerometerBiasDecayFactor    1.1186
    14           ZeroVelocityConstraintNoise     1.1183
    14           GPSPositionNoise                1.0975
    14           GPSVelocityNoise                1.0348
    15           GyroscopeNoise                  1.0347
    15           AccelerometerNoise              1.0155
    15           GyroscopeBiasNoise              1.0155
    15           GyroscopeBiasDecayFactor        1.0081
    15           AccelerometerBiasNoise          1.0081
    15           AccelerometerBiasDecayFactor    1.0081
    15           ZeroVelocityConstraintNoise     1.0076
    15           GPSPositionNoise                0.9813
    15           GPSVelocityNoise                0.9078
    16           GyroscopeNoise                  0.9074
    16           AccelerometerNoise              0.8926
    16           GyroscopeBiasNoise              0.8926
    16           GyroscopeBiasDecayFactor        0.8823
    16           AccelerometerBiasNoise          0.8823
    16           AccelerometerBiasDecayFactor    0.8823
    16           ZeroVelocityConstraintNoise     0.8815
    16           GPSPositionNoise                0.8526
    16           GPSVelocityNoise                0.7926
    17           GyroscopeNoise                  0.7920
    17           AccelerometerNoise              0.7870
    17           GyroscopeBiasNoise              0.7870
    17           GyroscopeBiasDecayFactor        0.7742
    17           AccelerometerBiasNoise          0.7742
    17           AccelerometerBiasDecayFactor    0.7742
    17           ZeroVelocityConstraintNoise     0.7730
    17           GPSPositionNoise                0.7665
    17           GPSVelocityNoise                0.7665
    18           GyroscopeNoise                  0.7662
    18           AccelerometerNoise              0.7638
    18           GyroscopeBiasNoise              0.7638
    18           GyroscopeBiasDecayFactor        0.7495
    18           AccelerometerBiasNoise          0.7495
    18           AccelerometerBiasDecayFactor    0.7495
    18           ZeroVelocityConstraintNoise     0.7482
    18           GPSPositionNoise                0.7482
    18           GPSVelocityNoise                0.7475
    19           GyroscopeNoise                  0.7474
    19           AccelerometerNoise              0.7474
    19           GyroscopeBiasNoise              0.7474
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    19           GyroscopeBiasDecayFactor        0.7474
    19           AccelerometerBiasNoise          0.7474
    19           AccelerometerBiasDecayFactor    0.7474
    19           ZeroVelocityConstraintNoise     0.7453
    19           GPSPositionNoise                0.7416
    19           GPSVelocityNoise                0.7382
    20           GyroscopeNoise                  0.7378
    20           AccelerometerNoise              0.7370
    20           GyroscopeBiasNoise              0.7370
    20           GyroscopeBiasDecayFactor        0.7370
    20           AccelerometerBiasNoise          0.7370
    20           AccelerometerBiasDecayFactor    0.7370
    20           ZeroVelocityConstraintNoise     0.7345
    20           GPSPositionNoise                0.7345
    20           GPSVelocityNoise                0.7345
    21           GyroscopeNoise                  0.7334
    21           AccelerometerNoise              0.7334
    21           GyroscopeBiasNoise              0.7334
    21           GyroscopeBiasDecayFactor        0.7334
    21           AccelerometerBiasNoise          0.7334
    21           AccelerometerBiasDecayFactor    0.7334
    21           ZeroVelocityConstraintNoise     0.7306
    21           GPSPositionNoise                0.7279
    21           GPSVelocityNoise                0.7268
    22           GyroscopeNoise                  0.7248
    22           AccelerometerNoise              0.7247
    22           GyroscopeBiasNoise              0.7247
    22           GyroscopeBiasDecayFactor        0.7234
    22           AccelerometerBiasNoise          0.7234
    22           AccelerometerBiasDecayFactor    0.7234
    22           ZeroVelocityConstraintNoise     0.7207
    22           GPSPositionNoise                0.7206
    22           GPSVelocityNoise                0.7170
    23           GyroscopeNoise                  0.7138
    23           AccelerometerNoise              0.7134
    23           GyroscopeBiasNoise              0.7134
    23           GyroscopeBiasDecayFactor        0.7134
    23           AccelerometerBiasNoise          0.7134
    23           AccelerometerBiasDecayFactor    0.7134
    23           ZeroVelocityConstraintNoise     0.7122
    23           GPSPositionNoise                0.7122
    23           GPSVelocityNoise                0.7122
    24           GyroscopeNoise                  0.7081
    24           AccelerometerNoise              0.7080
    24           GyroscopeBiasNoise              0.7080
    24           GyroscopeBiasDecayFactor        0.7080
    24           AccelerometerBiasNoise          0.7080
    24           AccelerometerBiasDecayFactor    0.7080
    24           ZeroVelocityConstraintNoise     0.7080
    24           GPSPositionNoise                0.7080
    24           GPSVelocityNoise                0.7072
    25           GyroscopeNoise                  0.7009
    25           AccelerometerNoise              0.7009
    25           GyroscopeBiasNoise              0.7009
    25           GyroscopeBiasDecayFactor        0.7007
    25           AccelerometerBiasNoise          0.7007
    25           AccelerometerBiasDecayFactor    0.7007
    25           ZeroVelocityConstraintNoise     0.7005

 tune

2-929



    25           GPSPositionNoise                0.6997
    25           GPSVelocityNoise                0.6997
    26           GyroscopeNoise                  0.6912
    26           AccelerometerNoise              0.6906
    26           GyroscopeBiasNoise              0.6906
    26           GyroscopeBiasDecayFactor        0.6906
    26           AccelerometerBiasNoise          0.6906
    26           AccelerometerBiasDecayFactor    0.6906
    26           ZeroVelocityConstraintNoise     0.6896
    26           GPSPositionNoise                0.6896
    26           GPSVelocityNoise                0.6896
    27           GyroscopeNoise                  0.6840
    27           AccelerometerNoise              0.6831
    27           GyroscopeBiasNoise              0.6831
    27           GyroscopeBiasDecayFactor        0.6831
    27           AccelerometerBiasNoise          0.6831
    27           AccelerometerBiasDecayFactor    0.6831
    27           ZeroVelocityConstraintNoise     0.6818
    27           GPSPositionNoise                0.6816
    27           GPSVelocityNoise                0.6816
    28           GyroscopeNoise                  0.6816
    28           AccelerometerNoise              0.6809
    28           GyroscopeBiasNoise              0.6809
    28           GyroscopeBiasDecayFactor        0.6809
    28           AccelerometerBiasNoise          0.6809
    28           AccelerometerBiasDecayFactor    0.6809
    28           ZeroVelocityConstraintNoise     0.6804
    28           GPSPositionNoise                0.6802
    28           GPSVelocityNoise                0.6802
    29           GyroscopeNoise                  0.6793
    29           AccelerometerNoise              0.6785
    29           GyroscopeBiasNoise              0.6785
    29           GyroscopeBiasDecayFactor        0.6785
    29           AccelerometerBiasNoise          0.6785
    29           AccelerometerBiasDecayFactor    0.6785
    29           ZeroVelocityConstraintNoise     0.6778
    29           GPSPositionNoise                0.6773
    29           GPSVelocityNoise                0.6773
    30           GyroscopeNoise                  0.6773
    30           AccelerometerNoise              0.6769
    30           GyroscopeBiasNoise              0.6769
    30           GyroscopeBiasDecayFactor        0.6769
    30           AccelerometerBiasNoise          0.6769
    30           AccelerometerBiasDecayFactor    0.6769
    30           ZeroVelocityConstraintNoise     0.6769
    30           GPSPositionNoise                0.6769
    30           GPSVelocityNoise                0.6769

Fuse the sensor data using the tuned filter. Obtain estimated pose and orientation.

N = size(sensorData,1);
qEstTuned = quaternion.zeros(N,1);
posEstTuned = zeros(N,3);
for ii=1:N
    predict(filter,Accelerometer(ii,:),Gyroscope(ii,:));
    if all(~isnan(GPSPosition(ii,1)))
        fusegps(filter, GPSPosition(ii,:), ...
            tunedNoise.GPSPositionNoise,GPSVelocity(ii,:), ...
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            tunedNoise.GPSVelocityNoise);
    end
    [posEstTuned(ii,:),qEstTuned(ii,:)] = pose(filter);
end

Compute the RMS errors.

orientationErrorTuned = rad2deg(dist(qEstTuned,Orientation));
rmsOrientationErrorTuned = sqrt(mean(orientationErrorTuned.^2))

rmsOrientationErrorTuned = 1.6857

positionErrorTuned = sqrt(sum((posEstTuned-Position).^2,2));
rmsPositionErrorTuned = sqrt(mean(positionErrorTuned.^2))

rmsPositionErrorTuned = 1.6667

Visualize the results.

figure;
t = (0:N-1)./filter.IMUSampleRate;
subplot(2,1,1)
plot(t,positionErrorTuned,'b');
title("Tuned insfilterNonholonomic" + newline + ...
    "Euclidean Distance Position Error")
xlabel('Time (s)');
ylabel('Position Error (meters)')
subplot(2,1,2)
plot(t,orientationErrorTuned,'b');
title("Orientation Error")
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');
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Input Arguments
filter — Filter object
infilterAsync object

Filter object, specified as an insfilterNonholonomic object.

measureNoise — Measurement noise
structure

Measurement noise, specified as a structure. The function uses the measurement noise input as the
initial guess for tuning the measurement noise. The structure must contain these fields:

Field name Description
GPSPositionNoise Variance of GPS position noise, specified as a

scalar in m2

GPSVelocityNoise Variance of GPS velocity noise, specified as a
scalar in (m/s)2

Data Types: struct

sensorData — Sensor data
table
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Sensor data, specified as a table. In each row, the sensor data is specified as:

• Accelerometer — Accelerometer data, specified as a 1-by-3 vector of scalars in m2/s.
• Gyroscope — Gyroscope data, specified as a 1-by-3 vector of scalars in rad/s.
• GPSPosition — GPS position data, specified as a 1-by-3 vector of latitude in degrees, longitude

in degrees, and altitude in meters.
• GPSVelocity — GPS velocity data, specified as a 1-by-3 vector of scalars in m/s.

If the GPS sensor does not produce complete measurements, specify the corresponding entry for
GPSPosition and/or GPSVelocity as NaN. If you set the Cost property of the tuner configuration
input, config, to Custom, then you can use other data types for the sensorData input based on
your choice.
Data Types: table

groundTruth — Ground truth data
table

Ground truth data, specified as a table. In each row, the table can optionally contain any of these
variables:

• Orientation — Orientation from the navigation frame to the body frame, specified as a
quaternion or a 3-by-3 rotation matrix.

• Position — Position in navigation frame, specified as a 1-by-3 vector of scalars in meters.
• Velocity — Velocity in navigation frame, specified as a 1-by-3 vector of scalars in m/s.
• GyroscopeBias — Gyroscope delta angle bias in body frame, specified as a 1-by-3 vector of

scalars in rad/s.
• AccelerometerBias — Accelerometer delta angle bias in body frame, specified as a 1-by-3

vector of scalars in m2/s.

The function processes each row of the sensorData and groundTruth tables sequentially to
calculate the state estimate and RMS error from the ground truth. State variables not present in
groundTruth input are ignored for the comparison. The sensorData and the groundTruth tables
must have the same number of rows.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the groundTruth input based on your choice.
Data Types: table

config — Tuner configuration
tunerconfig object

Tuner configuration, specified as a tunerconfig object.

Output Arguments
tunedMeasureNoise — Tuned measurement noise
structure

Tuned measurement noise, returned as a structure. The structure contains these fields.
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Field name Description
GPSPositionNoise Variance of GPS position noise, specified as a

scalar in m2

GPSVelocityNoise Variance of GPS velocity noise, specified as a
scalar in (m/s)2

Data Types: struct

Version History
Introduced in R2020b

References
[1] Abbeel, Pieter, et al. “Discriminative Training of Kalman Filters.” Robotics: Science and Systems I,

Robotics: Science and Systems Foundation, 2005. DOI.org (Crossref), doi:10.15607/
RSS.2005.I.038.

See Also
tunerconfig | tunernoise | insfilterNonholonomic
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occupancyMap
Create 2-D occupancy map

Description
occupancyMap creates a 2-D occupancy grid map object. Each cell in the occupancy grid has a value
representing the probability of the occupancy of that cell. Values close to 1 represent a high
probability that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

Occupancy maps are used in navigation algorithms such as path planning (see plannerRRT). They
are also used in mapping applications for finding collision-free paths, performing collision avoidance,
and calculating localization (see monteCarloLocalization). You can modify your occupancy map
to fit your specific application.

The occupancyMap objects support local coordinates, world coordinates, and grid indices. The first
grid location with index (1,1) begins in the top-left corner of the grid.

Use the occupancyMap class to create 2-D maps of an environment with probability values
representing different obstacles in your world. You can specify exact probability values of cells or
include observations from sensors such as laser scanners.

Probability values are stored using a binary Bayes filter to estimate the occupancy of each grid cell. A
log-odds representation is used, with values stored as int16 to reduce the map storage size and
allow for real-time applications.

Creation

Syntax
map = occupancyMap(width,height)
map = occupancyMap(width,height,resolution)
map = occupancyMap(rows,cols,resolution,'grid')
map = occupancyMap(p)
map = occupancyMap(p,resolution)
map = occupancyMap(sourcemap)
map = occupancyMap(sourcemap,resolution)

Description

map = occupancyMap(width,height) creates a 2-D occupancy map object representing a world
space of width and height in meters. The default grid resolution is 1 cell per meter.

map = occupancyMap(width,height,resolution) creates an occupancy map with a specified
grid resolution in cells per meter. resolution sets the “Resolution” on page 2-0  property.
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map = occupancyMap(rows,cols,resolution,'grid') creates an occupancy map with the
specified number of rows and columns and with the resolution in cells per meter. The values of rows
and cols sets the “GridSize” on page 2-0  property.

map = occupancyMap(p) creates an occupancy map from the values in matrix p. The grid size
matches the size of the matrix, with each cell probability value interpreted from the matrix location.

map = occupancyMap(p,resolution) creates an occupancy map from the specified matrix and
resolution in cells per meter.

map = occupancyMap(sourcemap) creates an object using values from another occupancyMap
object.

map = occupancyMap(sourcemap,resolution) creates an object using values from another
occupancyMap object, but resamples the matrix to have the specified resolution.

Input Arguments

width — Map width
scalar

Map width, specified as a scalar in meters.

height — Map height
scalar

Map height, specified as a scalar in meters.

resolution — Grid resolution
1 (default) | scalar

Grid resolution, specified as a scalar in cells per meter.

rows — Number of rows in grid
positive scalar integer

Number of rows in grid, specified as a positive scalar integer.

cols — Number of columns in grid
positive scalar integer

Number of columns in grid, specified as a positive scalar integer.

p — Input occupancy grid
matrix of probability values from 0 to 1

Input occupancy grid, specified as a matrix of probability values from 0 to 1. The size of the grid
matches the size of the matrix. Each matrix element corresponds to the probability of the grid cell
location being occupied. Values close to 1 represent a high certainty that the cell contains an
obstacle. Values close to 0 represent certainty that the cell is not occupied and obstacle free.

sourcemap — Occupancy map object
occupancyMap object

Occupancy map object, specified as a occupancyMap object.
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Properties
FreeThreshold — Threshold below which cells are considered obstacle-free
scalar between 0 and 1

Threshold below which cells are considered obstacle-free, specified as a scalar between 0 and 1
inclusive. Cells with probability values below this threshold are considered obstacle free. This
property also defines the free locations for path planning when using objects like plannerRRT.
Data Types: double

OccupiedThreshold — Threshold above which cells are considered occupied
scalar

Threshold above which cells are considered occupied, specified as a scalar. Cells with probability
values above this threshold are considered occupied.
Data Types: double

ProbabilitySaturation — Saturation limits for probability
[0.001 0.999] (default) | two-element real-valued vector

Saturation limits for probability, specified as a 1-by-2 real-valued vector of the form [min max]. The
probability values below min value will be saturated to min and the probability values above max
value will be saturated to max. This property reduces oversaturating of cells when incorporating
multiple observations.
Data Types: double

GridSize — Number of rows and columns in grid
two-element integer-valued vector

This property is read-only.

Number of rows and columns in grid, stored as a 1-by-2 real-valued vector representing the number
of rows and columns, in that order.
Data Types: double

Resolution — Grid resolution
1 (default) | scalar

This property is read-only.

Grid resolution, stored as a scalar in cells per meter representing the number and size of grid
locations.
Data Types: double

XLocalLimits — Minimum and maximum values of x-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of x-coordinates in local frame, stored as a two-element horizontal
vector of the form [min max]. Local frame is defined by LocalOriginInWorld property.
Data Types: double
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YLocalLimits — Minimum and maximum values of y-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of y-coordinates in local frame, stored as a two-element horizontal
vector of the form [min max]. Local frame is defined by LocalOriginInWorld property.
Data Types: double

XWorldLimits — Minimum and maximum world range values of x-coordinates
two-element vector

This property is read-only.

Minimum and maximum world range values of x-coordinates, stored as a 1-by-2 vector representing
the minimum and maximum values, in that order.
Data Types: double

YWorldLimits — Minimum and maximum world range values of y-coordinates
two-element vector

This property is read-only.

Minimum and maximum world range values of y-coordinates, stored as a 1-by-2 vector representing
the minimum and maximum values, in that order.
Data Types: double

GridLocationInWorld — [x y] world coordinates of grid
[0 0] (default) | two-element vector

[x,y] world coordinates of the bottom-left corner of the grid, specified as a 1-by-2 vector.
Data Types: double

LocalOriginInWorld — Location of the local frame in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the origin of the local frame in world coordinates, specified as a two-element vector,
[xLocal yLocal]. Use the move function to shift the local frame as your vehicle moves.
Data Types: double

GridOriginInLocal — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xLocal yLocal]

Location of the bottom-left corner of the grid in local coordinates, specified as a two-element vector,
[xLocal yLocal].
Data Types: double

DefaultValue — Default value for unspecified map locations
0.5 (default) | scalar between 0 and 1

Default value for unspecified map locations including areas outside the map, specified as a scalar
between 0 and 1 inclusive.

2 Classes

2-938



Data Types: double

Object Functions
checkOccupancy Check if locations are free or occupied
copy Create copy of 2-D occupancy map
getOccupancy Get occupancy probability of locations
grid2local Convert grid indices to local coordinates
grid2world Convert grid indices to world coordinates
inflate Inflate each occupied location
insertRay Insert ray from laser scan observation
local2grid Convert local coordinates to grid indices
local2world Convert local coordinates to world coordinates
move Move map in world frame
occupancyMatrix Convert occupancy map to matrix
raycast Compute cell indices along a ray
rayIntersection Find intersection points of rays and occupied map cells
setOccupancy Set occupancy probability of locations
show Display 2-D occupancy map
syncWith Sync map with overlapping map
updateOccupancy Update occupancy probability at locations
world2grid Convert world coordinates to grid indices
world2local Convert world coordinates to local coordinates

Examples

Insert Laser Scans into Occupancy Map

Create an empty occupancy grid map.

map = occupancyMap(10,10,20);

Specify the pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)
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Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = 0.7000

Add a second reading and view the update to the occupancy values. The additional reading increases
the confidence in the readings. The free and occupied values become more distinct.

insertRay(map,pose,scan,maxrange);
show(map)
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getOccupancy(map,[8 5])

ans = 0.8448

Convert PGM Image to Map

Convert a portable graymap (PGM) file containing a ROS map into an occupancyMap for use in
MATLAB.

Import the image using imread. Crop the image to the playpen area.

image = imread('playpen_map.pgm');
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)
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PGM values are expressed from 0 to 255 as uint8. Normalize these values by converting the cropped
image to double and dividing each cell by 255. This image shows obstacles as values close to 0.
Subtract the normalized image from 1 to get occupancy values with 1 representing occupied space.

imageNorm = double(imageCropped)/255;
imageOccupancy = 1 - imageNorm;

Create the occupancyMap object using an adjusted map image. The imported map resolution is 20
cells per meter.

map = occupancyMap(imageOccupancy,20);
show(map)
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Limitations
Occupancy values have a limited resolution of ±0.001. The values are stored as int16 using a log-
odds representation. This data type limits resolution, but saves memory when storing large maps in
MATLAB. When calling setOccupancy and then getOccupancy, the value returned might not equal
the value you set. For more information, see the log-odds representations section in “Occupancy
Grids”.

If memory size is a limitation, consider using binaryOccupancyMap instead. The binary occupancy
map uses less memory with binary values, but still works with Navigation Toolbox algorithms and
other applications.
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

As of MATLAB R2022a, default map behavior during code generation has changed, which may result
in backwards compatibility issues. Maps such as occupancyMap now support fixed-size code
generation (DynamicMemoryAllocation="off").

1 Maps that are either default-constructed or constructed with compile-time constant size
information (or matrices that are of compile-time constant size) produce fixed-size maps.

2 To restore the previous behavior, use the coder.ignoreConst function when specifying size
inputs, or coder.varsize matrix variable name specified as a string scalar or character vector,
prior to constructing the map.

See Also
binaryOccupancyMap | mobileRobotPRM | controllerPurePursuit | rosReadOccupancyGrid
| rosWriteOccupancyGrid

Topics
“Create Egocentric Occupancy Maps Using Range Sensors”
“Build Occupancy Map from Lidar Scans and Poses”
“Occupancy Grids”
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checkOccupancy
Check if locations are free or occupied

Syntax
iOccval = checkOccupancy(map,xy)
iOccval = checkOccupancy(map,xy,'local')
iOccval = checkOccupancy(map,ij,'grid')
[iOccval,validPts] = checkOccupancy( ___ )

occMatrix = checkOccupancy(map)
occMatrix = checkOccupancy(map,bottomLeft,matSize)
occMatrix = checkOccupancy(map,bottomLeft,matSize,'local')
occMatrix = checkOccupancy(map,topLeft,matSize,'grid')

Description
iOccval = checkOccupancy(map,xy) returns an array of occupancy values at the xy locations.
Each row is a separate xy location in the grid. Occupancy values can be obstacle free (0), occupied
(1), or unknown (–1) based on the OccupiedThreshold and FreeThreshold properties of the map
object.

iOccval = checkOccupancy(map,xy,'local') returns an array of occupancy values at the xy
locations in the local frame. The local frame is based on the LocalOriginInWorld property of the
map.

iOccval = checkOccupancy(map,ij,'grid') specifies ij grid cell indices instead of xy
locations.

[iOccval,validPts] = checkOccupancy( ___ ) also outputs an n-element vector of logical
values indicating whether input coordinates are within the map limits.

occMatrix = checkOccupancy(map) returns a matrix that contains the occupancy status of each
location. Obstacle-free cells return 0, occupied cells return 1. Unknown locations, including outside
the map, return -1.

occMatrix = checkOccupancy(map,bottomLeft,matSize) returns a matrix of occupancy
values by specifying the bottom-left corner location in world coordinates and the matrix size in
meters.

occMatrix = checkOccupancy(map,bottomLeft,matSize,'local') returns a matrix of
occupancy values by specifying the bottom-left corner location in local coordinates and the matrix
size in meters.

occMatrix = checkOccupancy(map,topLeft,matSize,'grid') returns a matrix of occupancy
values by specifying the top-left corner location in grid coordinates and the grid size.

Examples
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Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and free thresholds
of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = 0.5*ones(20,20);
p(11:20,11:20) = 0.75*ones(10,10);
map = occupancyMap(p,10);

Get the occupancy of different locations and check their occupancy statuses. The occupancy status
returns 0 for free space and 1 for occupied space. Unknown values return –1.

pocc = getOccupancy(map,[1.5 1])

pocc = 0.7500

occupied = checkOccupancy(map,[1.5 1])

occupied = 1

pocc2 = getOccupancy(map,[5 5],'grid')

pocc2 = 0.5000

occupied2 = checkOccupancy(map,[5 5],'grid')

occupied2 = -1

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high certainty that the cell contains an obstacle.
Values close to 0 represent certainty that the cell is not occupied and obstacle free.

xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
Data Types: double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format, where n is the
number of grid positions.
Data Types: double
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bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength], or [gridRow
gridCol]. Size is in world, local, or grid coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
iOccval — Interpreted occupancy values
n-by-1 column vector

Interpreted occupancy values, returned as an n-by-1 column vector equal in length to xy or ij.

Occupancy values can be obstacle free (0), occupied (1), or unknown (–1). These values are
determined from the actual probability values and the OccupiedThreshold and FreeThreshold
properties of the map object.

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

occMatrix — Matrix of occupancy values
matrix

Matrix of occupancy values, returned as matrix with size equal to matSize or the size of your map.
Occupancy values can be obstacle free (0), occupied (1), or unknown (-1).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
occupancyMap | getOccupancy | binaryOccupancyMap
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copy
Create copy of 2-D occupancy map

Syntax
copyMap = copy(map)

Description
copyMap = copy(map) creates a deep copy of the occupancyMap object with the same properties.

Examples

Copy Occupancy Grid Map

Copy an occupancy grid map object. Once copied, the original object can be modified without
affecting the copied map.

Create an occupancy grid with zeros for an empty map.

p = zeros(10);
map = occupancyMap(p);

Copy the occupancy grid map. Modify the original map. The copied map is not modified. Plot the two
maps side by side.

mapCopy = copy(map);
setOccupancy(map,[1:3;1:3]',ones(3,1));
subplot(1,2,1)
show(map)
title('Original map')
subplot(1,2,2)
show(mapCopy)
title('Copied map')
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

Output Arguments
copyMap — Copied map representation
occupancyMap object

Map representation, specified as a occupancyMap object. The properties are the same as the input
object, map, but the copy has a different object handle.

Version History
Introduced in R2019b
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See Also
binaryOccupancyMap | occupancyMap | occupancyMatrix | getOccupancy

Topics
“Occupancy Grids”
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getOccupancy
Get occupancy probability of locations

Syntax
occVal = getOccupancy(map,xy)
occVal = getOccupancy(map,xy,'local')
occVal = getOccupancy(map,ij,'grid')
[occVal,validPts] = getOccupancy( ___ )

occMatrix = getOccupancy(map)
occMatrix = getOccupancy(map,bottomLeft,matSize)
occMatrix = getOccupancy(map,bottomLeft,matSize,'local')
occMatrix = getOccupancy(map,topLeft,matSize,'grid')

Description
occVal = getOccupancy(map,xy) returns an array of probability occupancy values at the xy
locations in the world frame. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.
Unknown locations, including outside the map, return map.DefaultValue.

occVal = getOccupancy(map,xy,'local') returns an array of occupancy values at the xy
locations in the local frame.

occVal = getOccupancy(map,ij,'grid') specifies ij grid cell indices instead of xy locations.

[occVal,validPts] = getOccupancy( ___ ) additionally outputs an n-element vector of logical
values indicating whether input coordinates are within the map limits.

occMatrix = getOccupancy(map) returns all occupancy values in the map as a matrix.

occMatrix = getOccupancy(map,bottomLeft,matSize) returns a matrix of occupancy values
by specifying the bottom-left corner location in world coordinates and the matrix size in meters.

occMatrix = getOccupancy(map,bottomLeft,matSize,'local') returns a matrix of
occupancy values by specifying the bottom-left corner location in local coordinates and the matrix
size in meters.

occMatrix = getOccupancy(map,topLeft,matSize,'grid') returns a matrix of occupancy
values by specifying the top-left corner location in grid indices and the matrix size.

Examples

Insert Laser Scans into Occupancy Map

Create an empty occupancy grid map.

map = occupancyMap(10,10,20);
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Specify the pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)

Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = 0.7000

Add a second reading and view the update to the occupancy values. The additional reading increases
the confidence in the readings. The free and occupied values become more distinct.
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insertRay(map,pose,scan,maxrange);
show(map)

getOccupancy(map,[8 5])

ans = 0.8448

Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and free thresholds
of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = 0.5*ones(20,20);
p(11:20,11:20) = 0.75*ones(10,10);
map = occupancyMap(p,10);

Get the occupancy of different locations and check their occupancy statuses. The occupancy status
returns 0 for free space and 1 for occupied space. Unknown values return –1.

pocc = getOccupancy(map,[1.5 1])

pocc = 0.7500

occupied = checkOccupancy(map,[1.5 1])
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occupied = 1

pocc2 = getOccupancy(map,[5 5],'grid')

pocc2 = 0.5000

occupied2 = checkOccupancy(map,[5 5],'grid')

occupied2 = -1

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
Data Types: double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format, where n is the
number of grid positions.
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength] or [gridRow
gridCol]. Size is in world, local, or grid coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
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Data Types: double

Output Arguments
occVal — Probability occupancy values
column vector

Probability occupancy values, returned as a column vector the same length as either xy or ij.

Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

occMatrix — Matrix of occupancy values
matrix

Matrix of occupancy values, returned as matrix with size equal to matSize or the size of map.

Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

Limitations
Occupancy values have a limited resolution of ±0.001. The values are stored as int16 using a log-
odds representation. This data type limits resolution, but saves memory when storing large maps in
MATLAB. When calling setOccupancy and then getOccupancy, the value returned might not equal
the value you set. For more information, see the log-odds representations section in “Occupancy
Grids”.

Version History
Introduced in R2019b

See Also
occupancyMap | checkOccupancy

Topics
“Occupancy Grids” (Robotics System Toolbox)
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grid2local
Convert grid indices to local coordinates

Syntax
xy = grid2local(map,ij)

Description
xy = grid2local(map,ij) converts a [row col] array of grid indices, ij, to an array of local
coordinates, xy.

Examples

Convert Grid Indices in Occupancy Map to Local Coordinates

Create an empty occupancy map with a width and height of 10 meters.

map = occupancyMap(10,10);

Get local coordinates from grid indices.

[i,j] = meshgrid(1:5);
xyLocal = grid2local(map,[i(:) j(:)]);

Input Arguments
map — Map representation
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Map representation, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n
is the number of grid positions.

Output Arguments
xy — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of local
coordinates.
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Version History
Introduced in R2019b

R2023a: Signed Distance Map Support

The grid2local function now supports the signedDistanceMap object as a new map
representation for the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | mapLayer | occupancyMap | binaryOccupancyMap | signedDistanceMap

Functions
local2grid | grid2world
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grid2world
Convert grid indices to world coordinates

Syntax
xy = grid2world(map,ij)

Description
xy = grid2world(map,ij) converts a [row col] array of grid indices, ij, to an array of world
coordinates, xy.

Examples

Convert Grid Indices in Occupancy Map to World Coordinates

Create an empty occupancy map with a width and height of 10 meters.

map = occupancyMap(10,10);

Get world coordinates from grid indices.

[i,j] = meshgrid(1:5);
xyWorld = grid2world(map,[i(:) j(:)]);

Input Arguments
map — Map representation
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Map representation, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format, where n is the
number of grid positions. The grid cell locations are counted from the top left corner of the grid.
Data Types: double

Output Arguments
xy — World coordinates
n-by-2 matrix

World coordinates, returned as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
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Data Types: double

Version History
Introduced in R2019b

R2023a: Signed Distance Map Support

The grid2world function now supports the signedDistanceMap object as a new map
representation for the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
world2grid | grid2local

Objects
multiLayerMap | mapLayer | occupancyMap | binaryOccupancyMap | signedDistanceMap

Functions

Topics
“Occupancy Grids”
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inflate
Inflate each occupied location

Syntax
inflate(map,radius)
inflate(map,gridradius,'grid')

Description
inflate(map,radius) inflates each occupied position of the specified map by the radius,
specified in meters. Occupied location values are based on the map.OccupiedThreshold property.
radius is rounded up to the nearest equivalent cell based on the resolution of the map. Values are
modified using grayscale inflation to inflate higher probability values across the grid. This inflation
increases the size of the occupied locations in the map.

inflate(map,gridradius,'grid') inflates each occupied position by the gridradius, specified
in number of cells.

Examples

Create and Modify Occupancy Map

Create an empty map of 10-by-10 meters in size.

map = occupancyMap(10,10,10);

Update the occupancy of specific world locations with new probability values and display the map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2; 0.4; 0.6; 0.8; 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)
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Inflate the occupied areas by a radius of 0.5 m. The larger occupancy values overwrite the smaller
values.

inflate(map,0.5)
figure
show(map)

2 Classes

2-962



Get the grid locations from the world locations.

ij = world2grid(map,[x y]);

Set occupancy values for the grid locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

radius — Dimension that defines by how much to inflate occupied locations
scalar

Dimension that defines by how much to inflate occupied locations, specified as a scalar in meters.
radius is rounded up to the nearest equivalent cell value.
Data Types: double

gridradius — Number of cells by which to inflate the occupied locations
positive integer scalar

Number of cells by which to inflate the occupied locations, specified as a positive integer scalar.
Data Types: double
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More About
Grayscale Inflation

In grayscale inflation, the strel function creates a circular structuring element using the inflation
radius. The grayscale inflation of A(x, y) by B(x, y) is defined as:

(A⊕B)(x, y) = max {A(x – x′, y’ – y′) +B(x', y') | (x′, y′) ∊ DB}.

DB is the domain of the probability values in the structuring element B. A(x,y) is assumed to be +∞
outside the domain of the grid.

Grayscale inflation acts as a local maximum operator and finds the highest probability values for
nearby cells. The inflate method uses this definition to inflate the higher probability values
throughout the grid. This inflation increases the size of any occupied locations and creates a buffer
zone for vehicles to use as they navigate.

Version History
Introduced in R2019b

See Also
binaryOccupancyMap | occupancyMap | getOccupancy

Topics
“Occupancy Grids”
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insertRay
Insert ray from laser scan observation

Syntax
insertRay(map,pose,scan,maxrange)
insertRay(map,pose,ranges,angles,maxrange)
insertRay(map,startpt,endpoints)
insertRay( ___ ,invModel)

Description
insertRay(map,pose,scan,maxrange) inserts one or more lidar scan sensor observations in the
occupancy grid, map, using the input lidarScan object, scan, to get ray endpoints. The ray
endpoints are considered free space if the input scan ranges are below maxrange. Cells observed as
occupied are updated with an observation of 0.7. All other points along the ray are treated as
obstacle free and updated with an observation of 0.4. Endpoints above maxrange are not updated.
NaN values are ignored. This behavior correlates to the inverse sensor model.

insertRay(map,pose,ranges,angles,maxrange) specifies the range readings as vectors
defined by the input ranges and angles.

insertRay(map,startpt,endpoints) inserts observations between the line segments from the
start point to the end points. The endpoints are updated with a probability observation of 0.7. Cells
along the line segments are updated with an observation of 0.4.

insertRay( ___ ,invModel) inserts rays with updated probabilities given in the two-element
vector, invModel, that corresponds to obstacle-free and occupied observations. Use any of the
previous syntaxes to input the rays.

Examples

Insert Laser Scans into Occupancy Map

Create an empty occupancy grid map.

map = occupancyMap(10,10,20);

Specify the pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.
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insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)

Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = 0.7000

Add a second reading and view the update to the occupancy values. The additional reading increases
the confidence in the readings. The free and occupied values become more distinct.

insertRay(map,pose,scan,maxrange);
show(map)
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getOccupancy(map,[8 5])

ans = 0.8448

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

pose — Position and orientation of vehicle
three-element vector

Position and orientation of vehicle, specified as an [x y theta] vector. The vehicle pose is an x and
y position with angular orientation theta (in radians) measured from the x-axis.

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.
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ranges — Range values from scan data
vector

Range values from scan data, specified as a vector of elements measured in meters. These range
values are distances from a sensor at given angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector of elements measured in radians. These angle
values correspond to the given ranges. The vector must be the same length as the corresponding
ranges vector.

maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values greater than or
equal to maxrange are considered free along the whole length of the ray, up to maxrange.

startpt — Start point for rays
two-element vector

Start point for rays, specified as a two-element vector, [x y], in the world coordinate frame. All rays
are line segments that originate at this point.

endpoints — Endpoints for rays
n-by-2 matrix

Endpoints for rays, specified as an n-by-2 matrix of [x y] pairs in the world coordinate frame, where
n is the length of ranges or angles. All rays are line segments that originate at startpt.

invModel — Inverse sensor model values
two-element vector

Inverse sensor model values, specified as a two-element vector corresponding to obstacle-free and
occupied probabilities. Points along the ray are updated according to the inverse sensor model and
the specified range readings. NaN range values are ignored. Range values greater than maxrange are
not updated. See “Inverse Sensor Model” on page 2-969.

More About
Inverse Sensor Model

The inverse sensor model determines how values are set along a ray from a range sensor reading to
the obstacles in the map. You can customize this model by specifying different probabilities for free
and occupied locations in the invModel argument. NaN range values are ignored. Range values
greater than maxrange are not updated.
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Grid locations that contain range readings are updated with the occupied probability. Locations
before the reading are updated with the free probability. All locations after the reading are not
updated.

Version History
Introduced in R2019b

See Also
occupancyMap | raycast | binaryOccupancyMap | lidarScan

Topics
“Occupancy Grids”
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local2grid
Convert local coordinates to grid indices

Syntax
ij = local2grid(map,xy)

Description
ij = local2grid(map,xy) converts an array of local coordinates, xy, to an array of grid indices,
ij in [row col] format.

Examples

Convert Local Coordinates in Occupancy Map to Grid Indices

Create an empty occupancy map with a width and height of 10 meters.

map = occupancyMap(10,10);

Get grid indices from local coordinates.

[xLocal,yLocal] = meshgrid(0:0.5:2);
ij = local2grid(map,[xLocal(:) yLocal(:)]);

Input Arguments
map — Map representation
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Map representation, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of local
coordinates.

Output Arguments
ij — Grid positions
n-by-2 matrix

Grid positions, returned as an n-by-2 matrix of [i j] pairs in [row col] format, where n is the
number of grid positions. The grid cell locations start at (1,1) and are counted from the top left corner
of the grid.
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Version History
Introduced in R2019b

R2023a: Signed Distance Map Support

The local2grid function now supports the signedDistanceMap object as a new map
representation for the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | mapLayer | occupancyMap | binaryOccupancyMap | signedDistanceMap

Functions
grid2local | local2world

Topics
“Occupancy Grids”
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local2world
Convert local coordinates to world coordinates

Syntax
xyWorld = local2world(map,xy)

Description
xyWorld = local2world(map,xy) converts an array of local coordinates to world coordinates

Examples

Convert Local Coordinates in Occupancy Map to World Coordinates

Create an empty occupancy map with a width and height of 10 meters.

map = occupancyMap(10,10);

Get world coordinates from local coordinates.

[xLocal,yLocal] = meshgrid(0:0.5:2);
xyWorld = local2world(map,[xLocal(:) yLocal(:)]);

Input Arguments
map — Map representation
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Map representation, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
Data Types: double

Output Arguments
xyWorld — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
Data Types: double
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Version History
Introduced in R2019b

R2023a: Signed Distance Map Support

The local2world function now supports the signedDistanceMap object as a new map
representation for the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | mapLayer | occupancyMap | binaryOccupancyMap | signedDistanceMap

Functions
world2local | local2grid

Topics
“Occupancy Grids”
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move
Move map in world frame

Syntax
move(map,moveValue)
move(map,moveValue,Name=Value)

Description
move(map,moveValue) moves the local origin of the map to an absolute location, moveValue, in
the world frame, and updates the map limits. Move values are truncated based on the resolution of
the map. By default, newly revealed regions are set to map.DefaultValue.

move(map,moveValue,Name=Value) specifies additional options specified by one or more name-
value arguments.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world map. This
process emulates a vehicle driving in an environment and getting updates on obstacles in the new
areas.

Load example maps. Create an occupancy map from the ternaryMap.

load exampleMaps.mat
map = occupancyMap(ternaryMap);
show(map)
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Create a smaller local map.

mapLocal = occupancyMap(ternaryMap(end-200:end,1:200));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local frame.

Specify path locations and plot on the map.

path = [100 100
        100 250
        200 250
        300 250];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference between points
by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue,"MoveType","relative")
        syncWith(mapLocal,map) 
        show(mapLocal)
        drawnow limitrate
    end
end
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Input Arguments
map — Map representation
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Map representation, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

moveValue — Local map origin move value
[x y] vector

Local map origin move value, specified as an [x y] vector. By default, the value is an absolute
location to move the local origin to in the world frame. Use the MoveType name-value pair to specify
a relative move.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MoveType="relative"
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MoveType — Type of move
"absolute" (default) | "relative"

Type of move, specified as "absolute" or "relative". For relative moves, specify a relative [x y]
vector for moveValue based on your current local frame.
Data Types: char | string

FillValue — Fill value for revealed locations
0 (default) | 1

Fill value for revealed locations because of the shifted map limits, specified as 0 or 1.

SyncWith — Secondary map to sync with
occupancyMap object

Secondary map to sync with, specified as a occupancyMap object. Any revealed locations based on
the move are updated with values in this map using the world coordinates.

Version History
Introduced in R2019b

R2023a: Signed Distance Map Support

The move function now supports the signedDistanceMap object as a new map representation for
the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | mapLayer | occupancyMap | binaryOccupancyMap | signedDistanceMap

Functions
occupancyMatrix
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occupancyMatrix
Convert occupancy map to matrix

Syntax
mat = occupancyMatrix(map)
mat = occupancyMatrix(map,'ternary')

Description
mat = occupancyMatrix(map) returns probability values stored in the occupancy grid object as a
matrix.

mat = occupancyMatrix(map,'ternary') returns the occupancy status of each grid cell as a
matrix. The OccupiedThreshold and FreeThreshold properties on the occupancy grid determine
the obstacle free cells (0) and occupied cells (1). Unknown values are returned as –1.

Examples

Convert Occupancy Map to Matrix

Create an empty occupancy map with a width and height of 10 meters.

map = occupancyMap(10,10);

Specify probability occupancy values as an 8-by-8 matrix.

inputMatrix = repmat(0.2:0.1:0.9,8,1);

Assign the probability occupancy values matrix to the map.

setOccupancy(map,[1 1],inputMatrix)
show(map)
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Convert occupancy map to probability occupancy values matrix.

occupancyMatrix(map)

ans = 10×10

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000
    0.5000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000    0.5000
    0.5000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000    0.5000
    0.5000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000    0.5000
    0.5000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000    0.5000
    0.5000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000    0.5000
    0.5000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000    0.5000
    0.5000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000    0.5000
    0.5000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000    0.5000
    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000

Convert occupancy map to occupancy values matrix.

occupancyMatrix(map,"ternary")

ans = 10×10

    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1
    -1    -1    -1    -1    -1    -1     1     1     1    -1
    -1    -1    -1    -1    -1    -1     1     1     1    -1
    -1    -1    -1    -1    -1    -1     1     1     1    -1
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    -1    -1    -1    -1    -1    -1     1     1     1    -1
    -1    -1    -1    -1    -1    -1     1     1     1    -1
    -1    -1    -1    -1    -1    -1     1     1     1    -1
    -1    -1    -1    -1    -1    -1     1     1     1    -1
    -1    -1    -1    -1    -1    -1     1     1     1    -1
    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

Output Arguments
mat — Occupancy grid values
matrix

Occupancy grid values, returned as an h-by-w matrix, where h and w are defined by the two elements
of the GridSize property of the occupancy grid object.
Data Types: double

Version History
Introduced in R2019b

See Also
occupancyMap | getOccupancy | show | binaryOccupancyMap

Topics
“Occupancy Grids”
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raycast
Compute cell indices along a ray

Syntax
[endpoints,midpoints] = raycast(map,pose,range,angle)
[endpoints,midpoints] = raycast(map,p1,p2)

Description
[endpoints,midpoints] = raycast(map,pose,range,angle) returns cell indices of the
specified map for all cells traversed by a ray originating from the specified pose at the specified
angle and range values. endpoints contains all indices touched by the end of the ray, with all
other points included in midpoints.

[endpoints,midpoints] = raycast(map,p1,p2) returns the cell indices of the line segment
between the two specified points.

Examples

Get Grid Cells Along A Ray

Use the raycast method to generate cell indices for all cells traversed by a ray.

Create an empty map. A low-resolution map is used to illustrate the affected grid locations.

map = occupancyMap(10,10,1);
show(map)
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Get the grid indices of the midpoints and end points of a ray from [2 3] to [8.5 8]. Set occupancy
values for these grid indices. Midpoints are treated as open space. Update endpoints with an
occupied observation.

p1 = [2 3];
p2 = [8.5 8];
[endPts,midPts] = raycast(map,p1,p2);
setOccupancy(map,midPts,zeros(length(midPts),1),'grid');
setOccupancy(map,endPts,ones(length(endPts),1),'grid');

Plot the original ray over the map. Each grid cell touched by the line is updated. The starting point
overlaps multiple cells, and the line touches the edge of certain cells, but all the cells are still
updated.

show(map)
hold on
plot([p1(1) p2(1)],[p1(2) p2(2)],'-b','LineWidth',2)
plot(p2(1),p2(2),'or')
grid on
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the sensor. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

pose — Position and orientation of sensor
three-element vector

Position and orientation of sensor, specified as an [x y theta] vector. The sensor pose is an x and y
position with angular orientation theta (in radians) measured from the x-axis.

range — Range of ray
scalar

Range of ray, specified as a scalar in meters.

angle — Angle of ray
scalar

Angle of ray, specified as a scalar in radians. The angle value is for the corresponding range.
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p1 — Starting point of ray
two-element vector

Starting point of ray, specified as an [x y] two-element vector. The point is defined in the world
frame.

p2 — Endpoint of ray
two-element vector

Endpoint of ray, specified as an [x y] two-element vector. The point is defined in the world frame.

Output Arguments
endpoints — Endpoint grid indices
n-by-2 matrix

Endpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of grid indices.
The endpoints are where the range value hits at the specified angle. Multiple indices are returned
when the endpoint lies on the boundary of multiple cells.

midpoints — Midpoint grid indices
n-by-2 matrix

Midpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of grid indices.
This argument includes all grid indices the ray intersects, excluding the endpoint.

Version History
Introduced in R2019b

See Also
occupancyMap

Topics
“Occupancy Grids”
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rayIntersection
Find intersection points of rays and occupied map cells

Syntax
intersectionPts = rayIntersection(map,pose,angles,maxrange)
intersectionPts = rayIntersection(map,pose,angles,maxrange,threshold)

Description
intersectionPts = rayIntersection(map,pose,angles,maxrange) returns intersection
points of rays and occupied cells in the specified map. Rays emanate from the specified pose and
angles. Intersection points are returned in the world coordinate frame. If there is no intersection up
to the specified maxrange, [NaN NaN] is returned. By default, the OccupiedThreshold property is
used to determine occupied cells.

intersectionPts = rayIntersection(map,pose,angles,maxrange,threshold) returns
intersection points based on the specified threshold for the occupancy values. Values greater than
or equal to the threshold are considered occupied.

Examples

Get Ray Intersection Points on Occupancy Map

Create an occupancy grid map. Add obstacles and inflate them. A lower resolution map is used to
illustrate the importance of using grid cells. Show the map.

map = occupancyMap(10,10,2);
obstacles = [4 10; 3 5; 7 7];
setOccupancy(map,obstacles,ones(length(obstacles),1))
inflate(map,0.25)
show(map)
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Find the intersection points of occupied cells and rays that emit from the given vehicle pose. Specify
the max range and angles for these rays. The last ray does not intersect with an obstacle within the
max range, so it has no collision point.

maxrange = 6;
angles = [pi/4,-pi/4,0,-pi/8];
vehiclePose = [4,4,pi/2];
intsectionPts = rayIntersection(map,vehiclePose,angles,maxrange,0.7)

intsectionPts = 4×2

    3.5000    4.5000
    6.0000    6.0000
    4.0000    9.0000
       NaN       NaN

Plot the intersection points and plot rays from the pose to the intersection points.

hold on
plot(intsectionPts(:,1),intsectionPts(:,2),'*r') % Intersection points
plot(vehiclePose(1),vehiclePose(2),'ob') % Vehicle pose
for i = 1:3
    plot([vehiclePose(1),intsectionPts(i,1)],...
        [vehiclePose(2),intsectionPts(i,2)],'-b') % Plot intersecting rays
end
plot([vehiclePose(1),vehiclePose(1)-6*sin(angles(4))],...
    [vehiclePose(2),vehiclePose(2)+6*cos(angles(4))],'-b') % No intersection ray
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legend('Collision Points','Vehicle Position','Rays','Location','SouthEast')

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the sensor. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

pose — Position and orientation of sensor
three-element vector

Position and orientation of sensor, specified as an [x y theta] vector. The sensor pose is an x and y
position with angular orientation theta (in radians) measured from the x-axis.

angles — Ray angles emanating from sensor
vector

Ray angles emanating from the sensor, specified as a vector with elements in radians. These angles
are relative to the specified sensor pose.
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maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values greater than or
equal to maxrange are considered free along the whole length of the ray, up to maxrange.

threshold — Threshold for occupied cells
scalar from 0 to 1

Threshold for occupied cells, specified as a scalar from 0 to 1. Occupancy values greater than or
equal to the threshold are treated as occupied cells to trigger intersections.

Output Arguments
intersectionPts — Intersection points
n-by-2 matrix

Intersection points, returned as n-by-2 matrix of [x y] pairs in the world frame, where n is the
length of angles.

Version History
Introduced in R2019b

See Also
occupancyMap | raycast | updateOccupancy | binaryOccupancyMap

Topics
“Occupancy Grids”
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setOccupancy
Set occupancy probability of locations

Syntax
setOccupancy(map,xy,occval)

setOccupancy(map,xy,occval,'local')
setOccupancy(map,ij,occval,'grid')
validPts = setOccupancy( ___ )

setOccupancy(map,bottomLeft,inputMatrix)
setOccupancy(map,bottomLeft,inputMatrix,'local')
setOccupancy(map,topLeft,inputMatrix,'grid')

Description
setOccupancy(map,xy,occval) assigns the occupancy values to each coordinate specified in xy.
occval can be a column vector the same size of xy or a scalar, which is applied to all coordinates.

setOccupancy(map,xy,occval,'local') assigns occupancy values, occval, to the input array
of local coordinates, xy, as local coordinates.

setOccupancy(map,ij,occval,'grid') assigns occupancy values, occval, to the input array of
grid indices, ij, as [rows cols].

validPts = setOccupancy( ___ ) outputs an n-element vector of logical values indicating
whether input coordinates are within the map limits.

setOccupancy(map,bottomLeft,inputMatrix) assigns a matrix of occupancy values by
specifying the bottom-left corner location in world coordinates.

setOccupancy(map,bottomLeft,inputMatrix,'local') assigns a matrix of occupancy values
by specifying the bottom-left corner location in local coordinates.

setOccupancy(map,topLeft,inputMatrix,'grid') assigns a matrix of occupancy values by
specifying the top-left cell index in grid indices and the matrix size.

Examples

Create and Modify Occupancy Map

Create an empty map of 10-by-10 meters in size.

map = occupancyMap(10,10,10);

Update the occupancy of specific world locations with new probability values and display the map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];
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pvalues = [0.2; 0.4; 0.6; 0.8; 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)

Inflate the occupied areas by a radius of 0.5 m. The larger occupancy values overwrite the smaller
values.

inflate(map,0.5)
figure
show(map)
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Get the grid locations from the world locations.

ij = world2grid(map,[x y]);

Set occupancy values for the grid locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
Data Types: double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format, where n is the
number of grid positions.
Data Types: double
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occval — Probability occupancy values
scalar | column vector

Probability occupancy values, specified as a scalar or a column vector the same size as either xy or
ij. A scalar input is applied to all coordinates in either xy or ij.

Values close to 0 represent a high probability that the cell is not occupied and obstacle free.

inputMatrix — Occupancy values
matrix

Occupancy values, specified as a matrix. Values are given between 0 and 1 inclusively.

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

Limitations
Occupancy values have a limited resolution of ±0.001. The values are stored as int16 using a log-
odds representation. This data type limits resolution, but saves memory when storing large maps in
MATLAB. When calling setOccupancy and then getOccupancy, the value returned might not equal
the value you set. For more information, see the log-odds representations section in “Occupancy
Grids”.

Version History
Introduced in R2019b

See Also
occupancyMap | getOccupancy | binaryOccupancyMap
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Topics
“Occupancy Grids”

 setOccupancy

2-997



show
Display 2-D occupancy map

Syntax
show(map)
show(map,'local')
show(map,'grid')
show( ___ ,Name,Value)
mapImage = show( ___ )

Description
show(map) displays the occupancy grid map in the current axes, with the axes labels representing
the world coordinates.

show(map,'local') displays the occupancy grid map in the current axes, with the axes labels
representing the local coordinates instead of world coordinates.

show(map,'grid') displays the occupancy grid map in the current axes, with the axes labels
representing the grid coordinates.

show( ___ ,Name,Value) specifies additional options specified by one or more name-value pair
arguments.

mapImage = show( ___ ) returns the handle to the image object created by show.

Examples

Create and Modify Occupancy Map

Create an empty map of 10-by-10 meters in size.

map = occupancyMap(10,10,10);

Update the occupancy of specific world locations with new probability values and display the map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2; 0.4; 0.6; 0.8; 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)
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Inflate the occupied areas by a radius of 0.5 m. The larger occupancy values overwrite the smaller
values.

inflate(map,0.5)
figure
show(map)
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Get the grid locations from the world locations.

ij = world2grid(map,[x y]);

Set occupancy values for the grid locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)
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Convert PGM Image to Map

Convert a portable graymap (PGM) file containing a ROS map into an occupancyMap for use in
MATLAB.

Import the image using imread. Crop the image to the playpen area.

image = imread('playpen_map.pgm');
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)
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PGM values are expressed from 0 to 255 as uint8. Normalize these values by converting the cropped
image to double and dividing each cell by 255. This image shows obstacles as values close to 0.
Subtract the normalized image from 1 to get occupancy values with 1 representing occupied space.

imageNorm = double(imageCropped)/255;
imageOccupancy = 1 - imageNorm;

Create the occupancyMap object using an adjusted map image. The imported map resolution is 20
cells per meter.

map = occupancyMap(imageOccupancy,20);
show(map)
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with values representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and obstacle free.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Parent',axHandle

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as either an Axes or UIAxes object. See axes or uiaxes.

FastUpdate — Update existing map plot
0 (default) | 1

Update existing map plot, specified as 0 or 1. If you previously plotted your map on your figure, set to
1 for a faster update to the figure. This is useful for updating the figure in a loop for fast animations.

Outputs
mapImage — Map image
object handle

Map image, specified as an object handle.

Version History
Introduced in R2019b

See Also
axes | occupancyMap | occupancyMatrix | binaryOccupancyMap
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syncWith
Sync map with overlapping map

Syntax
mat = syncWith(map,sourcemap)

Description
mat = syncWith(map,sourcemap) updates map with data from another occupancyMap object,
sourcemap. Locations in map that are also found in sourcemap are updated. All other cells in map
retain their current values.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world map. This
process emulates a vehicle driving in an environment and getting updates on obstacles in the new
areas.

Load example maps. Create an occupancy map from the ternaryMap.

load exampleMaps.mat
map = occupancyMap(ternaryMap);
show(map)
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Create a smaller local map.

mapLocal = occupancyMap(ternaryMap(end-200:end,1:200));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local frame.

Specify path locations and plot on the map.

path = [100 100
        100 250
        200 250
        300 250];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference between points
by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue,"MoveType","relative")
        syncWith(mapLocal,map) 
        show(mapLocal)
        drawnow limitrate
    end
end
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Input Arguments
map — Map representation
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Map representation, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

sourcemap — Source map data
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Source map data, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

Version History
Introduced in R2019b

R2023a: syncWith supports signed distance maps

syncWith supports the signedDistanceMap object as a new map representation for the map and
sourcemap arguments.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
multiLayerMap | mapLayer | occupancyMap | binaryOccupancyMap | signedDistanceMap

Topics
“Occupancy Grids”
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updateOccupancy
Update occupancy probability at locations

Syntax
updateOccupancy(map,occMatrix)

updateOccupancy(map,locations,obs)
updateOccupancy(map,xy,obs,'world')
updateOccupancy(map,xy,obs,'local')
updateOccupancy(map,ij,obs,'grid')

updateOccupancy(map,bottomLeft,obsMatrix)
updateOccupancy(map,bottomLeft,obsMatrix,'world')
updateOccupancy(map,bottomLeft,obsMatrix,'local')
updateOccupancy(map,topLeft,obsMatrix,'grid')

Description
updateOccupancy(map,occMatrix) probabilistically integrates a matrix of occupancy values,
occMatrix, with the current occupancy matrix of the occupancyMap object map. The size of the
matrix must be equal to the GridSize property of map.

updateOccupancy(map,locations,obs) probabilistically integrates observation values, obs, into
the occupancy map cells corresponding to the n-by-2 matrix of world coordinates locations.
Observation values are determined based on the “Inverse Sensor Model” on page 2-1016.

updateOccupancy(map,xy,obs,'world') probabilistically integrates observation values, obs,
into the cells corresponding to the n-by-2 matrix of world coordinates xy.

updateOccupancy(map,xy,obs,'local') probabilistically integrates observation values, obs,
into the cells corresponding to the n-by-2 matrix of local coordinates xy.

updateOccupancy(map,ij,obs,'grid') probabilistically integrates observation values, obs, into
the cells corresponding to the n-by-2 matrix of grid indices ij.

updateOccupancy(map,bottomLeft,obsMatrix) probabilistically integrates an m-by-n matrix of
observation values, obsMatrix, into a subregion in the map. Specify the bottom-left corner of the
subregion as a world position, bottomLeft. The subregion extends m rows up and n columns to the
right from the specified position.

updateOccupancy(map,bottomLeft,obsMatrix,'world') probabilistically integrates an m-by-
n matrix of observation values, obsMatrix, into a subregion in the map. Specify the bottom-left
corner of the subregion as a world position, bottomLeft. The subregion extends m rows up and n
columns to the right from the specified position.

updateOccupancy(map,bottomLeft,obsMatrix,'local') probabilistically integrates an m-by-
n matrix of observation values, obsMatrix, into a subregion in the map. Specify the bottom-left
corner of the subregion as a local position, bottomLeft. The subregion extends m rows up and n
columns to the right from the specified position.

 updateOccupancy

2-1011



updateOccupancy(map,topLeft,obsMatrix,'grid') probabilistically integrates an m-by-n
matrix of observation values, obsMatrix, into a subregion in the map. Specify the top-left corner of
the subregion as a grid index, topLeft. The subregion extends m rows down and n columns to the
right from the specified index.

Examples

Create and Modify Occupancy Map

Create an empty map of 10-by-10 meters in size.

map = occupancyMap(10,10,10);

Update the occupancy of specific world locations with new probability values and display the map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2; 0.4; 0.6; 0.8; 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)

Inflate the occupied areas by a radius of 0.5 m. The larger occupancy values overwrite the smaller
values.
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inflate(map,0.5)
figure
show(map)

Get the grid locations from the world locations.

ij = world2grid(map,[x y]);

Set occupancy values for the grid locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as an occupancyMap object. This object represents the environment of
the vehicle. The object contains a matrix grid with each value representing the probability of the
occupancy of that cell. Values close to 1 represent a high probability that the cell contains an
obstacle. Values close to 0 represent a high probability that the cell is not occupied and contains no
obstacles.

occMatrix — Matrix of occupancy values
numeric matrix | logical matrix

Matrix of occupancy values, specified as a matrix. The size of the matrix must be equal to the
GridSize property of map.

The occupancy values can be of any numeric type, with values between 0 and 1. If the matrix is
logical, the default occupancy values of 0.7 (true) and 0.4 (false) are used.
Example: updateOccupancy(map,ones(map.GridSize)*0.6)
Data Types: single | double | logical

locations — Cell locations in world coordinates
n-by-2 matrix
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Cell locations in world coordinates, specified as an n-by-2 matrix with rows of the form [x y], where n
is the number of world coordinates. The function ignores locations outside of the map boundaries.
Example: updateOccupancy(map,[1 1; 3 3; 5 5],false)
Data Types: single | double

bottomLeft — Location of bottom-left corner of observation matrix
two-element vector

Location of the bottom-left corner of the observation matrix, specified as a two-element vector of the
form [xCoord yCoord]. The location is in world or local coordinates, based on the syntax.
Example: updateOccupancy(map,[2 2],[0.2 0.4; 0.6 0.8],'world')
Data Types: single | double

topLeft — Location of top-left corner of grid
two-element vector

Location of the top-left corner of the grid, specified as a two-element vector of form [iCoord
jCoord].
Example: updateOccupancy(map,[2 2],[0.2 0.4; 0.6 0.8],'grid')
Data Types: single | double

xy — World or local coordinates
n-by-2 matrix

World or local coordinates, specified as an n-by-2 matrix with rows of the form [x y], where n is the
number of coordinates.
Example: updateOccupancy(map,[2 2; 4 4; 6 6],[0.2; 0.4; 0.6],'world')
Data Types: single | double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix with rows of the form [i j] in [rows cols] format,
where n is the number of grid positions.
Example: updateOccupancy(map,[2 2; 4 4; 6 6],[0.2; 0.4; 0.6],'grid')
Data Types: single | double

obs — Probability observation values
n-element numeric column vector | n-element logical column vector | numeric scalar | logical scalar

Probability observation values, specified as a numeric or logical scalar or a numeric or logical n-
element column vector the same size as either locations, xy, or ij.

obs values can be any value from 0 to 1, but if obs is a logical vector, the default observation values
of 0.7 (true) and 0.4 (false) are used. If obs is a numeric or a logical scalar, the value is applied to
all coordinates in locations, xy, or ij. These values correlate to the “Inverse Sensor Model” on
page 2-1016 for ray casting.
Example: updateOccupancy(map,[2 2; 4 4; 6 6],[0.2; 0.4; 0.6],'local')
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Data Types: single | double | logical

obsMatrix — Matrix of probability observation values
m-by-n numeric matrix | m-by-n logical matrix

Matrix of probability observation values, specified as an m-by-n numeric or logical matrix.

The observation values can be of any numeric type with value between 0 and 1. If the matrix is
logical, the default observation values of 0.7 (true) and 0.4 (false) are used.
Example: updateOccupancy(map,[2 2],[0.2 0.4; 0.6 0.8])
Data Types: single | double | logical

More About
Inverse Sensor Model

The inverse sensor model determines how values are set along a ray from a range sensor reading to
the obstacles in the map. NaN range values are ignored. Range values greater than maxrange are not
updated.

Grid locations that contain range readings are updated with the occupied probability. Locations
before the reading are updated with the free probability. All locations after the reading are not
updated.
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Version History
Introduced in R2019b

See Also
occupancyMap | setOccupancy | binaryOccupancyMap

Topics
“Occupancy Grids”
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world2grid
Convert world coordinates to grid indices

Syntax
ij = world2grid(map,xy)

Description
ij = world2grid(map,xy) converts an array of world coordinates, xy, to an array of grid indices,
ij in [row col] format.

Examples

Convert World Coordinates in Occupancy Map to Grid Indices

Create an empty occupancy map with a width and height of 10 meters.

map = occupancyMap(10,10);

Get grid indices from world coordinates.

[xWorld,yWorld] = meshgrid(0:0.5:2);
ij = world2grid(map,[xWorld(:) yWorld(:)]);

Create and Modify Occupancy Map

Create an empty map of 10-by-10 meters in size.

map = occupancyMap(10,10,10);

Update the occupancy of specific world locations with new probability values and display the map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2; 0.4; 0.6; 0.8; 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)
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Inflate the occupied areas by a radius of 0.5 m. The larger occupancy values overwrite the smaller
values.

inflate(map,0.5)
figure
show(map)
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Get the grid locations from the world locations.

ij = world2grid(map,[x y]);

Set occupancy values for the grid locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)
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Input Arguments
map — Map representation
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Map representation, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
Data Types: double

Output Arguments
ij — Grid indices
n-by-2 matrix

Grid indices, returned as an n-by-2 matrix of [i j] pairs in [row col] format, where n is the
number of grid positions. The grid cell locations are counted from the top left corner of the grid.
Data Types: double
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Version History
Introduced in R2019b

R2023a: Signed Distance Map Support

The world2grid function now supports the signedDistanceMap object as a new map
representation for the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | mapLayer | occupancyMap | binaryOccupancyMap | signedDistanceMap

Functions
grid2world | world2local

Topics
“Occupancy Grids”
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rangeSensor
Simulate range-bearing sensor readings

Description
The rangeSensor System object is a range-bearing sensor that is capable of outputting range and
angle measurements based on the given sensor pose and occupancy map. The range-bearing readings
are based on the obstacles in the occupancy map.

To simulate a range-bearing sensor using this object:

1 Create the rangeSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rbsensor = rangeSensor
rbsensor = rangeSensor(Name,Value)

Description

rbsensor = rangeSensor returns a rangeSensor System object, rbsensor. The sensor is
capable of outputting range and angle measurements based on the sensor pose and an occupancy
map.

rbsensor = rangeSensor(Name,Value) sets properties for the sensor using one or more name-
value pairs. Unspecified properties have default values. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Range — Minimum and maximum detectable range
[0 20] (default) | 1-by-2 positive real-valued vector

The minimum and maximum detectable range, specified as a 1-by-2 positive real-valued vector. Units
are in meters.

 rangeSensor
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Example: [1 15]

Tunable: Yes
Data Types: single | double

HorizontalAngle — Minimum and maximum horizontal detection angle
[-pi pi] (default) | 1-by-2 real-valued vector

Minimum and maximum horizontal detection angle, specified as a 1-by-2 real-valued vector. Units are
in radians.
Example: [-pi/3 pi/3]
Data Types: single | double

HorizontalAngleResolution — Resolution of horizontal angle readings
0.0244 (default) | positive scalar

Resolution of horizontal angle readings, specified as a positive scalar. The resolution defines the
angular interval between two consecutive sensor readings. Units are in radians.
Example: 0.01
Data Types: single | double

RangeNoise — Standard deviation of range noise
0 (default) | positive scalar

The standard deviation of range noise, specified as a positive scalar. The range noise is modeled as a
zero-mean white noise process with the specified standard deviation. Units are in meters.
Example: 0.01

Tunable: Yes
Data Types: single | double

HorizontalAngleNoise — Standard deviation of horizontal angle noise
0 (default) | positive scalar

The standard deviation of horizontal angle noise, specified as a positive scalar. The range noise is
modeled as a zero-mean white noise process with the specified standard deviation. Units are in
radians.
Example: 0.01

Tunable: Yes
Data Types: single | double

NumReadings — Number of output readings
258 (default) | positive integer

This property is read-only.

Number of output readings for each pose of the sensor, specified as a positive integer. This property
depends on the HorizonalAngle and HorizontalAngleResolution properties.
Data Types: single | double
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Usage

Syntax
[ranges,angles] = rbsensor(pose,map)

Description

[ranges,angles] = rbsensor(pose,map) returns the range and angle readings from the 2-D
pose information and the ground-truth map.

Input Arguments

pose — Pose of sensor in map
N-by-3 real-valued matrix

Poses of the sensor in the 2-D map, specified as an N-by-3 real-valued matrix, where N is the number
of poses to simulate the sensor. Each row of the matrix corresponds to a pose of the sensor in the
order of [x, y, θ]. x and y represent the position of the sensor in the map frame. The units of x and y
are in meters. θ is the heading angle of the sensor with respect to the positive x-direction of the map
frame. The units of θ are in radians.

map — Ground-truth map
occupancyMap object | binaryOccupancyMap object

Ground-truth map, specified as an occupancyMap or a binaryOccupancyMap object. For the
occupancyMap input, the range-bearing sensor considers a cell as occupied and returns a range
reading if the occupancy probability of the cell is greater than the value specified by the
OccupiedThreshold property of the occupancy map.

Output Arguments

ranges — Range readings
R-by-N real-valued matrix

Range readings, specified as an R-by-N real-valued matrix. N is the number of poses for which the
sensor is simulated, and R is the number of sensor readings per pose of the sensor. R is same as the
value of the NumReadings property.

angles — Angle readings
R-by-1 real-valued vector

Angle readings, specified as an R-by-1 real-valued vector. R is the number of sensor readings per pose
of the sensor. R is same as the value of the NumReadings property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 rangeSensor
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Common to All System Objects
step Run System object algorithm
clone Create duplicate System object

Examples

Obtain Range and Bearing Readings

Create a range-bearing sensor.

 rbsensor = rangeSensor;

Specify the pose of the sensor and the ground-truth map.

truePose = [0 0 pi/4];
trueMap = binaryOccupancyMap(eye(10));

Generate the sensor readings.

[ranges, angles] = rbsensor(truePose, trueMap);

Visualize the results using lidarScan.

scan = lidarScan(ranges, angles);
figure
plot(scan)
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
occupancyMap | binaryOccupancyMap | lidarScan

 rangeSensor
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world2local
Convert world coordinates to local coordinates

Syntax
xyLocal = world2local(map,xy)

Description
xyLocal = world2local(map,xy) converts an array of world coordinates to local coordinates.

Examples

Convert World Coordinates in Occupancy Map to Local Coordinates

Create an empty occupancy map with a width and height of 10 meters.

map = occupancyMap(10,10);

Get local coordinates from world coordinates.

[xWorld,yWorld] = meshgrid(0:0.5:2);
xyLocal = world2local(map,[xWorld(:) yWorld(:)]);

Input Arguments
map — Map representation
occupancyMap object | mapLayer object | multiLayerMap object | signedDistanceMap object

Map representation, specified as a occupancyMap, mapLayer, multiLayerMap, or
signedDistanceMap object.

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.

Output Arguments
xyLocal — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of local
coordinates.
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Version History
Introduced in R2019b

R2023a: Signed Distance Map Support

The world2local function now supports the signedDistanceMap object as a new map
representation for the map argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
multiLayerMap | mapLayer | occupancyMap | binaryOccupancyMap | signedDistanceMap

Functions
grid2world | local2world
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occupancyMap3D
Create 3-D occupancy map

Description
The occupancyMap3D object stores a 3-D map and map information. The map is stored as
probabilistic values in an octree data structure on page 2-1034. The class handles arbitrary
environments and expands its size dynamically based on observation inputs. You can add observations
as point clouds or as specific xyz-locations. These observations update the probability values.
Probabilistic values represent the occupancy of locations. The octree data structure trims data
appropriately to remain efficient both in memory and on disk.

Creation
Syntax
omap = occupancyMap3D
omap = occupancyMap3D(res)
omap = occupancyMap3D(res,Name,Value)

Description

omap = occupancyMap3D creates an empty 3-D occupancy map with no observations and default
property values.

omap = occupancyMap3D(res) specifies a map resolution in cells/meter and sets the Resolution
property.

omap = occupancyMap3D(res,Name,Value) specifies properties using one or more name-value
arguments. For example, "FreeThreshold",0.25 sets the threshold to consider cells obstacle-free
as a probability value of 0.25.

Properties
Resolution — Grid resolution
1 (default) | positive scalar

Grid resolution in cells per meter, specified as a scalar. Specify resolution on construction. Inserting
observations with precisions higher than this value are rounded down and applied at this resolution.

FreeThreshold — Threshold to consider cells as obstacle-free
0.2 (default) | positive scalar

Threshold to consider cells as obstacle-free, specified as a positive scalar. Probability values below
this threshold are considered obstacle-free.

OccupiedThreshold — Threshold to consider cells as occupied
0.65 (default) | positive scalar
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Threshold to consider cells as occupied, specified as a positive scalar. Probability values above this
threshold are considered occupied.

ProbabilitySaturation — Saturation limits on probability values
[0.001 0.999] (default) | [min max] vector

Saturation limits on probability values, specified as a [min max] vector. Values above or below these
saturation values are set to the min or max values. This property reduces oversaturating of cells when
incorporating multiple observations.

Object Functions
checkOccupancy Check if locations are free or occupied
getOccupancy Get occupancy probability of locations
inflate Inflate each occupied location
insertPointCloud Insert 3-D points or point cloud observation into map
rayIntersection Find intersection points of rays and occupied map cells
setOccupancy Set occupancy probability of locations
show Display 3-D occupancy map
updateOccupancy Update occupancy probability at locations

Examples

Create 3-D Occupancy Map and Inflate Points

The occupancyMap3D object stores obstacles in 3-D space, using sensor observations to map an
environment. Create a map and add points from a point cloud to identify obstacles. Then inflate the
obstacles in the map to ensure safe operating space around obstacles.

Create an occupancyMap3D object with a map resolution of 10 cells/meter.

map3D = occupancyMap3D(10);

Define a set of 3-D points as an observation from a pose [x y z qw qx qy qz]. This pose is for the
sensor that observes these points and is centered on the origin. Define two sets of points to insert
multiple observations.

pose = [ 0 0 0 1 0 0 0];

points = repmat((0:0.25:2)', 1, 3);
points2 = [(0:0.25:2)' (2:-0.25:0)' (0:0.25:2)'];
maxRange = 5;

Insert the first set of points using insertPointCloud. The function uses the sensor pose and the
given points to insert observations into the map. The colors displayed correlate to the height of the
point only for illustrative purposes.

insertPointCloud(map3D,pose,points,maxRange)
show(map3D)

 occupancyMap3D
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Insert the second set of points. The ray between the sensor pose (origin) and these points overlap
points from the previous insertion. Therefore, the free space between the sensor and the new points
are updated and marked as free space.

insertPointCloud(map3D,pose,points2,maxRange)
show(map3D)
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Inflate the map to add a buffer zone for safe operation around obstacles. Define the vehicle radius
and safety distance and use the sum of these values to define the inflation radius for the map.

vehicleRadius = 0.2;
safetyRadius = 0.3;
inflationRadius = vehicleRadius + safetyRadius;
inflate(map3D, inflationRadius);

show(map3D)

 occupancyMap3D
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Algorithms
Octree Data Structure

The octree data structure is a hierarchical structure used for subdivision of an environment into cubic
volumes called voxels. For a given map volume, the space is recursively subdivided into eight voxels
until it achieves a desired map resolution (voxel size). This subdivision can be represented as a tree,
which stores probability values for locations in the map.
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The probability values in the tree have a log-odds representation. This representation enables
locations to easily recover from dynamic observations, and reduces numerical errors due to small
probabilities. To remain efficient in memory, lower branches of the tree are pruned in the structure if
they share the same occupancy values using this log-odds representation.

 occupancyMap3D
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The object handles the organization of this data structure, including the pruning of branches,
internally. When using functions such as setOccupancy, getOccupancy, or insertPointCloud,
specify all observations as spatial coordinates. The object determines insertions into the tree, and
navigation through the tree, based on the spatial coordinates and the resolution of the map.

Version History
Introduced in R2019b

References
[1] Hornung, Armin, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.

"OctoMap: an efficient probabilistic 3D mapping framework based on octrees." Autonomous
Robots 34, no. 3 (April 2013): 189–206. https://doi.org/10.1007/s10514-012-9321-0.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
occupancyMap | occupancyMap3DCollisionOptions | binaryOccupancyMap

Functions
checkMapCollision | insertPointCloud | inflate | setOccupancy | show |
rosReadOccupancyMap3D

 occupancyMap3D

2-1037



occupancyMap3DCollisionOptions
Collision-checking options between 3-D occupancy map and collision geometries

Description
The occupancyMap3DCollisionOptions object contains options for checking for collisions using
the checkMapCollision function, between occupied cells of an occupancyMap3D object and
collision geometry objects.

Creation

Syntax
OPTS = occupancyMap3DCollisionOptions
OPTS = occupancyMap3DCollisionOptions(Name=Value)

Description

OPTS = occupancyMap3DCollisionOptions returns a collision-checking options object,OPTS.

OPTS = occupancyMap3DCollisionOptions(Name=Value) specifies properties using one or
more name-value arguments. For example,
occupancyMap3DCollisionOptions(SearchDepth=8) sets the SearchDepth property of the
occupancyMap3DCollisionOptions object to a depth of 8.

Properties
CheckBroadPhase — Check collisions between AABBs of voxels and geometries
true or 1 (default) | false or 0

Check collisions between AABBs of voxels and geometries, specified as a logical 1 (true) or 0
(false).

If the CheckNarrowPhase property is true, the narrow phase checks only the voxels that failed the
broad phase check.
Example: occupancyMap3DCollisionOptions(CheckBroadPhase=false)
Data Types: logical

CheckNarrowPhase — Check collisions between voxels and raw input geometries
true or 1 (default) | false or 1

Check collisions between voxels and raw input geometries, specified as a logical 1 (true) or 0
(false).

If the CheckBroadPhase property is true, the narrow phase checks only the voxels that were in
collision during the broad phase check.
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Example: occupancyMap3DCollisionOptions(CheckNarrowPhase=false)
Data Types: logical

Exhaustive — Exhaustive search mode
false or 0 (default) | true or 1

Exhaustive search mode, specified as a logical 0 (false) or 1 (true). When Exhaustive is specified as
false, the collision-checking function stops collision checking on the first valid collision in either the
broad phase or narrow phase . When specified as true, the collision-checking function continues
collision checking until all voxels are checked.
Example: occupancyMap3DCollisionOptions(Exhaustive=true)
Data Types: logical

ReturnDistance — Return closest point and distance
false or 0 (default) | true or 1

Return the closest point and distance, specified as a logical 0 (false) or 1 (true). When specified as
true, the collision-checking function returns the minimum distance between collision geometries and
the nearest voxels in the occupancy grid.
Example: occupancyMap3DCollisionOptions(ReturnDistance=true)
Data Types: logical

ReturnVoxels — Return location and size of voxels in collision
false or 0 (default) | true or 1

Return the location and size of the voxels in collision, specified as a logical 0 (false) or 1 (true).
Example: occupancyMap3DCollisionOptions(ReturnVoxels=true)
Data Types: logical

SearchDepth — Maximum search depth to check
16 (default) | integer in range [0, 16]

Maximum search depth to check in the octree, specified as an integer in the range [0, 16].

If a voxel at one search depth encompasses any voxel that is occupied at a greater search depth, then
the entire volume of the encompassing voxel is considered occupied. For more information, see
“Visualize 3-D Occupancy Maps with Varying Search Depths” on page 2-1068.
Example: occupancyMap3DCollisionOptions(SearchDepth=8)
Data Types: uint8

Examples

Check Collision Between 3-D Map and Collision Geometries

Create a 3-D occupancy map.

map = occupancyMap3D;

Specify 25 random coordinates in the occupancy map as occupied.
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rng(0)
pt = (rand(25,3)-.5)*20;
setOccupancy(map,pt,1);

Create a collision sphere and a collision cylinder object.

sphere = collisionSphere(1);
cylinder = collisionCylinder(3,6);
sphere.Pose = trvec2tform([6.1 -4 -7.5]);

Visualize the occupancy map and collision geometry in the same figure.

exampleHelperPlotCylinderAndSphere(map,cylinder,sphere)

Perform only the broad-phase collision check for both the sphere and cylinder by setting the
CheckNarrowPhase property of an occupancyMap3DCollisionOptions object to false. Return
voxel information and the distance to the nearest occupied voxels.

bpOpts = occupancyMap3DCollisionOptions(CheckNarrowPhase=false,ReturnDistance=true,ReturnVoxels=true);
[bpIsCollidingCylinder,bpResultsCylinder] = checkMapCollision(map,cylinder,bpOpts);

Check the voxel distances for the collision geometries. Note that, because the cylinder is in collision
with voxels, the distance values are NaN. Because the sphere is not in collision with any voxels, its
distance results are non-NaN values.

bpDistCylinder = bpResultsCylinder.DistanceInfo.Distance

bpDistCylinder = NaN
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bpWitnessptsCylinder = bpResultsCylinder.DistanceInfo.WitnessPoints

bpWitnessptsCylinder = 3×2

   NaN   NaN
   NaN   NaN
   NaN   NaN

Because the cylinder is in collision with the voxels, the distance results contain NaN values. Since the
sphere is not in collision with the voxels, the distance results consist of non-NaN values.

[bpIsCollidingSphere,bpResultsSphere] = checkMapCollision(map,sphere,bpOpts);
bpDistSphere = bpResultsSphere.DistanceInfo.Distance

bpDistSphere = 2.3259

bpWitnessptsSphere = bpResultsSphere.DistanceInfo.WitnessPoints

bpWitnessptsSphere = 3×2

    3.0000    5.1000
   -6.0000   -5.0000
   -7.5000   -7.5000

Plot a line between the sphere and the closest voxel to it using its witness points.

figure
exampleHelperPlotCylinderAndSphere(map,cylinder,sphere)
hold on
plot3(bpWitnessptsSphere(1,:),bpWitnessptsSphere(2,:),bpWitnessptsSphere(3,:),LineWidth=2,Color='r')
hold off
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Now perform a narrow-phase check, by using an occupancyMap3DCollisionOptions object with
the CheckNarrowPhase property set to true.

npOpts = occupancyMap3DCollisionOptions(CheckNarrowPhase=true,ReturnDistance=true,ReturnVoxels=true);
[npIsCollidingSphere,bpResultsSphere] = checkMapCollision(map,sphere,npOpts);

Return the voxel distance and witness point coordinates for the sphere. The distance and witness
points are slightly more accurate this time, because the narrow phase uses the distance between the
primitive and the voxel, whereas the broad phase before uses the distance between the axis-aligned
bounding box (AABB) of the collision object and the voxel.

npDist = bpResultsSphere.DistanceInfo.Distance

npDist = 2.6892

npWitnesspts = bpResultsSphere.DistanceInfo.WitnessPoints

npWitnesspts = 3×2

    3.0000    5.2596
   -6.0000   -4.5419
   -7.5000   -7.5000

Visualize the occupancy map again and plot line showing the shortest distance between the voxel and
sphere. The line between the witness points visually appears accurate after performing the narrow-
phase check.
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exampleHelperPlotCylinderAndSphere(map,cylinder,sphere)
hold on
plot3(npWitnesspts(1,:),npWitnesspts(2,:),npWitnesspts(3,:),LineWidth=2,Color='r')
hold off

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
checkMapCollision | occupancyMap3D
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checkOccupancy
Check if locations are free or occupied

Syntax
iOccval = checkOccupancy(map3D,xyz)

Description
iOccval = checkOccupancy(map3D,xyz) returns an array of occupancy values specified at the
xyz locations using the OccupiedThreshold and FreeThreshold properties of the input
occupancyMap3D object. Each row is a separate xyz location in the map to check the occupancy of.
Occupancy values can be obstacle-free (0), occupied (1), or unknown (–1).

Examples

Check Occupancy Status and Get Occupancy Values in 3-D Occupancy Map

Import a 3-D occupancy map.

map3D = importOccupancyMap3D("citymap.ot")

map3D = 
  occupancyMap3D with properties:

    ProbabilitySaturation: [1.0000e-03 0.9990]
               Resolution: 1
        OccupiedThreshold: 0.6500
            FreeThreshold: 0.2000

Display the map.

show(map3D)
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Check the occupancy statuses of different locations and get their occupancy values.

iOccVal1 = checkOccupancy(map3D,[50 15 0])

iOccVal1 = 0

OccVal1 = getOccupancy(map3D,[50 15 0])

OccVal1 = 0.0019

iOccVal2 = checkOccupancy(map3D,[50 15 15])

iOccVal2 = 1

OccVal2 = getOccupancy(map3D,[50 15 15])

OccVal2 = 0.6500

iOccVal3 = checkOccupancy(map3D,[50 15 45])

iOccVal3 = -1

OccVal3 = getOccupancy(map3D,[50 15 45])

OccVal3 = 0.5000

 checkOccupancy
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Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

xyz — World coordinates
n-by-3 matrix

World coordinates, specified as an n-by-3 matrix of [x y z] points, where n is the number of world
coordinates.

Output Arguments
iOccval — Interpreted occupancy values
column vector

Interpreted occupancy values, returned as a column vector with the same length as xyz.

Occupancy values can be obstacle-free (0), occupied (1), or unknown (–1). These values are
determined from the actual probability values and the OccupiedThreshold and FreeThreshold
properties of the map3D object.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
insertPointCloud | inflate | setOccupancy | show
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getOccupancy
Get occupancy probability of locations

Syntax
occval = getOccupancy(map3D,xyz)

Description
occval = getOccupancy(map3D,xyz) returns an array of probability occupancy values at the
specified xyz locations in the occupancyMap3D object. Values close to 1 represent a high certainty
that the cell contains an obstacle. Values close to 0 represent certainty that the cell is not occupied
and obstacle-free.

Examples

Check Occupancy Status and Get Occupancy Values in 3-D Occupancy Map

Import a 3-D occupancy map.

map3D = importOccupancyMap3D("citymap.ot")

map3D = 
  occupancyMap3D with properties:

    ProbabilitySaturation: [1.0000e-03 0.9990]
               Resolution: 1
        OccupiedThreshold: 0.6500
            FreeThreshold: 0.2000

Display the map.

show(map3D)

 getOccupancy
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Check the occupancy statuses of different locations and get their occupancy values.

iOccVal1 = checkOccupancy(map3D,[50 15 0])

iOccVal1 = 0

OccVal1 = getOccupancy(map3D,[50 15 0])

OccVal1 = 0.0019

iOccVal2 = checkOccupancy(map3D,[50 15 15])

iOccVal2 = 1

OccVal2 = getOccupancy(map3D,[50 15 15])

OccVal2 = 0.6500

iOccVal3 = checkOccupancy(map3D,[50 15 45])

iOccVal3 = -1

OccVal3 = getOccupancy(map3D,[50 15 45])

OccVal3 = 0.5000
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Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

xyz — World coordinates
n-by-3 matrix

World coordinates, specified as an n-by-3 matrix of [x y z] points, where n is the number of world
coordinates.

Output Arguments
occval — Probability occupancy values
column vector

Probability occupancy values, returned as a column vector with the same length as xyz.

Values close to 0 represent certainty that the cell is not occupied and obstacle-free.

Version History
Introduced in R2019b

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
insertPointCloud | inflate | setOccupancy | show
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inflate
Inflate each occupied location

Syntax
inflate(map3D,radius)

Description
inflate(map3D,radius) inflates each occupied position of the specified in the input
occupancyMap3D object by the radius specified in meters. radius is rounded up to the nearest
equivalent cell based on the resolution of the map. This inflation increases the size of the occupied
locations in the map.

Examples

Get Ray Intersection Points on 3-D Occupancy Map

Import a 3-D occupancy map.

map3D = importOccupancyMap3D("citymap.ot")

map3D = 
  occupancyMap3D with properties:

    ProbabilitySaturation: [1.0000e-03 0.9990]
               Resolution: 1
        OccupiedThreshold: 0.6500
            FreeThreshold: 0.2000

Inflate the occupied areas by a radius of 1 m. Display the map.

inflate(map3D,1)
show(map3D)

Find the intersection points of rays and occupied map cells.

numRays = 10;
angles = linspace(-pi/2,pi/2,numRays);
directions = [cos(angles); sin(angles); zeros(1,numRays)]';
sensorPose = [55 40 1 1 0 0 0];
maxrange = 15;
[intersectionPts,isOccupied] = rayIntersection(map3D,sensorPose,directions,maxrange)

intersectionPts = 10×3

   55.0000   32.0000    1.0000
   57.9118   32.0000    1.0000
   61.7128   32.0000    1.0000
   67.9904   32.5000    1.0000
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   69.0000   37.5314    1.0000
   69.0000   42.4686    1.0000
   67.9904   47.5000    1.0000
   64.6418   51.4907    1.0000
   58.2757   49.0000    1.0000
   55.0000   49.0000    1.0000

isOccupied = 10×1

     1
     1
     1
    -1
     1
     1
    -1
    -1
     1
     1

Plot the intersection points and plot rays from the pose to the intersection points.

hold on
plotTransforms(sensorPose(1:3),sensorPose(4:end),...
               'FrameSize',5,'MeshFilePath','groundvehicle.stl') % Vehicle sensor pose
for i = 1:numRays
    plot3([sensorPose(1),intersectionPts(i,1)],...
          [sensorPose(2),intersectionPts(i,2)],...
          [sensorPose(3),intersectionPts(i,3)],'-b') % Plot rays
    if isOccupied(i) == 1
        plot3(intersectionPts(i,1),intersectionPts(i,2),intersectionPts(i,3),'*r') % Intersection points
    end
end

 inflate

2-1051



Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

radius — Amount to inflate occupied locations
scalar

Amount to inflate occupied locations, specified as a scalar. radius is rounded up to the nearest cell
value.

Version History
Introduced in R2019b

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap
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Functions
insertPointCloud | setOccupancy | show

 inflate
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insertPointCloud
Insert 3-D points or point cloud observation into map

Syntax
insertPointCloud(map3D,pose,points,maxrange)
insertPointCloud(map3D,pose,ptcloud,maxrange)

Description
insertPointCloud(map3D,pose,points,maxrange) inserts one or more sensor observations at
the given points in the occupancy map, map3D. Occupied points are updated with an observation of
0.7. All other points between the sensor pose and points are treated as obstacle-free and updated
with an observation of 0.4. Points outside maxrange are not updated. NaN values are ignored.

insertPointCloud(map3D,pose,ptcloud,maxrange) inserts a ptcloud object into the map.

Examples

Create 3-D Occupancy Map and Inflate Points

The occupancyMap3D object stores obstacles in 3-D space, using sensor observations to map an
environment. Create a map and add points from a point cloud to identify obstacles. Then inflate the
obstacles in the map to ensure safe operating space around obstacles.

Create an occupancyMap3D object with a map resolution of 10 cells/meter.

map3D = occupancyMap3D(10);

Define a set of 3-D points as an observation from a pose [x y z qw qx qy qz]. This pose is for the
sensor that observes these points and is centered on the origin. Define two sets of points to insert
multiple observations.

pose = [ 0 0 0 1 0 0 0];

points = repmat((0:0.25:2)', 1, 3);
points2 = [(0:0.25:2)' (2:-0.25:0)' (0:0.25:2)'];
maxRange = 5;

Insert the first set of points using insertPointCloud. The function uses the sensor pose and the
given points to insert observations into the map. The colors displayed correlate to the height of the
point only for illustrative purposes.

insertPointCloud(map3D,pose,points,maxRange)
show(map3D)
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Insert the second set of points. The ray between the sensor pose (origin) and these points overlap
points from the previous insertion. Therefore, the free space between the sensor and the new points
are updated and marked as free space.

insertPointCloud(map3D,pose,points2,maxRange)
show(map3D)

 insertPointCloud
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Inflate the map to add a buffer zone for safe operation around obstacles. Define the vehicle radius
and safety distance and use the sum of these values to define the inflation radius for the map.

vehicleRadius = 0.2;
safetyRadius = 0.3;
inflationRadius = vehicleRadius + safetyRadius;
inflate(map3D, inflationRadius);

show(map3D)
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Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as a occupancyMap3D object.

points — Points of point cloud
n-by-3 matrix

Points of point cloud in sensor coordinates, specified as an n-by-3 matrix of [x y z] points, where n
is the number of points in the point cloud.

ptcloud — Point cloud reading
pointCloud object

Point cloud reading, specified as a pointCloud object.

Note Using pointCloud objects requires Computer Vision Toolbox.

pose — Position and orientation of vehicle
[x y z qw qx qy qz] vector
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Position and orientation of vehicle, specified as an [x y z qw qx qy qz] vector. The vehicle pose
is an xyz-position vector with a quaternion orientation vector specified as [qw qx qy qz].

maxrange — Maximum range of sensor
scalar

Maximum range of point cloud sensor, specified as a scalar. Points outside this range are ignored.

Version History
Introduced in R2019b

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
inflate | setOccupancy | show
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rayIntersection
Find intersection points of rays and occupied map cells

Syntax
[intersectionPts,isOccupied] = rayIntersection(map3D,sensorPose,directions,
maxrange)
[intersectionPts,isOccupied] = rayIntersection(map3D,sensorPose,directions,
maxrange,ignoreUnknown)

Description
[intersectionPts,isOccupied] = rayIntersection(map3D,sensorPose,directions,
maxrange) returns intersection points of rays in the specified map, map3D. Rays emanate from the
specified sensorPose at the given orientations, directions. Intersection points are returned in the
world coordinate frame. Use isOccupied to determine if the intersection point is at the sensor max
range or if it intersects an obstacle.

[intersectionPts,isOccupied] = rayIntersection(map3D,sensorPose,directions,
maxrange,ignoreUnknown)additionally accepts optional arguments for the sensors max range and
whether to ignore unknown values. By default, the rays extend to the map boundary and unknown
values are ignored.

Examples

Get Ray Intersection Points on 3-D Occupancy Map

Import a 3-D occupancy map.

map3D = importOccupancyMap3D("citymap.ot")

map3D = 
  occupancyMap3D with properties:

    ProbabilitySaturation: [1.0000e-03 0.9990]
               Resolution: 1
        OccupiedThreshold: 0.6500
            FreeThreshold: 0.2000

Inflate the occupied areas by a radius of 1 m. Display the map.

inflate(map3D,1)
show(map3D)

Find the intersection points of rays and occupied map cells.

numRays = 10;
angles = linspace(-pi/2,pi/2,numRays);
directions = [cos(angles); sin(angles); zeros(1,numRays)]';
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sensorPose = [55 40 1 1 0 0 0];
maxrange = 15;
[intersectionPts,isOccupied] = rayIntersection(map3D,sensorPose,directions,maxrange)

intersectionPts = 10×3

   55.0000   32.0000    1.0000
   57.9118   32.0000    1.0000
   61.7128   32.0000    1.0000
   67.9904   32.5000    1.0000
   69.0000   37.5314    1.0000
   69.0000   42.4686    1.0000
   67.9904   47.5000    1.0000
   64.6418   51.4907    1.0000
   58.2757   49.0000    1.0000
   55.0000   49.0000    1.0000

isOccupied = 10×1

     1
     1
     1
    -1
     1
     1
    -1
    -1
     1
     1

Plot the intersection points and plot rays from the pose to the intersection points.

hold on
plotTransforms(sensorPose(1:3),sensorPose(4:end),...
               'FrameSize',5,'MeshFilePath','groundvehicle.stl') % Vehicle sensor pose
for i = 1:numRays
    plot3([sensorPose(1),intersectionPts(i,1)],...
          [sensorPose(2),intersectionPts(i,2)],...
          [sensorPose(3),intersectionPts(i,3)],'-b') % Plot rays
    if isOccupied(i) == 1
        plot3(intersectionPts(i,1),intersectionPts(i,2),intersectionPts(i,3),'*r') % Intersection points
    end
end
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Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as a occupancyMap3D object.

sensorPose — Position and orientation of sensor
[x y z qw qx qy qz] vector

Position and orientation of sensor, specified as an [x y z qw qx qy qz] vector. The vehicle pose is
an xyz-position vector with a quaternion orientation vector specified as [qw qx qy qz].

directions — Orientation of rays emanating from sensor
n-by-3 [dx dy dz] matrix | n-by-2 [az el] matrix

Orientation of rays emanating from the sensor relative to the sensor coordinate frame, specified as an
n-by-3 [dx dy dz] matrix or n-by-2 [az el] matrix.

• [dx dy dz] is a directional vector in xyz-coordinates.
• [az el] is a vector with azimuth angle, az, measured from the positive x direction to the positive

y direction, and elevation angle from the xy-plane to the positive z-direction in sensor coordinate
frame.

 rayIntersection
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maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values greater than or
equal to maxrange are considered free along the whole length of the ray, up to maxrange.

ignoreUnknown — Interpret unknown values as free or occupied
1 (default) | 0

Interpret unknown values in the map as free or occupied specified as 1 or 0. Set this value to 0 to
assume unknown values are occupied.

Output Arguments
intersectionPts — Intersection points
n-by-3 matrix

Intersection points, returned as n-by-3 matrix of [x y z] points in the world frame, where n is the
length of directions.

isOccupied — Occupancy status of ray end points
vector of zeroes and ones

Occupancy status of ray end points, returned as a vector of zeroes and ones. Use isOccupied to
determine if the intersection point is at the sensor max range or if it intersects an obstacle.

Version History
Introduced in R2020a

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
insertPointCloud | inflate | setOccupancy | show
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setOccupancy
Set occupancy probability of locations

Syntax
setOccupancy(map3D,xyz,occval)

Description
setOccupancy(map3D,xyz,occval) assigns the occupancy values to each specified xyz
coordinate in the 3-D occupancy map.

Examples

Create and Export 3-D Occupancy Map

Create an occupancyMap3D object.

map3D = occupancyMap3D;

Create a ground plane and set occupancy values to 0.

[xGround,yGround,zGround] = meshgrid(0:100,0:100,0);
xyzGround = [xGround(:) yGround(:) zGround(:)];
occval = 0;
setOccupancy(map3D,xyzGround,occval)

Create obstacles in specific world locations of the map.

[xBuilding1,yBuilding1,zBuilding1] = meshgrid(20:30,50:60,0:30);
[xBuilding2,yBuilding2,zBuilding2] = meshgrid(50:60,10:30,0:40);
[xBuilding3,yBuilding3,zBuilding3] = meshgrid(40:60,50:60,0:50);
[xBuilding4,yBuilding4,zBuilding4] = meshgrid(70:80,35:45,0:60);

xyzBuildings = [xBuilding1(:) yBuilding1(:) zBuilding1(:);...
                xBuilding2(:) yBuilding2(:) zBuilding2(:);...
                xBuilding3(:) yBuilding3(:) zBuilding3(:);...
                xBuilding4(:) yBuilding4(:) zBuilding4(:)];

Update the obstacles with new probability values and display the map.

obs = 0.65;
updateOccupancy(map3D,xyzBuildings,obs)
show(map3D)
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Check if the map file named citymap.ot already exist in the current directory and delete it before
creating the map file.

if exist("citymap.ot",'file')
    delete("citymap.ot")
end

Export the map as an octree file.

filePath = fullfile(pwd,"citymap.ot");
exportOccupancyMap3D(map3D,filePath)

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.
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xyz — World coordinates
n-by-3 matrix

World coordinates, specified as an n-by-3 matrix of [x y z] points, where n is the number of world
coordinates.

occval — Probability occupancy values
scalar | column vector

Probability occupancy values, specified as a scalar or a column vector with the same length as xyz. A
scalar input is applied to all coordinates in xyz.

Values close to 0 represent certainty that the cell is not occupied and obstacle-free.

Version History
Introduced in R2019b

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
insertPointCloud | inflate | show
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show
Display 3-D occupancy map

Syntax
axes = show(map3D)
show(map3D,Name=Value)

Description
axes = show(map3D) displays the occupancy map, map3D, in the current axes, with the axes labels
representing the world coordinates.

The function displays the 3-D environment using 3-D voxels for areas with occupancy values greater
than the OccupiedThreshold property value specified in map3D. The color of the 3-D plot is strictly
height-based.

show(map3D,Name=Value) specifies options using one or more name-value arguments.

Examples

Get Ray Intersection Points on 3-D Occupancy Map

Import a 3-D occupancy map.

map3D = importOccupancyMap3D("citymap.ot")

map3D = 
  occupancyMap3D with properties:

    ProbabilitySaturation: [1.0000e-03 0.9990]
               Resolution: 1
        OccupiedThreshold: 0.6500
            FreeThreshold: 0.2000

Inflate the occupied areas by a radius of 1 m. Display the map.

inflate(map3D,1)
show(map3D)

Find the intersection points of rays and occupied map cells.

numRays = 10;
angles = linspace(-pi/2,pi/2,numRays);
directions = [cos(angles); sin(angles); zeros(1,numRays)]';
sensorPose = [55 40 1 1 0 0 0];
maxrange = 15;
[intersectionPts,isOccupied] = rayIntersection(map3D,sensorPose,directions,maxrange)

intersectionPts = 10×3
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   55.0000   32.0000    1.0000
   57.9118   32.0000    1.0000
   61.7128   32.0000    1.0000
   67.9904   32.5000    1.0000
   69.0000   37.5314    1.0000
   69.0000   42.4686    1.0000
   67.9904   47.5000    1.0000
   64.6418   51.4907    1.0000
   58.2757   49.0000    1.0000
   55.0000   49.0000    1.0000

isOccupied = 10×1

     1
     1
     1
    -1
     1
     1
    -1
    -1
     1
     1

Plot the intersection points and plot rays from the pose to the intersection points.

hold on
plotTransforms(sensorPose(1:3),sensorPose(4:end),...
               'FrameSize',5,'MeshFilePath','groundvehicle.stl') % Vehicle sensor pose
for i = 1:numRays
    plot3([sensorPose(1),intersectionPts(i,1)],...
          [sensorPose(2),intersectionPts(i,2)],...
          [sensorPose(3),intersectionPts(i,3)],'-b') % Plot rays
    if isOccupied(i) == 1
        plot3(intersectionPts(i,1),intersectionPts(i,2),intersectionPts(i,3),'*r') % Intersection points
    end
end

 show

2-1067



Visualize 3-D Occupancy Maps with Varying Search Depths

Create a 3-D occupancy map and set 25 random coordinates in the occupancy map as occupied.

map = occupancyMap3D;
rng(0);
for i = 1:25
    pt = (rand(1,3)-.5)*20;
    map.setOccupancy(pt,1);
end

Visualize the voxels with the default search depth value, 16.

show(map)
axis equal
grid on
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Decrease the search depth in increments of 1 and notice that the resolution drops as you decrease
the search depth.

show(map,SearchDepth=15)
axis equal
grid on

 show
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show(map,SearchDepth=14)
axis equal
grid on
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show(map,SearchDepth=13)
axis equal
grid on

 show
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Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: show(map,SearchDepth=14)

Parent — Axes used to plot the map
Axes object | UIAxes object

Axes used to plot the map, specified as either an Axes or UIAxes object. See axes or uiaxes.

SearchDepth — Voxel search depth
16 (default) | integer in the range [0,16]
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Voxel search depth, specified as an integer in the range [0,16], which determines the level-of-detail at
which the map is displayed. The maximum depth is 16, corresponding to voxels whose edge length is
equal to 1/map.Resolution. Each level above the maximum depth doubles this minimum voxel size.

Output Arguments
axes — Axes handle for map
Axes object | UIAxes object

Axes handle for map, returned as either an Axes or UIAxesobject. See axes or uiaxes.

Version History
Introduced in R2019b

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
insertPointCloud | setOccupancy
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updateOccupancy
Update occupancy probability at locations

Syntax
updateOccupancy(map3D,xyz,obs)

Description
updateOccupancy(map3D,xyz,obs) probabilistically integrates the observation values, obs, to
each specified xyz coordinate in the occupancyMap3D object, map3D.

Examples

Create and Export 3-D Occupancy Map

Create an occupancyMap3D object.

map3D = occupancyMap3D;

Create a ground plane and set occupancy values to 0.

[xGround,yGround,zGround] = meshgrid(0:100,0:100,0);
xyzGround = [xGround(:) yGround(:) zGround(:)];
occval = 0;
setOccupancy(map3D,xyzGround,occval)

Create obstacles in specific world locations of the map.

[xBuilding1,yBuilding1,zBuilding1] = meshgrid(20:30,50:60,0:30);
[xBuilding2,yBuilding2,zBuilding2] = meshgrid(50:60,10:30,0:40);
[xBuilding3,yBuilding3,zBuilding3] = meshgrid(40:60,50:60,0:50);
[xBuilding4,yBuilding4,zBuilding4] = meshgrid(70:80,35:45,0:60);

xyzBuildings = [xBuilding1(:) yBuilding1(:) zBuilding1(:);...
                xBuilding2(:) yBuilding2(:) zBuilding2(:);...
                xBuilding3(:) yBuilding3(:) zBuilding3(:);...
                xBuilding4(:) yBuilding4(:) zBuilding4(:)];

Update the obstacles with new probability values and display the map.

obs = 0.65;
updateOccupancy(map3D,xyzBuildings,obs)
show(map3D)
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Check if the map file named citymap.ot already exist in the current directory and delete it before
creating the map file.

if exist("citymap.ot",'file')
    delete("citymap.ot")
end

Export the map as an octree file.

filePath = fullfile(pwd,"citymap.ot");
exportOccupancyMap3D(map3D,filePath)

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.
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xyz — World coordinates
n-by-3 matrix

World coordinates, specified as an n-by-3 matrix of [x y z] points, where n is the number of world
coordinates.

obs — Probability observation values
numeric scalar | logical scalar | n-by-1 column vector

Probability observation values, specified as a numeric or logical scalar, or as an n-by-1 column vector
with the same size as xyz.

obs values can be from 0 to 1, but if obs is a logical array, the function uses the default observation
values of 0.7 (true) and 0.4 (false). If obs is a numeric or logical scalar, the value is applied to all
coordinates in xyz.

Version History
Introduced in R2019b

See Also
Classes
occupancyMap3D | lidarSLAM | occupancyMap

Functions
insertPointCloud | inflate | setOccupancy | show
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odometryMotionModel
Create an odometry motion model

Description
odometryMotionModel creates an odometry motion model object for differential drive vehicles. This
object contains specific motion model parameters. You can use this object to specify the motion model
parameters in the monteCarloLocalization object.

This motion model assumes that the vehicle makes pure rotation and translation motions to travel
from one location to the other. The model propagates points for either forward or backwards motion
based on these motion patterns. The elements of the Noise property refer to the variance in the
motion. To see the effect of changing the noise parameters, use showNoiseDistribution.

Creation

Syntax
omm = odometryMotionModel

Description

omm = odometryMotionModel creates an odometry motion model object for differential drive
vehicles.

Properties
Noise — Gaussian noise for vehicle motion
[0.2 0.2 0.2 0.2] (default) | 4-element vector

Gaussian noise for vehicle motion, specified as a 4-element vector. This property represents the
variance parameters for Gaussian noise applied to vehicle motion. The elements of the vector
correspond to the following errors in order:

• Rotational error due to rotational motion
• Rotational error due to translational motion
• Translational error due to translation motion
• Translational error due to rotational motion

Type — Type of the odometry motion model
'DifferentialDrive' (default)

This property is read-only.

Type of the odometry motion model, returned as 'DifferentialDrive'. This read-only property
indicates the type of odometry motion model being used by the object.

 odometryMotionModel
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Object Functions
showNoiseDistribution Display noise parameter effects

Examples

Predict Poses Based On An Odometry Motion Model

This example shows how to use the odometryMotionModel class to predict the pose of a vehicle. An
odometryMotionModel object contains the motion model parameters for a differential drive vehicle.
Use the object to predict the pose of a vehicle based on its current and previous poses and the motion
model parameters.

Create odometry motion model object.

motionModel = odometryMotionModel;

Define previous poses and the current odometry reading. Each pose prediction corresponds to a row
in previousPoses vector.

previousPoses =  rand(10,3);
currentOdom = [0.1 0.1 0.1];

The first call to the object initializes values and returns the previous poses as the current poses.

currentPoses = motionModel(previousPoses, currentOdom);

Subsequent calls to the object with updated odometry poses returns the predicted poses based on the
motion model.

currentOdom = currentOdom + [0.1 0.1 0.05];
predPoses = motionModel(previousPoses, currentOdom);

Show Noise Distribution Effects for Odometry Motion Model

This example shows how to visualize the effect of different noise parameters on the
odometryMotionModel class. An odometryMotionModel object contains the motion model noise
parameters for a differential drive vehicle. Use showNoiseDistribution to visualize how changing
these values affect the distribution of predicted poses.

Create a motion model object.

motionModel = odometryMotionModel;

Show the distribution of particles with the existing noise parameters. Each particle is a hypothesis for
the predicted pose.

showNoiseDistribution(motionModel);
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Show the distribution with a specified odometry pose change and number of samples. The change in
odometry is used as the final pose with hypotheses distributed around based on the Noise
parameters.

showNoiseDistribution(motionModel, ...
            'OdometryPoseChange', [0.5 0.1 0.25], ...
            'NumSamples', 1000);
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Change the Noise parameters and visualize the effects. Use the same odometry pose change and
number of samples.

 motionModel.Noise = [0.2 1 0.2 1];
 
 showNoiseDistribution(motionModel, ...
            'OdometryPoseChange', [0.5 0.1 0.25], ...
            'NumSamples', 1000);
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Limitations
If you make changes to your motion model after using it with the monteCarloLocalization object,
call release on that object beforehand. For example:

mcl = monteCarloLocalization; 
[isUpdated,pose,covariance] = mcl(ranges,angles); 
release(mcl) 
mcl.MotionModel.Noise = [0.25 0.25 0.4 0.4];

Version History
Introduced in R2019b

References
[1] Thrun, Sebatian, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 odometryMotionModel
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See Also
monteCarloLocalization | likelihoodFieldSensorModel

Topics
“Localize TurtleBot Using Monte Carlo Localization Algorithm”
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showNoiseDistribution
Display noise parameter effects

Syntax
showNoiseDistribution(ommObj)
showNoiseDistribution(ommObj)
showNoiseDistribution(ommObj,Name,Value)

Description
showNoiseDistribution(ommObj) shows the noise distribution for a default odometry pose
update, number of samples and the current noise parameters on the input object.

axes = showNoiseDistribution(ommObj) shows the noise distribution and returns the axes
handle.

showNoiseDistribution(ommObj,Name,Value) provides additional options specified by one or
more Name,Value pairs. Name is the property name and Value is the corresponding value. Name
must appear inside single quotes (' '). You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default values.

Examples

Show Noise Distribution Effects for Odometry Motion Model

This example shows how to visualize the effect of different noise parameters on the
odometryMotionModel class. An odometryMotionModel object contains the motion model noise
parameters for a differential drive vehicle. Use showNoiseDistribution to visualize how changing
these values affect the distribution of predicted poses.

Create a motion model object.

motionModel = odometryMotionModel;

Show the distribution of particles with the existing noise parameters. Each particle is a hypothesis for
the predicted pose.

showNoiseDistribution(motionModel);

 showNoiseDistribution
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Show the distribution with a specified odometry pose change and number of samples. The change in
odometry is used as the final pose with hypotheses distributed around based on the Noise
parameters.

showNoiseDistribution(motionModel, ...
            'OdometryPoseChange', [0.5 0.1 0.25], ...
            'NumSamples', 1000);
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Change the Noise parameters and visualize the effects. Use the same odometry pose change and
number of samples.

 motionModel.Noise = [0.2 1 0.2 1];
 
 showNoiseDistribution(motionModel, ...
            'OdometryPoseChange', [0.5 0.1 0.25], ...
            'NumSamples', 1000);
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Input Arguments
ommObj — odometryMotionModel object
handle

odometryMotionModel object, specified as a handle. Create this object using
odometryMotionModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'OdometryPoseChange',[1 1 pi]

OdometryPoseChange — Change in odometry
three-element vector

Change in odometry of the robot, specified as a comma-separated pair consisting of
'OdometryPoseChange' and a three-element vector, [x y theta].

NumSamples — Number of particles to display
scalar
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Number of particles to display, specified as a comma-separated pair consisting of 'NumSamples' and
a scalar.

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map, specified as a comma-separated pair consisting of 'Parent' and either an
Axes or UIAxes object. See axes or uiaxes.

Version History
Introduced in R2019b

See Also
monteCarloLocalization | odometryMotionModel | likelihoodFieldSensorModel
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optimizePathOptions
Create optimization options for optimizePath function

Description
Optimization options are grouped into four categories:

• Trajectory Parameters — Specify the desired robot motion throughout the path.
• Obstacle Parameters — Specify the distances which dictate the influence of obstacle on the

path.
• Solver Parameters — Specify the options for solver used to optimize the path.
• Weights — Specify the cost function weights.

Note At a very high level, two primary operations happen inside optimizePath function:

1 Path Adjustment — Increase (interpolate) or decrease (de-interpolate) poses in the path.
2 Optimization — Minimize the cost of the path by invoking the solver (Levenberg–Marquardt).

NumIteration property determines how many times Step 1 and 2 will be executed in a loop.
MaxSolverIteration property determines the maximum iterations for Levenberg–Marquardt every
time it is invoked in Step 2. For the default values, Path Adjustment and Optimization (Solver
invocation) will happen four times, and at each invocation the solver will iterate a maximum of 15
times.

Creation
Syntax
options = optimizePathOptions

Description

options = optimizePathOptions creates a set of default optimization options for
optimizePath function.

Properties
Trajectory Parameters

MaxPathStates — Maximum number of poses allowed in path
200 (default) | integer greater than or equal to 3

Maximum number of poses allowed in the path, specified as an integer greater than or equal to 3.
Example: options.MaxPathStates = 100
Data Types: single | double
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ReferenceDeltaTime — Travel time between two consecutive poses
0.3 (default) | positive scalar

Travel time between two consecutive poses, specified as a positive scalar in seconds. This parameter
along with MaxVelocity impacts the interpolation distance between poses. Increase this value to have
lesser number of poses and reduce it to have higher number of poses in the output path.
Example: options.ReferenceDeltaTime = 0.5
Data Types: single | double

MinTurningRadius — Minimum turning radius in path
1 (default) | positive scalar

Minimum turning radius in the path, specified as a positive scalar in meters. Note that this is a soft
constraint and may be ignored based on the value of WeightMinTurningRadius parameter with
respect to other weights.
Example: options.MinTurningRadius = 1.5
Data Types: single | double

MaxVelocity — Maximum velocity along path
0.4 (default) | positive scalar

Maximum velocity along the path, specified as a positive scalar in meters per second. Note that this is
a soft constraint and may be ignored based on the value of WeightVelocity parameter with respect to
other weights.
Example: options.MaxVelocity = 0.5
Data Types: single | double

MaxAngularVelocity — Maximum angular velocity along path
0.3 (default) | positive scalar

Maximum angular velocity along the path, specified as a positive scalar in radians per second. Note
that this is a soft constraint and may be ignored based on the value of WeightAngularVelocity
parameter with respect to other weights.
Example: options.MaxAngularVelocity = 0.5
Data Types: single | double

MaxAcceleration — Maximum acceleration along path
0.5 (default) | positive scalar

Maximum acceleration along the path, specified as a positive scalar in meters per second squared.
Note that this is a soft constraint and may be ignored based on the value of WeightAcceleration
parameter with respect to other weights.
Example: options.MaxAcceleration = 0.6
Data Types: single | double

MaxAngularAcceleration — Maximum angular acceleration along path
0.5 (default) | positive scalar
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Maximum angular acceleration along path, specified as a positive scalar in radians per second
squared. Note that this is a soft constraint and may be ignored based on the value of
WeightAngularAcceleration parameter with respect to other weights.
Example: options.MaxAngularAcceleration = 0.6
Data Types: single | double

Obstacle Parameters

ObstacleSafetyMargin — Safety distance from obstacles
0.5 (default) | positive scalar

Safety distance from the obstacles, specified as a positive scalar in meters. Note that this is a soft
constraint and may be ignored based on the value of WeightObstacles parameter with respect to
other weights.
Example: options.ObstacleSafetyMargin = 0.6
Data Types: single | double

ObstacleCutOffDistance — Obstacle cutoff distance
2.5 (default) | positive scalar

Obstacle cutoff distance, specified as a positive scalar in meters. The path optimizer ignores obstacles
beyond the cutoff distance.
Example: options.ObstacleCutOffDistance = 1.5
Data Types: single | double

ObstacleInclusionDistance — Obstacle inclusion distance
0.75 (default) | positive scalar

Obstacle inclusion distance, specified as a positive scalar in meters. The path optimizer considers all
obstacles within the inclusion distance, but only the closest obstacle on the left and on the right
between the inclusion and cutoff distances.
Example: options.ObstacleInclusionDistance = 0.5
Data Types: single | double

Solver Parameters

NumIteration — Number of solver invocations
4 (default) | positive integer

Number of solver invocations, specified as a positive integer. This value also specifies the number of
times interpolation occurs during optimization.
Example: options.NumIteration = 5
Data Types: single | double

MaxSolverIteration — Maximum number of iterations for each solver invocation
15 (default) | positive integer

Maximum number of iterations for each solver invocation, specified as a positive integer.
Example: options.MaxSolverIteration = 12
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Data Types: single | double

Weights

WeightTime — Cost function weight for time
10 (default) | nonnegative scalar

Cost function weight for time, specified as a nonnegative scalar. To lower the travel time, increase
this weight value.
Example: options.WeightTime = 12
Data Types: single | double

WeightSmoothness — Cost function weight for nonholonomic motion
1000 (default) | nonnegative scalar

Cost function weight for nonholonomic motion, specified as a nonnegative scalar. To obtain smoother
path, increase this weight value.
Example: options.WeightSmoothness = 500
Data Types: single | double

WeightMinTurningRadius — Cost function weight for complying with minimum turning
radius
10 (default) | nonnegative scalar

Cost function weight for complying with minimum turning radius, specified as a nonnegative scalar.
To ensure the turning radius is above minimum turning radius, increase this weight value.
Example: options.WeightMinTurningRadius = 15
Data Types: single | double

WeightVelocity — Cost function weight for velocity
100 (default) | nonnegative scalar

Cost function weight for velocity, specified as a nonnegative scalar. To maintain the velocity below
MaxVelocity, increase this weight value.
Example: options.WeightVelocity = 120
Data Types: single | double

WeightAngularVelocity — Cost function weight for angular velocity
10 (default) | nonnegative scalar

Cost function weight for angular velocity, specified as a nonnegative scalar. To maintain the angular
velocity below MaxAngularVelocity, increase this weight value.
Example: options.WeightAngularVelocity = 15
Data Types: single | double

WeightAcceleration — Cost function weight for acceleration
10 (default) | nonnegative scalar

Cost function weight for acceleration, specified as a nonnegative scalar. To maintain the acceleration
below MaxAcceleration, increase this weight value.
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Example: options.WeightAcceleration = 15
Data Types: single | double

WeightAngularAcceleration — Cost function weight for angular acceleration
10 (default) | nonnegative scalar

Cost function weight for angular acceleration, specified as a nonnegative scalar. To maintain the
angular acceleration below MaxAngularAcceleration, increase this weight value.
Example: options.WeightAngularAcceleration = 15
Data Types: single | double

WeightObstacles — Cost function weight for maintaining safe distance from obstacles
50 (default) | nonnegative scalar

Cost function weight for maintaining safe distance from obstacles, specified as a nonnegative scalar.
To maintain the safe distance from obstacles, increase this weight value.
Example: options.WeightObstacles = 60
Data Types: single | double

Examples

Optimize Planned Path

Setup Environment

Load a map into the workspace.

map = load("exampleMaps.mat").complexMap;

Create a binary occupancy map.

map = binaryOccupancyMap(map);

Create a state validator object.

stateValidator = validatorOccupancyMap;

Assign the map to the state validator object.

stateValidator.Map = map;

Set the validation distance for the validator.

stateValidator.ValidationDistance = 0.01;

Plan Path

Initialize the plannerHybridAStar object with the state validator object. Specify the
MinTurningRadius property of the planner as 2 meters.

planner = plannerHybridAStar(stateValidator,MinTurningRadius=2);
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Define start and goal poses as [x y theta] vectors. x and y specify the position in meters, and theta
specifies the orientation angle in radians.

start = [6 3 pi/2];
goal = [32 32 0];

Plan a path from the start pose to the goal pose.

path = plan(planner,start,goal);
inpath = path.States;

Optimize Path

Configure options for optimization.

options = optimizePathOptions

options = 
optimizePathOptions

   Trajectory Parameters
                MaxPathStates: 200
           ReferenceDeltaTime: 0.3000
             MinTurningRadius: 1
                  MaxVelocity: 0.4000
           MaxAngularVelocity: 0.3000
              MaxAcceleration: 0.5000
       MaxAngularAcceleration: 0.5000

   Obstacle Parameters
         ObstacleSafetyMargin: 0.5000
       ObstacleCutOffDistance: 2.5000
    ObstacleInclusionDistance: 0.7500

   Solver Parameters
                 NumIteration: 4
           MaxSolverIteration: 15

   Weights
                   WeightTime: 10
             WeightSmoothness: 1000
       WeightMinTurningRadius: 10
               WeightVelocity: 100
        WeightAngularVelocity: 10
           WeightAcceleration: 10
    WeightAngularAcceleration: 10
              WeightObstacles: 50

Set the minimum turning radius value as same as in the planner.

options.MinTurningRadius = 2;

Specify the maximum number of poses allowed in the optimized path.

options.MaxPathStates = size(inpath,1) * 3;

Maintain a safe distance of 0.75 meters from the obstacles.
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options.ObstacleSafetyMargin = 0.75;

Optimize the path generated by the planner.

optpath = optimizePath(inpath,map,options);

Visualize

Visualize input path and optimized path in the map.

show(map)
hold on
quiver(inpath(:,1),inpath(:,2),cos(inpath(:,3)),sin(inpath(:,3)),0.1);
quiver(optpath(:,1),optpath(:,2),cos(optpath(:,3)),sin(optpath(:,3)),0.1);
legend("Input Path","Optimized Path")

Version History
Introduced in R2022a

References
[1] Rosmann, Christoph, Frank Hoffmann, and Torsten Bertram. “Kinodynamic Trajectory

Optimization and Control for Car-like Robots.” In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 5681–86. Vancouver, BC: IEEE, 2017. https://doi.org/
10.1109/IROS.2017.8206458.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
optimizePath
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pathmetrics
Information for path metrics

Description
The pathmetrics object holds information for computing path metrics. Use object functions to
calculate smoothness, clearance, and path validity based on a set of poses and the associated map
environment.

Creation

Syntax
pathMetricsObj = pathmetrics(path)
pathMetricsObj = pathmetrics(path,validator)

Description

pathMetricsObj = pathmetrics(path) creates an object based on the input navPath object.
The state validator is assumed to be a validatorOccupancyMap object, if the state space of the
navPath object is a stateSpaceSE2, stateSpaceDubins, or stateSpaceReedsShepp object.
Otherwise, The state validator is assumed to be a validatorOccupancyMap3D object, if the state
space of the navPath object is a stateSpaceSE3 object. The path input sets the value of the “Path”
on page 2-0  property.

pathMetricsObj = pathmetrics(path,validator) creates an object based on the input
navPath object and associated state validator for checking the path validity. The validator input
sets the value of the “StateValidator” on page 2-0  property.

Properties
Path — Path data structure
navPath object

Path data structure, specified as a navPath object is the path whose metric is to be calculated.

StateValidator — Validator for states on path
validatorOccupancyMap object | validatorVehicleCostmap object |
validatorOccupancyMap3D object

Validator for states on path, specified either as a validatorOccupancyMap,
validatorVehicleCostmap, or validatorOccupancyMap3D object.

For 2-D state spaces, The default state validator is
validatorOccupancyMap(stateSpaceSE2,binaryOccupancyMap(10)).

For 3-D state spaces, The default state validator is validatorOccupancyMap3D(stateSpaceSE3).
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Object Functions
clearance Minimum clearance of path
isPathValid Determine if planned path is obstacle free
show Visualize path metrics in map environment
smoothness Smoothness of path

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses and the
associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in the Dubins
state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the Cartesian
coordinates, and theta is the orientation angle.
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start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 1.4142

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 1.7318

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')
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Vehicle Path Planning and Metrics Computation in a 2-D Costmap Environment

Plan a vehicle path through a parking lot using the RRT* algorithm. Compute and visualize the
smoothness, clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a costmap of a parking lot. Plot the costmap to see the parking lot and the inflated areas that
the vehicle should avoid.

load parkingLotCostmap.mat;
costmap = parkingLotCostmap;
plot(costmap)
xlabel('X (meters)')
ylabel('Y (meters)')
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Create a stateSpaceDubins object and increase the minimum turing radius to 4 meters.

statespace = stateSpaceDubins;
statespace.MinTurningRadius = 4; % meters

Create a validatorVehicleCostmap object using the created state space.

statevalidator = validatorVehicleCostmap(statespace);

Assign the parking lot costmap to the state validator object.

statevalidator.Map = costmap;

Plan Path

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the orientation angles Θ are in degrees.

startPose = [5, 5, 90]; % [meters, meters, degrees]
goalPose = [40, 38, 180]; % [meters, meters, degrees]

Use a pathPlannerRRT (Automated Driving Toolbox) object and the plan (Automated Driving
Toolbox) function to plan the vehicle path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);
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Interpolate along the path at every one meter. Convert the orientation angles from degrees to
radians.

poses = zeros(size(refPath.PathSegments,2)+1,3);
poses(1,:) = refPath.StartPose;
for i = 1:size(refPath.PathSegments,2) 
    poses(i+1,:) = refPath.PathSegments(i).GoalPose; 
end
poses(:,3) = deg2rad(poses(:,3));

Create a navPath object using the Dubins state space object and the states specified by poses.

path = navPath(statespace,poses);

Compute and Visualize Path Metrics

Create a pathmetrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates an
invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Compute and visualize the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 0.5000

show(pathMetricsObj)
legend('Inflated Areas','Planned Path','Minimum Clearance')
xlabel('X (meters)')
ylabel('Y (meters)')
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Compute and visualize the smoothness of the path. Values close to 0 indicate a smoother path.
Straight-line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0842

show(pathMetricsObj,'Metrics',{'Smoothness'})
legend('Inflated Areas','Path Smoothness')
xlabel('X (meters)')
ylabel('Y (meters)')
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Visualize the clearance for each state of the path.

show(pathMetricsObj,'Metrics',{'StatesClearance'})
legend('Inflated Areas','Planned Path','Clearance of Path States')
xlabel('X (meters)')
ylabel('Y (meters)')
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Path Planning and Metrics Computation in 3-D Environment

Plan a path through a city block using the RRT algorithm. Compute and visualize the smoothness,
clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.
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sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Plan Path

Create a RRT path planner with increased maximum connection distance and reduced maximum
number of iterations. Specify a custom goal function that determines that a path reaches the goal if
the Euclidean distance to the target is below a threshold of 1 meter.

planner = plannerRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          GoalReachedFcn = @(~,s,g)(norm(s(1:3)-g(1:3))<1), ...
          GoalBias = 0.1);

Specify start and goal poses.

start = [50 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister")

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(pthObj,sv);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 10

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0011

Visualize the minimum clearance of the path.
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show(pathMetricsObj)
axis equal
view([100 75])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)

Version History
Introduced in R2019b
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See Also
Objects
navPath | validatorOccupancyMap | validatorVehicleCostmap |
validatorOccupancyMap3D
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clearance
Minimum clearance of path

Syntax
clearance(pathMetricsObj)
clearance(pathMetricsObj,'Type','states')

Description
clearance(pathMetricsObj) returns the minimum clearance of the path. Clearance is measured
as the minimum distance between grid cell centers of states on the path and obstacles in the
specified map environment.

Note The computed clearance is accurate up to sqrt(2) times grid map cell size.

clearance(pathMetricsObj,'Type','states') returns the set of minimum distances for each
state of the path, in the form of an n-by-1 vector, where n is the number of states.

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses and the
associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in the Dubins
state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.
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statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the Cartesian
coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 1.4142

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 1.7318

Visualize the minimum clearance of the path.
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show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')

Vehicle Path Planning and Metrics Computation in a 2-D Costmap Environment

Plan a vehicle path through a parking lot using the RRT* algorithm. Compute and visualize the
smoothness, clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a costmap of a parking lot. Plot the costmap to see the parking lot and the inflated areas that
the vehicle should avoid.

load parkingLotCostmap.mat;
costmap = parkingLotCostmap;
plot(costmap)
xlabel('X (meters)')
ylabel('Y (meters)')
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Create a stateSpaceDubins object and increase the minimum turing radius to 4 meters.

statespace = stateSpaceDubins;
statespace.MinTurningRadius = 4; % meters

Create a validatorVehicleCostmap object using the created state space.

statevalidator = validatorVehicleCostmap(statespace);

Assign the parking lot costmap to the state validator object.

statevalidator.Map = costmap;

Plan Path

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the orientation angles Θ are in degrees.

startPose = [5, 5, 90]; % [meters, meters, degrees]
goalPose = [40, 38, 180]; % [meters, meters, degrees]

Use a pathPlannerRRT (Automated Driving Toolbox) object and the plan (Automated Driving
Toolbox) function to plan the vehicle path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);
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Interpolate along the path at every one meter. Convert the orientation angles from degrees to
radians.

poses = zeros(size(refPath.PathSegments,2)+1,3);
poses(1,:) = refPath.StartPose;
for i = 1:size(refPath.PathSegments,2) 
    poses(i+1,:) = refPath.PathSegments(i).GoalPose; 
end
poses(:,3) = deg2rad(poses(:,3));

Create a navPath object using the Dubins state space object and the states specified by poses.

path = navPath(statespace,poses);

Compute and Visualize Path Metrics

Create a pathmetrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates an
invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Compute and visualize the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 0.5000

show(pathMetricsObj)
legend('Inflated Areas','Planned Path','Minimum Clearance')
xlabel('X (meters)')
ylabel('Y (meters)')
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Compute and visualize the smoothness of the path. Values close to 0 indicate a smoother path.
Straight-line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0842

show(pathMetricsObj,'Metrics',{'Smoothness'})
legend('Inflated Areas','Path Smoothness')
xlabel('X (meters)')
ylabel('Y (meters)')
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Visualize the clearance for each state of the path.

show(pathMetricsObj,'Metrics',{'StatesClearance'})
legend('Inflated Areas','Planned Path','Clearance of Path States')
xlabel('X (meters)')
ylabel('Y (meters)')
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Path Planning and Metrics Computation in 3-D Environment

Plan a path through a city block using the RRT algorithm. Compute and visualize the smoothness,
clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.
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sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Plan Path

Create a RRT path planner with increased maximum connection distance and reduced maximum
number of iterations. Specify a custom goal function that determines that a path reaches the goal if
the Euclidean distance to the target is below a threshold of 1 meter.

planner = plannerRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          GoalReachedFcn = @(~,s,g)(norm(s(1:3)-g(1:3))<1), ...
          GoalBias = 0.1);

Specify start and goal poses.

start = [50 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister")

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(pthObj,sv);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 10

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0011

Visualize the minimum clearance of the path.
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show(pathMetricsObj)
axis equal
view([100 75])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)

Input Arguments
pathMetricsObj — Information for path metrics
pathmetrics object

Information for path metrics, specified as a pathmetrics object.
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Version History
Introduced in R2019b

See Also
Objects
pathmetrics

Functions
isPathValid | show | smoothness
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isPathValid
Determine if planned path is obstacle free

Syntax
isPathValid(pathMetricsObj)

Description
isPathValid(pathMetricsObj) returns either a logical 1 (true) if the planned path is obstacle
free or a logical 0 (false) if the path is invalid.

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses and the
associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in the Dubins
state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

 isPathValid

2-1119



planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the Cartesian
coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 1.4142

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 1.7318

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')
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Vehicle Path Planning and Metrics Computation in a 2-D Costmap Environment

Plan a vehicle path through a parking lot using the RRT* algorithm. Compute and visualize the
smoothness, clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a costmap of a parking lot. Plot the costmap to see the parking lot and the inflated areas that
the vehicle should avoid.

load parkingLotCostmap.mat;
costmap = parkingLotCostmap;
plot(costmap)
xlabel('X (meters)')
ylabel('Y (meters)')
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Create a stateSpaceDubins object and increase the minimum turing radius to 4 meters.

statespace = stateSpaceDubins;
statespace.MinTurningRadius = 4; % meters

Create a validatorVehicleCostmap object using the created state space.

statevalidator = validatorVehicleCostmap(statespace);

Assign the parking lot costmap to the state validator object.

statevalidator.Map = costmap;

Plan Path

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the orientation angles Θ are in degrees.

startPose = [5, 5, 90]; % [meters, meters, degrees]
goalPose = [40, 38, 180]; % [meters, meters, degrees]

Use a pathPlannerRRT (Automated Driving Toolbox) object and the plan (Automated Driving
Toolbox) function to plan the vehicle path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);
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Interpolate along the path at every one meter. Convert the orientation angles from degrees to
radians.

poses = zeros(size(refPath.PathSegments,2)+1,3);
poses(1,:) = refPath.StartPose;
for i = 1:size(refPath.PathSegments,2) 
    poses(i+1,:) = refPath.PathSegments(i).GoalPose; 
end
poses(:,3) = deg2rad(poses(:,3));

Create a navPath object using the Dubins state space object and the states specified by poses.

path = navPath(statespace,poses);

Compute and Visualize Path Metrics

Create a pathmetrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates an
invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Compute and visualize the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 0.5000

show(pathMetricsObj)
legend('Inflated Areas','Planned Path','Minimum Clearance')
xlabel('X (meters)')
ylabel('Y (meters)')
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Compute and visualize the smoothness of the path. Values close to 0 indicate a smoother path.
Straight-line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0842

show(pathMetricsObj,'Metrics',{'Smoothness'})
legend('Inflated Areas','Path Smoothness')
xlabel('X (meters)')
ylabel('Y (meters)')
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Visualize the clearance for each state of the path.

show(pathMetricsObj,'Metrics',{'StatesClearance'})
legend('Inflated Areas','Planned Path','Clearance of Path States')
xlabel('X (meters)')
ylabel('Y (meters)')
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Path Planning and Metrics Computation in 3-D Environment

Plan a path through a city block using the RRT algorithm. Compute and visualize the smoothness,
clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.

2 Classes

2-1126



sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Plan Path

Create a RRT path planner with increased maximum connection distance and reduced maximum
number of iterations. Specify a custom goal function that determines that a path reaches the goal if
the Euclidean distance to the target is below a threshold of 1 meter.

planner = plannerRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          GoalReachedFcn = @(~,s,g)(norm(s(1:3)-g(1:3))<1), ...
          GoalBias = 0.1);

Specify start and goal poses.

start = [50 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister")

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(pthObj,sv);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 10

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0011

Visualize the minimum clearance of the path.

 isPathValid

2-1127



show(pathMetricsObj)
axis equal
view([100 75])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)

Input Arguments
pathMetricsObj — Information for path metrics
pathmetrics object

Information for path metrics, specified as a pathmetrics object.

2 Classes

2-1128



Version History
Introduced in R2019b

See Also
Objects
pathmetrics

Functions
clearance | show | smoothness
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show
Visualize path metrics in map environment

Syntax
show(pathMetricsObj)
show(pathMetricsObj,Name,Value)
axHandle = show(pathMetricsObj)

Description
show(pathMetricsObj) plots the path in the map environment with the minimum clearance.

show(pathMetricsObj,Name,Value) specifies additional options using one or more name-value
pair arguments.

axHandle = show(pathMetricsObj) outputs the axes handle of the figure used to plot the path.

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses and the
associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in the Dubins
state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.
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statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the Cartesian
coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 1.4142

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 1.7318

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')
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Vehicle Path Planning and Metrics Computation in a 2-D Costmap Environment

Plan a vehicle path through a parking lot using the RRT* algorithm. Compute and visualize the
smoothness, clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a costmap of a parking lot. Plot the costmap to see the parking lot and the inflated areas that
the vehicle should avoid.

load parkingLotCostmap.mat;
costmap = parkingLotCostmap;
plot(costmap)
xlabel('X (meters)')
ylabel('Y (meters)')
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Create a stateSpaceDubins object and increase the minimum turing radius to 4 meters.

statespace = stateSpaceDubins;
statespace.MinTurningRadius = 4; % meters

Create a validatorVehicleCostmap object using the created state space.

statevalidator = validatorVehicleCostmap(statespace);

Assign the parking lot costmap to the state validator object.

statevalidator.Map = costmap;

Plan Path

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the orientation angles Θ are in degrees.

startPose = [5, 5, 90]; % [meters, meters, degrees]
goalPose = [40, 38, 180]; % [meters, meters, degrees]

Use a pathPlannerRRT (Automated Driving Toolbox) object and the plan (Automated Driving
Toolbox) function to plan the vehicle path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);
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Interpolate along the path at every one meter. Convert the orientation angles from degrees to
radians.

poses = zeros(size(refPath.PathSegments,2)+1,3);
poses(1,:) = refPath.StartPose;
for i = 1:size(refPath.PathSegments,2) 
    poses(i+1,:) = refPath.PathSegments(i).GoalPose; 
end
poses(:,3) = deg2rad(poses(:,3));

Create a navPath object using the Dubins state space object and the states specified by poses.

path = navPath(statespace,poses);

Compute and Visualize Path Metrics

Create a pathmetrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates an
invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Compute and visualize the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 0.5000

show(pathMetricsObj)
legend('Inflated Areas','Planned Path','Minimum Clearance')
xlabel('X (meters)')
ylabel('Y (meters)')
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Compute and visualize the smoothness of the path. Values close to 0 indicate a smoother path.
Straight-line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0842

show(pathMetricsObj,'Metrics',{'Smoothness'})
legend('Inflated Areas','Path Smoothness')
xlabel('X (meters)')
ylabel('Y (meters)')
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Visualize the clearance for each state of the path.

show(pathMetricsObj,'Metrics',{'StatesClearance'})
legend('Inflated Areas','Planned Path','Clearance of Path States')
xlabel('X (meters)')
ylabel('Y (meters)')
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Path Planning and Metrics Computation in 3-D Environment

Plan a path through a city block using the RRT algorithm. Compute and visualize the smoothness,
clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.
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sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Plan Path

Create a RRT path planner with increased maximum connection distance and reduced maximum
number of iterations. Specify a custom goal function that determines that a path reaches the goal if
the Euclidean distance to the target is below a threshold of 1 meter.

planner = plannerRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          GoalReachedFcn = @(~,s,g)(norm(s(1:3)-g(1:3))<1), ...
          GoalBias = 0.1);

Specify start and goal poses.

start = [50 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister")

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(pthObj,sv);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 10

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0011

Visualize the minimum clearance of the path.
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show(pathMetricsObj)
axis equal
view([100 75])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)

Input Arguments
pathMetricsObj — Information for path metrics
pathmetrics object

Information for path metrics, specified as a pathmetrics object.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Parent',axHandle

Parent — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, specified as the comma-separated pair consisting of 'Parent' and either an
axes or uiaxes object. If you do not specify Parent, a new figure is created.
Example: show(pathMetricsObj,'Parent',axHandle)

Metrics — Display metrics option
"MinClearance" (default) | string | cell array of strings

Display metrics option, specified as the comma-separated pair consisting of 'Metrics' and a string
or cell array with any combination of these values:

• "MinClearance" — Display minimum clearance of path.
• "StatesClearance" — Display clearance of path states.
• "Smoothness" — Display path smoothness.

Example: show(pathMetricsObj,'Metrics',"Smoothness")
Example: show(pathMetricsObj,'Metrics',{"Smoothness","StatesClearance"})
Data Types: cell | string

Output Arguments
axHandle — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, returned as either an axes or uiaxes object.

Version History
Introduced in R2019b

See Also
Objects
pathmetrics

Functions
clearance | isPathValid | smoothness
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smoothness
Smoothness of path

Syntax
smoothness(pathMetricsObj)
smoothness(pathMetricsObj,'Type','segments')

Description
smoothness(pathMetricsObj) evaluates the smoothness of the planned path. Values close to 0
indicate a smoother path. Straight-line paths return a value of 0.

smoothness(pathMetricsObj,'Type','segments') returns individual smoothness calculations
between each set of three poses on the path, in the form of a (n–2)-element vector, where n is the
number of poses.

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses and the
associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in the Dubins
state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.
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statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the Cartesian
coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 1.4142

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 1.7318

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')
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Vehicle Path Planning and Metrics Computation in a 2-D Costmap Environment

Plan a vehicle path through a parking lot using the RRT* algorithm. Compute and visualize the
smoothness, clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a costmap of a parking lot. Plot the costmap to see the parking lot and the inflated areas that
the vehicle should avoid.

load parkingLotCostmap.mat;
costmap = parkingLotCostmap;
plot(costmap)
xlabel('X (meters)')
ylabel('Y (meters)')
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Create a stateSpaceDubins object and increase the minimum turing radius to 4 meters.

statespace = stateSpaceDubins;
statespace.MinTurningRadius = 4; % meters

Create a validatorVehicleCostmap object using the created state space.

statevalidator = validatorVehicleCostmap(statespace);

Assign the parking lot costmap to the state validator object.

statevalidator.Map = costmap;

Plan Path

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y) locations are
in meters. World units for the orientation angles Θ are in degrees.

startPose = [5, 5, 90]; % [meters, meters, degrees]
goalPose = [40, 38, 180]; % [meters, meters, degrees]

Use a pathPlannerRRT (Automated Driving Toolbox) object and the plan (Automated Driving
Toolbox) function to plan the vehicle path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);
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Interpolate along the path at every one meter. Convert the orientation angles from degrees to
radians.

poses = zeros(size(refPath.PathSegments,2)+1,3);
poses(1,:) = refPath.StartPose;
for i = 1:size(refPath.PathSegments,2) 
    poses(i+1,:) = refPath.PathSegments(i).GoalPose; 
end
poses(:,3) = deg2rad(poses(:,3));

Create a navPath object using the Dubins state space object and the states specified by poses.

path = navPath(statespace,poses);

Compute and Visualize Path Metrics

Create a pathmetrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates an
invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Compute and visualize the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 0.5000

show(pathMetricsObj)
legend('Inflated Areas','Planned Path','Minimum Clearance')
xlabel('X (meters)')
ylabel('Y (meters)')
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Compute and visualize the smoothness of the path. Values close to 0 indicate a smoother path.
Straight-line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0842

show(pathMetricsObj,'Metrics',{'Smoothness'})
legend('Inflated Areas','Path Smoothness')
xlabel('X (meters)')
ylabel('Y (meters)')
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Visualize the clearance for each state of the path.

show(pathMetricsObj,'Metrics',{'StatesClearance'})
legend('Inflated Areas','Planned Path','Clearance of Path States')
xlabel('X (meters)')
ylabel('Y (meters)')
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Path Planning and Metrics Computation in 3-D Environment

Plan a path through a city block using the RRT algorithm. Compute and visualize the smoothness,
clearance, and validity of the planned path.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.
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sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Plan Path

Create a RRT path planner with increased maximum connection distance and reduced maximum
number of iterations. Specify a custom goal function that determines that a path reaches the goal if
the Euclidean distance to the target is below a threshold of 1 meter.

planner = plannerRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          GoalReachedFcn = @(~,s,g)(norm(s(1:3)-g(1:3))<1), ...
          GoalBias = 0.1);

Specify start and goal poses.

start = [50 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister")

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(pthObj,sv);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0 (false) indicates
an invalid path.

isPathValid(pathMetricsObj)

ans = logical
   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 10

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-line paths
return a value of 0.

smoothness(pathMetricsObj)

ans = 0.0011

Visualize the minimum clearance of the path.
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show(pathMetricsObj)
axis equal
view([100 75])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)

Input Arguments
pathMetricsObj — Information for path metrics
pathmetrics object

Information for path metrics, specified as a pathmetrics object.
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Version History
Introduced in R2019b

References
[1] Lindemann, Stephen R., and Steven M. LaValle. "Simple and efficient algorithms for computing

smooth, collision-free feedback laws over given cell decompositions." The International
Journal of Robotics Research 28, no. 5. 2009, pp. 600-621.

See Also
Objects
pathmetrics

Functions
clearance | isPathValid | show
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plannerAStar
Graph-based A* path planner

Description
The plannerAStar object creates an A* path planner from a graph object. The A* algorithm finds
the shortest path in the graph by using a heuristic function to efficiently guide its exploration of the
nodes.

Creation

Syntax
planner = plannerAStar(graph)
planner = plannerAStar( ___ ,Name=Value)

Description

planner = plannerAStar(graph) creates a plannerAStar object from a navGraph object,
graph. The graph input sets the value of the Graph property.

planner = plannerAStar( ___ ,Name=Value) sets properties using one or more name-value
arguments in addition to the input argument in the previous syntax. You can specify the
HeuristicCostFcn and TieBreaker properties as name-value arguments.

Properties
Graph — Graph object of planning environment
navGraph object

Graph object of the planning environment, specified as a navGraph object. If using a digraph
object, you must first convert it to a navGraph object. The planner uses the link (or edge) weights
from the navGraph object to compute the path cost.

HeuristicCostFcn — Heuristic cost function between state and goal in graph
@nav.algs.distanceManhattan (default) | @nav.algs.distanceEuclidean |
@nav.algs.distanceEuclideanSquared | custom cost function handle

The heuristic cost between a state and the goal in a graph, specified as one of the predefined cost
function handles, @nav.algs.distanceManhattan, @nav.algs.distanceEuclidean, or
@nav.algs.distanceEuclideanSquared, or a custom cost function handle.

The cost function must accept two N-by-S matrices, state1 and state2, where N is the number of
states, and S is the length of the state vector. The function must return an N-element column vector
of heuristic costs, H. If N is the same for both inputs, then H contains the pairwise costs between the
states. Otherwise, one matrix must have a single row, and H contains the cost between that state and
each state in the opposing matrix. Vectorize the custom cost function for best performance.
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Example: HeuristicCostFcn=@nav.algs.distanceEuclidean
Example:
HeuristicCostFcn=@(state1,state2)nav.algs.distanceManhattan(state1,state2,wei
ght)

Example: HeuristicCostFcn=@(state1,state2)sqrt(sum((state1-state2).^2,2))
Data Types: function_handle

TieBreaker — Tiebreaker mode toggle
false or 0 (default) | true or 1

Tiebreaker mode toggle, specified as either a logical 0 (false) or 1 (true). When you enable the
TieBreaker property, the A* path planner chooses between multiple paths of the same length by
adjusting the heuristic cost value.
Example: TieBreaker=true
Data Types: logical

Object Functions
plan Find shortest path between two states in graph
copy Create deep copy of A* path planner object

Examples

Plan Shortest Path Between Two States in Graph Using A-Star Path Planner

Load the Queensland road network.

load("queenslandRoutes","places","routes")

Specify states, links, and weights for a navGraph object.

states = places.utm;               % UTM coordinates of cities
names = places.name;               % Names of cities
links = [routes.start routes.end]; % Adjacent cities
weights = routes.time;             % Travel time between adjacent cities

Create a navGraph object.

graphObj = navGraph(states,links,Weight=weights, ...
                    Name=names);

Create a graph-based A* path planner.

planner = plannerAStar(graphObj);

Create a deep copy of the plannerAStar object.

planner2 = copy(planner)

planner2 = 
  plannerAStar with properties:

    HeuristicCostFcn: @nav.algs.distanceManhattan

 plannerAStar

2-1153



          TieBreaker: 0
               Graph: [1x1 navGraph]

Specify a heuristic function returns an estimated time to reach the goal.

planner.HeuristicCostFcn = @(state1,state2) ...
    sum(abs(state1-state2),2)/100;

Define the start and goal cities.

start = "Hughenden";
goal = "Brisbane";

Find the shortest path using the graph-based A* algorithm.

[pathOutput,solutionInfo] = plan(planner,start,goal);

Visualize the results.

h = show(graphObj);
set(h,XData=graphObj.States.StateVector(:,1), ...
      YData=graphObj.States.StateVector(:,2))
pathStateIDs = solutionInfo.PathStateIDs;
highlight(h,pathStateIDs,EdgeColor="#EDB120",LineWidth=4)
highlight(h,pathStateIDs(1),NodeColor="#77AC30",MarkerSize=5)
highlight(h,pathStateIDs(end),NodeColor="#D95319",MarkerSize=5)
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Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To use HeuristicCostFcn in code generation workflow, this property must be set to a function
handle during object creation.

• DynamicMemoryAllocation="off" is not supported.

See Also
Objects
navGraph | digraph

Functions
plan | copy
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plannerAStarGrid
A* path planner for grid map

Description
The plannerAStarGrid object creates an A* path planner. The planner performs an A* search on an
occupancy map and finds shortest obstacle-free path between the specified start and goal grid
locations as determined by heuristic cost.

Creation

Syntax
planner = plannerAStarGrid
planner = plannerAStarGrid(map)
planner = plannerAStarGrid( ___ ,Name,Value)

Description

planner = plannerAStarGrid creates a plannerAStarGrid object with a
binaryOccupancyMap object using a width and height of 10 meters and grid resolution of 1 cell per
meter.

planner = plannerAStarGrid(map) creates a plannerAStarGrid object using the specified
map object map. Specify map as either a binaryOccupancyMap or occupancyMap object. The map
input sets the value of the Map property.

planner = plannerAStarGrid( ___ ,Name,Value) sets properties using one or more name-
value pairs. Unspecified properties have default values. Enclose each property name in quotes.

For example, plannerAStarGrid(map,'GCost','Manhattan') creates an A* path planner object
using the Manhattan cost function.

Properties
Map — Map representation
binaryOccupancyMap object (default) | occupancyMap object

Map representation, specified as either a binaryOccupancyMap or occupancyMap object. This
object represents the environment of the robot as an occupancy grid. The value of each grid cell
indicates the occupancy of the associated location in the map.
Example: planner.Map = binaryOccupancyMap(zeros(50,50));

GCost — General cost of moving between any two points in grid
'Euclidean' (default) | 'Chebyshev' | 'EuclideanSquared' | 'Manhattan'
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The general cost of moving between any two points in a grid, specified as one of the following
predefined cost functions 'Chebyshev', 'Euclidean', 'EuclideanSquared', or 'Manhattan'.

The cost of moving between two points with Cartesian coordinates (x1,y1) and (x2,y2) are calculated as
following:

• Chebyshev

d = max x2−x1 , y2−y1

• Euclidean

d = x2−x1

2

+ y2−y1

2

• Euclidean Squared

d = x2−x1

2

+ y2−y1

2

• Manhattan

d = x2−x1 + y2−y1

Note You can either use the predefined cost functions or a custom cost function. To use a custom
cost function, see GCostFcn property.

Example: planner = plannerAStarGrid(map,'GCost','Manhattan');
Example: planner.GCost = 'Chebyshev';
Data Types: string | char

GCostFcn — Custom GCost function
function handle

Custom GCost function, specified as a function handle. The function handle must accept two pose
inputs as [row column] vectors and return a scalar of type double.

Note You can either use the predefined cost functions or a custom cost function. To use the
predefined cost functions, see GCost property.

Example: planner = plannerAStarGrid(map,'GCostFcn',@(pose1,pose2)sum(abs(pose1-
pose2),2));

Example: planner.GCostFcn = @(pose1,pose2)sum(abs(pose1-pose2),2);
Data Types: function_handle

HCost — Heuristic cost between point and goal in grid
'Euclidean' (default) | 'Chebyshev' | 'EuclideanSquared' | 'Manhattan'
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The heuristic cost between a point and the goal in a grid, specified as one of the following predefined
cost functions 'Chebyshev', 'Euclidean', 'EuclideanSquared', or 'Manhattan'.

The cost of moving between two points with Cartesian coordinates (x1,y1) and (x2,y2) are calculated as
following:

• Chebyshev

d = max x2−x1 , y2−y1

• Euclidean

d = x2−x1

2

+ y2−y1

2

• Euclidean Squared

d = x2−x1

2

+ y2−y1

2

• Manhattan

d = x2−x1 + y2−y1

Note You can either use the predefined cost functions or a custom cost function. To use a custom
cost function, see HCostFcn property.

Example: planner = plannerAStarGrid(map,'HCost','Manhattan');
Example: planner.HCost = 'Chebyshev';
Data Types: string | char

HCostFcn — Custom HCost function
function handle

Custom HCost function, specified as a function handle. The function handle must accept two pose
inputs as [row column] vectors and return a scalar of type double.

Note You can either use the predefined cost functions or a custom cost function. To use the
predefined cost functions, see HCost property.

Example: planner = plannerAStarGrid(map,'HCostFcn',@(pose1,pose2)sum(abs(pose1-
pose2),2));

Example: planner.HCostFcn = @(pose1,pose2)sum(abs(pose1-pose2),2);
Data Types: function_handle

TieBreaker — Toggle tiebreaker mode
'off' (default) | 'on'
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Toggle tiebreaker mode, specified as either 'on' or 'off'.

When you enable the TieBreaker property, the A* path planner chooses between multiple paths of
the same length by adjusting the heuristic cost value.
Example: planner = plannerAStarGrid(map,'TieBreaker','on');
Example: planner.TieBreaker = 'off';
Data Types: string | char

DiagonalSearch — Toggle diagonal search mode
'on' (default) | 'off'

Toggle diagonal search mode, specified as either 'on' or 'off'.

When you set this property to 'on', the A* path planner searches in diagonal direction along with the
other four directions of the grid. When you set this property to 'off', the A* path planner searches
only in the four directions of the grid.
Data Types: char | string

Object Functions
plan Find shortest obstacle-free path between two points
show Plot and visualize A* explored nodes and planned path

Examples

Plan Obstacle-Free Path in Grid Map Using A-Star Path Planner

Plan the shortest collision-free path through an obstacle grid map using the A* path planning
algorithm.

Generate a binaryOccupancyMap object with randomly scattered obstacles using the mapClutter
function.

rng('default');
map = mapClutter;

Use the map to create a plannerAStarGrid object.

planner = plannerAStarGrid(map);

Define the start and goal points.

start = [2 3];
goal = [248 248];

Plan a path from the start point to the goal point.

plan(planner,start,goal);

Visualize the path and the explored nodes using the show object function.

show(planner)
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Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap | plannerRRT | plannerRRTStar |
plannerHybridAStar
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plan
Find shortest obstacle-free path between two points

Syntax
path = plan(planner,start,goal)
path = plan(planner,start,goal,'world')
[path,debugInfo] = plan( ___ )

Description
path = plan(planner,start,goal) finds the shortest obstacle-free path, path, between a
specified start point, start, and goal point, goal, specified as [row column] in grid frame with
origin at top-left corner, using the specified A* path planner planner.

path = plan(planner,start,goal,'world') finds the shortest obstacle-free path, path,
between a specified start point, start, and goal point, goal, specified as [x y] in world coordinate
frame with origin at bottom-left corner, using the specified A* path planner planner.

[path,debugInfo] = plan( ___ ) also returns debugInfo that contains the path cost, number of
nodes explored, and GCost for each explored node.

Examples

Plan Obstacle-Free Path in Grid Map Using A-Star Path Planner

Plan the shortest collision-free path through an obstacle grid map using the A* path planning
algorithm.

Generate a binaryOccupancyMap object with randomly scattered obstacles using the mapClutter
function.

rng('default');
map = mapClutter;

Use the map to create a plannerAStarGrid object.

planner = plannerAStarGrid(map);

Define the start and goal points.

start = [2 3];
goal = [248 248];

Plan a path from the start point to the goal point.

plan(planner,start,goal);

Visualize the path and the explored nodes using the show object function.

show(planner)
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Input Arguments
planner — A* path planner for grid map
plannerAStarGrid object

A* path planner for a grid map, specified as a plannerAStarGrid object.

start — Start position in grid or world
two-element vector

Start position in the grid or world, specified as a two-element vector of the form [row column], or [x
y]. The location is in grid positions or world coordinates based on syntax.
Example: [2 3]
Data Types: double

goal — Goal position in grid or world
two-element vector

Goal position in the grid or world, specified as a two-element vector of the form [row column], or [x
y]. The location is in grid positions or world coordinates based on syntax.
Example: [28 46]
Data Types: double
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Output Arguments
path — Shortest obstacle-free path
n-by-2 matrix

Shortest obstacle-free path, returned as an n-by-2 matrix. n is the number of waypoints in the path.
Each row represents the [row column], or [x y] location of a waypoint along the solved path from the
start location to the goal. The location is in grid positions or world coordinates based on syntax.
Data Types: double

debugInfo — Debugging information for path result
structure

Debugging information for the path result, returned as a structure with these fields:

• PathCost — Cost of the path
• NumNodesExplored — Number of nodes explored
• GCostMatrix — GCost for each explored node

Data Types: struct

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
plannerAStarGrid | show
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show
Plot and visualize A* explored nodes and planned path

Syntax
show(planner)
axHandle = show(planner)
[ ___ ] = show( ___ ,Name,Value)

Description
show(planner) plots and visualizes the A* explored nodes and the planned path in the associated
map.

axHandle = show(planner) returns the axes handle of the figure used to plot the path.

[ ___ ] = show( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the arguments from previous syntaxes. Enclose argument name
inside single quotes (' ').

For example, 'ExploredNodes','off' plots and visualizes the planned path without displaying the
explored nodes.

Examples

Plan Obstacle-Free Path in Grid Map Using A-Star Path Planner

Plan the shortest collision-free path through an obstacle grid map using the A* path planning
algorithm.

Generate a binaryOccupancyMap object with randomly scattered obstacles using the mapClutter
function.

rng('default');
map = mapClutter;

Use the map to create a plannerAStarGrid object.

planner = plannerAStarGrid(map);

Define the start and goal points.

start = [2 3];
goal = [248 248];

Plan a path from the start point to the goal point.

plan(planner,start,goal);

Visualize the path and the explored nodes using the show object function.
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show(planner)

Input Arguments
planner — A* path planner for grid map
plannerAStarGrid object

A* path planner for a grid map, specified as a plannerAStarGrid object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ExploredNodes','off' plots and visualizes the planned path without displaying the
explored nodes.

Parent — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, specified as the comma-separated pair consisting of 'Parent' and either an
Axes Properties or UIAxes Properties object. If you do not specify Parent, a new figure is created.
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Example: 'Parent',axHandle

ExploredNodes — Display explored nodes
'on' (default) | 'off'

Display the explored nodes, specified as the comma-separated pair consisting of 'ExploredNodes'
and either 'on' or 'off'.
Example: 'ExploredNodes','off'
Data Types: string | char

Output Arguments
axHandle — Axes used to plot path
Axes object | UIAxes object

Axes used to plot the path, returned as an Axes Properties or UIAxes Properties object.

Version History
Introduced in R2020b

See Also
plannerAStarGrid | plan
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plannerBenchmark
Benchmark path planners using generated metrics

Description
plannerBenchmark object benchmarks the 2-D path planners by running them on a specified
environment with specified start and goal poses.

The plannerBenchmark object calculates the following metrics:

• clearance — Minimum distance to obstacles in the environment
• executionTime — Time taken by plan function to execute
• initializationTime — Time taken by initialization function to execute
• isPathValid — If true represent the path exists and is collision free
• pathLength — Length of the generated path
• smoothness — Smoothness of the path for all poses

The metrics like executionTime and initializationTime are calculated during the execution of
planners. The metrics like clearance, isPathValid, pathLength, and smoothness are calculated
from the resulting path outputs after executing planners. Calculated metrics are statistically
summarized as a table and can be visualized as plots.

Creation

Syntax
plannerBM = plannerBenchmark(environment,start,goal)

Description

plannerBM = plannerBenchmark(environment,start,goal) creates a plannerBenchmark
object with the specified environment, start and goal poses. The inputs environment, start,
and goal sets the Environment, Start, and Goal properties, respectively.

Properties
Environment — Environment for benchmarking path planners
occupancyMap object | binaryOccupancyMap object | validatorOccupancyMap object

Environment for benchmarking path planners, specified as occupancyMap, binaryOccupancyMap,
or validatorOccupancyMap object.

Start — Start pose of path for all planners
vector of the form [x y] | vector of the form [x y theta]

Start pose of path for all planners, specified as a vector of the form [x y] or [x y theta].
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Data Types: single | double

Goal — Goal pose of path for all planners
vector of the form [x y] | vector of the form [x y theta]

Goal pose of path for all planners, specified as a vector of the form [x y] or [x y theta].
Data Types: single | double

PlannerOutput — Output of planners after execution
structure

This property is read-only.

Output of planners after execution, returned as a structure that contains the initialization function
output and plan function output for all planners. The fields of the structure are named by planner
name specified in addPlanner function.

Each structure contains an initialization output and a plan function output. The plan function output
is further a structure containing plan function output for each run of the planner.
Data Types: struct

Object Functions
addPlanner Add path planner for benchmarking
copy Create deep copy of plannerBenchmark object
metric Return path planner metrics
report Create benchmark report
runPlanner Run path planners
show Visualize path planner metrics

Examples

Benchmark 2-D Path Planners

Create an occupancy map from an example map.

load("exampleMaps.mat","simpleMap");
map = occupancyMap(simpleMap);

Create a state validator with stateSpaceSE2 using the map.

sv = validatorOccupancyMap(stateSpaceSE2,Map=map);

Specify the start and goal states.

start = [5 8 pi/2];
goal = [7 18 pi/2];

Create a plannerBenchmark object.

pbo = plannerBenchmark(sv,start,goal);

Define the function handles for the initialization functions of the planners.
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plannerHAFcn = @(sv)plannerHybridAStar(sv);
plannerRRTSFcn = @(sv)plannerRRTStar(sv.StateSpace,sv);

Define the function handle for the plan function, which is common for both planners.

plnFcn = @(initOut,s,g)plan(initOut,s,g);

Add the path planners for benchmarking.

addPlanner(pbo,plnFcn,plannerHAFcn);
addPlanner(pbo,plnFcn,plannerRRTSFcn,PlannerName="ppRRTStar");

Set the rng for repetitive results.

rng('default')

Run the path planners for the number of times specified in runCount to collect metrics.

runCount = 5;
runPlanner(pbo,runCount)

Initializing plannerHAFcn_plnFcn ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using plannerHAFcn_plnFcn.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.
Initializing ppRRTStar ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using ppRRTStar.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.

Access path length metric for all the runs on the environment.

[pLenSummary,pLenData] = metric(pbo,"pathLength")

pLenSummary=2×4 table
                            Mean     Median    StdDev     sampleSize
                           ______    ______    _______    __________

    plannerHAFcn_plnFcn    10.349    10.349          0        5     
    ppRRTStar               12.84      12.9    0.67112        5     

pLenData=2×5 table
                            Run1      Run2      Run3      Run4      Run5 
                           ______    ______    ______    ______    ______

    plannerHAFcn_plnFcn    10.349    10.349    10.349    10.349    10.349
    ppRRTStar                13.8      12.9      12.2        12      13.3

Visualize all the metrics.
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show(pbo)

Closely inspect the clearance metric.

figure
show(pbo,"clearance")
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Version History
Introduced in R2022a

See Also
Objects
occupancyMap | binaryOccupancyMap | validatorOccupancyMap

Functions
addPlanner | copy | metric | report | runPlanner | show
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plannerBiRRT
Create bidirectional RRT planner for geometric planning

Description
The plannerBiRRT object is a single-query planner that uses the bidirectional rapidly exploring
random tree (RRT) algorithm with an optional connect heuristic for increased speed.

The bidirectional RRT planner creates one tree with a root node at the specified start state and
another tree with a root node at the specified goal state. To extend each tree, the planner generates a
random state and, if valid, takes a step from the nearest node based on the MaxConnectionDistance
property. The start and goal trees alternate this extension process until both trees are connected. If
the EnableConnectHeuristic property is enabled, the extension process ignores the
MaxConnectionDistance property. Invalid states or connections that collide with the environment are
not added to the tree.

Creation

Syntax
planner = plannerBiRRT(stateSpace,stateVal)
planner = plannerBiRRT( ___ ,Name=Value)

Description

planner = plannerBiRRT(stateSpace,stateVal) creates a bidirectional RRT planner from a
state space object, stateSpace, and a state validator object, stateVal. The state space of
stateVal must be the same as stateSpace. The stateSpace and stateVal arguments also set
the StateSpace and StateValidator properties, respectively, of the planner.

planner = plannerBiRRT( ___ ,Name=Value) sets properties using one or more name-value
arguments in addition to the input arguments in the previous syntax. You can specify the
MaxConnectionDistance, MaxIterations, MaxNumTreeNodes, and EnableConnectHeuristic properties
as name-value arguments.

Properties
StateSpace — State space for planner
state space object

State space for the planner, specified as a state space object. You can use state space objects such as
stateSpaceSE2, stateSpaceDubins, stateSpaceReedsShepp, and stateSpaceSE3. You can
also customize a state space object using the nav.StateSpace class.

StateValidator — State validator for planner
state validator object
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State validator for the planner, specified as a state validator object. You can use state validator
objects such as validatorOccupancyMap, validatorVehicleCostmap, and
validatorOccupancyMap3D.

MaxConnectionDistance — Maximum length between planned configurations
0.1 (default) | positive scalar

Maximum length between planned configurations, specified as a positive scalar.

If the EnableConnectHeuristic property is set to true, the object ignores this distance when
connecting the two trees during the connect stage.
Example: MaxConnectionDistance=0.3
Data Types: single | double

MaxIterations — Maximum number of iterations
1e4 (default) | positive integer

Maximum number of iterations, specified as a positive integer.
Example: MaxIterations=2500
Data Types: single | double

MaxNumTreeNodes — Maximum number of nodes in search tree
1e4 (default) | positive integer

Maximum number of nodes in the search tree, specified as a positive integer.
Example: MaxNumTreeNodes=2500
Data Types: single | double

EnableConnectHeuristic — Directly join trees during connect phase
false or 0 (default) | true or 1

Directly join trees during the connect phase of the planner, specified as a logical 0 (false) or 1
(true).

Setting this property to true causes the object to ignore the MaxConnectionDistance property when
attempting to connect the two trees together.
Example: EnableConnectHeuristic=true
Data Types: logical

Object Functions
plan Plan path between two states
copy Create deep copy of planner object

Examples

Plan Path Between Two States Using Bidirectional RRT

Use the plannerBiRRT object to plan a path between two states in an environment with obstacles.
Visualize the planned path with interpolated states.
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Create a state space.

ss = stateSpaceSE2;

Create an occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupancy map from an example map and set map resolution as 10 cells per meter.

load exampleMaps
map = occupancyMap(ternaryMap,10);

Assign the occupancy map to the state validator object. Specify the sampling distance interval.

sv.Map = map;
sv.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create the path planner and increase the maximum connection distance.

planner = plannerBiRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;
% planner = plannerBiRRT(ss,sv,MaxConnectionDistance=0.3);

Specify the start and goal states.

start = [20 10 0];
goal = [40 40 0];

Plan a path. Due to the randomness of the RRT algorithm, set the rng seed for repeatability.

rng(100,'twister')
[pthObj,solnInfo] = plan(planner,start,goal);

Display the number of iterations taken for the tree to converge.

fprintf("Number of iterations: %d\n",solnInfo.NumIterations)

Number of iterations: 346

Visualize the results.

show(map)
hold on
% Start tree expansion
plot(solnInfo.StartTreeData(:,1),solnInfo.StartTreeData(:,2), ...
    '.-','color','b')
% Goal tree expansion
plot(solnInfo.GoalTreeData(:,1),solnInfo.GoalTreeData(:,2), ...
    '.-','color','g')
% Draw path
plot(pthObj.States(:,1),pthObj.States(:,2),'r-','LineWidth',2)
hold off
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Replan the path with the EnableConnectHeuristic property set to true.

planner.EnableConnectHeuristic = true;
[pthObj,solnInfo] = plan(planner,start,goal);

Display the number of iterations taken for the tree to converge. Observe that the planner requires
significantly fewer iterations compared to when the EnableConnectHeuristic property is set to
false.

fprintf("Number of iterations: %d\n",solnInfo.NumIterations)

Number of iterations: 192

Visualize the results.

figure
show(map)
hold on
% Start tree expansion
plot(solnInfo.StartTreeData(:,1),solnInfo.StartTreeData(:,2), ...
    '.-','color','b')
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% Goal tree expansion
plot(solnInfo.GoalTreeData(:,1),solnInfo.GoalTreeData(:,2), ...
    '.-','color','g')
% Draw path
plot(pthObj.States(:,1),pthObj.States(:,2),'r-','LineWidth',2)

Plan Path Through 3-D Occupancy Map Using Bidirectional RRT Planner

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)
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Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.

sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Create a bidirectional RRT path planner with increased maximum connection distance and reduced
maximum number of iterations. Set EnableConnectHeuristic property to true.

planner = plannerBiRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          EnableConnectHeuristic = true);

Specify start and goal poses.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister");

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the planned path.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Start tree expansion
plot3(solnInfo.StartTreeData(:,1),solnInfo.StartTreeData(:,2), ...
      solnInfo.StartTreeData(:,3),".-",Color="g")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"y","filled")
% Goal tree expansion
plot3(solnInfo.GoalTreeData(:,1),solnInfo.GoalTreeData(:,2), ...
      solnInfo.GoalTreeData(:,3),".-",Color="y")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "m-",LineWidth=2)
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Version History
Introduced in R2021a

References
[1] Kuffner, J. J., and S. M. LaValle. “RRT-Connect: An Efficient Approach to Single-Query Path

Planning.” In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2:995–1001. San
Francisco, CA, USA: IEEE, 2000. https://doi:10.1109/ROBOT.2000.844730.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
plannerRRT | plannerRRTStar | stateSpaceReedsShepp | stateSpaceDubins |
stateSpaceSE2 | stateSpaceSE3 | validatorOccupancyMap | validatorVehicleCostmap |
validatorOccupancyMap3D

Functions
plan | copy
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copy
Create deep copy of planner object

Syntax
plannerCopy = copy(planner)

Description
plannerCopy = copy(planner) creates a deep copy of the planner object with the same
properties.

Examples

Create Copy of plannerBiRRT Object

Create an occupancy map from an example map and set the map resolution as 10 cells/meter.

map = load("exampleMaps.mat").simpleMap;
map = occupancyMap(map,10);

Create a state space and update the state space bounds to be the same as the map limits.

ss = stateSpaceSE2;
ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create a state validator with stateSpaceSE2 using the map and set the validation distance.

sv = validatorOccupancyMap(ss,Map=map);
sv.ValidationDistance = 0.01;

Create a plannerBiRRT object.

planner = plannerBiRRT(ss,sv)

planner = 
  plannerBiRRT with properties:

                StateSpace: [1x1 stateSpaceSE2]
            StateValidator: [1x1 validatorOccupancyMap]
           MaxNumTreeNodes: 10000
             MaxIterations: 10000
     MaxConnectionDistance: 0.1000
    EnableConnectHeuristic: 0

Create a copy of the plannerBiRRT object.

plannerNew = copy(planner)

plannerNew = 
  plannerBiRRT with properties:
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                StateSpace: [1x1 stateSpaceSE2]
            StateValidator: [1x1 validatorOccupancyMap]
           MaxNumTreeNodes: 10000
             MaxIterations: 10000
     MaxConnectionDistance: 0.1000
    EnableConnectHeuristic: 0

Input Arguments
planner — Path planner
plannerBiRRT object

Path planner, specified as a plannerBiRRT object.

Output Arguments
plannerCopy — Copy of path planner
plannerBiRRT object

Copy of path planner, returned as a plannerBiRRT object.

Version History
Introduced in R2021a

See Also
Objects
plannerBiRRT

Functions
plan
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plan
Plan path between two states

Syntax
path = plan(planner,startState,goalState)
[path,solnInfo] = plan(planner,startState,goalState)

Description
path = plan(planner,startState,goalState) returns a bidirectional rapidly exploring
random tree (RRT) path from the start state to the goal state as a navPath object.

[path,solnInfo] = plan(planner,startState,goalState) also returns the solution
information from path planning.

Examples

Plan Path Between Two States Using Bidirectional RRT

Use the plannerBiRRT object to plan a path between two states in an environment with obstacles.
Visualize the planned path with interpolated states.

Create a state space.

ss = stateSpaceSE2;

Create an occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupancy map from an example map and set map resolution as 10 cells per meter.

load exampleMaps
map = occupancyMap(ternaryMap,10);

Assign the occupancy map to the state validator object. Specify the sampling distance interval.

sv.Map = map;
sv.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create the path planner and increase the maximum connection distance.

planner = plannerBiRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;
% planner = plannerBiRRT(ss,sv,MaxConnectionDistance=0.3);

Specify the start and goal states.
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start = [20 10 0];
goal = [40 40 0];

Plan a path. Due to the randomness of the RRT algorithm, set the rng seed for repeatability.

rng(100,'twister')
[pthObj,solnInfo] = plan(planner,start,goal);

Display the number of iterations taken for the tree to converge.

fprintf("Number of iterations: %d\n",solnInfo.NumIterations)

Number of iterations: 346

Visualize the results.

show(map)
hold on
% Start tree expansion
plot(solnInfo.StartTreeData(:,1),solnInfo.StartTreeData(:,2), ...
    '.-','color','b')
% Goal tree expansion
plot(solnInfo.GoalTreeData(:,1),solnInfo.GoalTreeData(:,2), ...
    '.-','color','g')
% Draw path
plot(pthObj.States(:,1),pthObj.States(:,2),'r-','LineWidth',2)
hold off
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Replan the path with the EnableConnectHeuristic property set to true.

planner.EnableConnectHeuristic = true;
[pthObj,solnInfo] = plan(planner,start,goal);

Display the number of iterations taken for the tree to converge. Observe that the planner requires
significantly fewer iterations compared to when the EnableConnectHeuristic property is set to
false.

fprintf("Number of iterations: %d\n",solnInfo.NumIterations)

Number of iterations: 192

Visualize the results.

figure
show(map)
hold on
% Start tree expansion
plot(solnInfo.StartTreeData(:,1),solnInfo.StartTreeData(:,2), ...
    '.-','color','b')
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% Goal tree expansion
plot(solnInfo.GoalTreeData(:,1),solnInfo.GoalTreeData(:,2), ...
    '.-','color','g')
% Draw path
plot(pthObj.States(:,1),pthObj.States(:,2),'r-','LineWidth',2)

Plan Path Through 3-D Occupancy Map Using Bidirectional RRT Planner

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)
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Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.

sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Create a bidirectional RRT path planner with increased maximum connection distance and reduced
maximum number of iterations. Set EnableConnectHeuristic property to true.

planner = plannerBiRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          EnableConnectHeuristic = true);

Specify start and goal poses.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister");

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the planned path.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Start tree expansion
plot3(solnInfo.StartTreeData(:,1),solnInfo.StartTreeData(:,2), ...
      solnInfo.StartTreeData(:,3),".-",Color="g")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"y","filled")
% Goal tree expansion
plot3(solnInfo.GoalTreeData(:,1),solnInfo.GoalTreeData(:,2), ...
      solnInfo.GoalTreeData(:,3),".-",Color="y")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "m-",LineWidth=2)
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Input Arguments
planner — Path planner
plannerBiRRT object

Path planner, specified as a plannerBiRRT object.

startState — Start state of path
N-element real-valued vector

Start state of the path, specified as an N-element real-valued vector. N is the number of dimensions in
the state space.
Example: [1 1 pi/6]
Example: [40 180 25 0.7 0.2 0 0.1]
Data Types: single | double
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goalState — Goal state of path
N-element real-valued vector

Goal state of the path, specified as an N-element real-valued vector. N is the number of dimensions in
the state space.
Example: [2 2 pi/3]
Example: [150 33 35 0.3 0 0.1 0.6]
Data Types: single | double

Output Arguments
path — Planned path information
navPath object

Planned path information, returned as a navPath object.

solnInfo — Solution Information
structure

Solution Information, returned as a structure. The structure contains these fields:

Field Description
IsPathFound Indicates whether a path is found. It returns 1

(true) if a path is found. Otherwise, it returns 0
(false).

ExitFlag Indicates the termination cause of the planner,
returned as:

• 1 — The planner reaches the goal.
• 2 — The planner reaches the maximum

number of iterations.
• 3 — The planner reaches the maximum

number of nodes.
StartTreeNumNodes Number of nodes in the start search tree when

the planner terminates, excluding the root node.
GoalTreeNumNodes Number of nodes in the goal search tree when

the planner terminates, excluding the root node.
NumIterations Number of combined iterations by both the start

tree and goal tree.
StartTreeData Collection of explored states that reflect the

status of the start search tree when the planner
terminates. Note that NaN values are inserted as
delimiters to separate each individual edge.

GoalTreeData Collection of explored states that reflect the
status of the goal search tree when the planner
terminates. Note that NaN values are inserted as
delimiters to separate each individual edge.
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Data Types: structure

Version History
Introduced in R2021a

See Also
Objects
plannerBiRRT | navPath

Functions
copy
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plannerControlRRT
Control-based RRT planner

Description
The plannerControlRRT object is a rapidly exploring random tree (RRT) planner for solving
kinematic and dynamic (kinodynamic) planning problems using controls. The RRT algorithm is a tree-
based motion planning routine that incrementally grows a search tree. In kinematic planners, the tree
grows by randomly sampling states in system configuration space, and then attempts to propagate
the nearest node toward that state. The state propagator samples controls for reaching the state
based on the kinematic model and control policies. As the tree adds nodes, the sampled states span
the search space and eventually connect the start and goal states.

These are the control-based RRT algorithm steps:

• Planner, plannerControlRRT, requests a state from the state space.
• Planner finds the nearest state in the search tree based on cost.
• State propagator, mobileRobotPropagator, samples control commands and durations to

propagate toward the target state.
• State propagator propagates toward the target state.
• If the propagator returns a valid trajectory to the state, then add the state to the tree.
• Optional: Attempt to direct trajectory toward final goal based on NumGoalExtension and

GoalBias properties.
• Continue searching until the search tree reaches the goal or satisfies other exit criteria.

The benefit of a kinodynamic planner like plannerControlRRT is that it is guaranteed to return a
sequence of states, controls, and references which comprise a kinematically or dynamically feasibly
path. The drawback to a kinodynamic planner is that the kinematic propagations cannot guarantee
that new states are exactly equal to the target states unless there exists and analytic representation
for a sequence of controls that drive the system between two configurations with zero residual error.
This means that kinodynamic planners are typically asymptotically complete and guarantee kinematic
feasibility, but often can not guarantee asymptotic optimality.

Creation

Syntax
controlPlanner = plannerControlRRT(propagator)
controlPlanner = plannerControlRRT(propagator,Name=Value)

Description

controlPlanner = plannerControlRRT(propagator) creates a kinodynamic RRT planner from
a state propagator object and sets the StatePropagator property.
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controlPlanner = plannerControlRRT(propagator,Name=Value) specifies additional
properties using name-value arguments. For example,
plannerControlRRT(propagator,ContinueAfterGoalReached=1) continues to search for
alternative paths after the tree first reaches the goal.

Properties
StatePropagator — State propagator
mobileRobotPropagator object (default) | object of subclass of nav.StatePropagator

Mobile robot state propagator, specified as a mobileRobotPropagator object or an object of a
subclass of nav.StatePropagator.

ContinueAfterGoalReached — Optimization after reaching goal
false or 0 (default) | true or 1

Optimization after reaching the goal, specified as a logical 0 (false) or 1 (true). If specified as true,
the planner continues to search for alternative paths after it first reaches the goal. The planner
terminates regardless of the value of this property if it reaches the maximum number of iterations or
maximum number of tree nodes.
Data Types: logical

MaxPlanningTime — Maximum time allowed for planning
Inf (default) | positive scalar in seconds

Maximum time allowed for planning, specified as a positive scalar in seconds.
Data Types: single | double

MaxNumTreeNodes — Maximum number of nodes in search tree
1e4 (default) | positive integer

Maximum number of nodes in the search tree, excluding the root node, specified as a positive integer.
Data Types: single | double

MaxNumIteration — Maximum number of iterations
1e4 (default) | positive integer

Maximum number of iterations, specified as a positive integer.
Data Types: single | double

NumGoalExtension — Number of times to propagate towards goal
1 (default) | positive integer

The maximum number of times the planner can propagate towards the goal, specified as a positive
integer. After successfully adding a new node to the tree, the planner attempts to propagate the new
node toward the goal using the propagateWhileValid object function of the state propagator. The
planner continues propagating until the function returns an empty state vector indicating that no
valid control is found, the planner reaches the goal, or the function has been called
NumGoalExtension times.

To turn this behavior off, set the property to 0. Turning this behavior off will result in propagating
randomly instead of toward the goal.
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Data Types: single | double

GoalBias — Probability of choosing goal state during state sampling
0.1 (default) | real scalar in range [0, 1]

Probability of choosing the goal state during state sampling, specified as a real scalar in the range [0,
1]. This property determines the likelihood of the planner choosing the actual goal state when
randomly selecting states from the state space. You can start by setting the probability to a small
value, such as 0.05.
Data Types: single | double

GoalReachedFcn — Callback function to determine whether goal is reached
@plannerControlRRT.GoalReachedDefault | function handle

Callback function to determine whether the goal is reached, specified as a function handle. You can
create your own goal-reached function. The function must follow this syntax:

 isReached = myGoalReachedFcn(planner,currentState,goalState)

where:

• planner — is the created planner object, specified as a plannerControlRRT object.
• currentState — is the current state, specified as a s-element real vector. s is the number of

state variables in the state space.
• goalState — is the goal state, specified as a s-element real vector. s is the number of state

variables in the state space.
• isReached — is a boolean that indicates whether the current state has reached the goal state,

returned as true or false.

Data Types: function handle

Object Functions
plan Plan kinematically feasible path between two states
copy Creates deep copy of planner object

Examples

Plan Kinodynamic Path with Controls for Mobile Robot

Plan control paths for a bicycle kinematic model with the mobileRobotPropagator object. Specify
a map for the environment, set state bounds, and define a start and goal location. Plan a path using
the control-based RRT algorithm, which uses a state propagator for planning motion and the required
control commands.

Set State and State Propagator Parameters

Load a ternary map matrix and create an occupancyMap object. Create the state propagator using
the map. By default, the state propagator uses a bicycle kinematic model.

load('exampleMaps','ternaryMap')
map = occupancyMap(ternaryMap,10);

2 Classes

2-1192



propagator = mobileRobotPropagator(Environment=map); % Bicycle model

Set the state bounds on the state space based on the map world limits.

propagator.StateSpace.StateBounds(1:2,:) = ...
                    [map.XWorldLimits; map.YWorldLimits];

Plan Path

Create the path planner from the state propagator.

planner = plannerControlRRT(propagator);

Specify the start and goal states.

start = [10 15 0];
goal  = [40 30 0];

Plan a path between the states. For repeatable results, reset the random number generator before
planning. The plan function outputs a navPathControl object, which contains the states, control
commands, and durations.

rng("default")
path = plan(planner,start,goal)

path = 
  navPathControl with properties:

    StatePropagator: [1x1 mobileRobotPropagator]
             States: [192x3 double]
           Controls: [191x2 double]
          Durations: [191x1 double]
       TargetStates: [191x3 double]
          NumStates: 192
        NumSegments: 191

Visualize Results

Visualize the map and plot the path states.

show(map)
hold on
plot(start(1),start(2),"rx")
plot(goal(1),goal(2),"go")
plot(path.States(:,1),path.States(:,2),"b")
hold off
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Display the [v psi] control inputs of forward velocity and steering angle.

plot(path.Controls)
ylim([-1 1])
legend(["Velocity (m/s)","Steering Angle (rad)"])
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Version History
Introduced in R2021b

References
[1] S.M. Lavalle, J.J. Kuffner, "Randomized kinodynamic planning", International Journal of Robotics

Research, vol. 20, no. 5, pp. 378-400, May 2001

[2] Kavraki, L. and S. LaValle. "Chapter 5 Motion Planning", 1st ed., B. Siciliano et O. Khatib, Ed. New
York: Springer-Verlag Berlin Heidelberg, 2008, pp. 109-131.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
plannerAStarGrid | plannerBiRRT | plannerHybridAStar | plannerRRT | plannerRRTStar

Functions
plan | copy
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Topics
“Reverse-Capable Motion Planning for Tractor-Trailer Model Using plannerControlRRT”
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plan
Plan kinematically feasible path between two states

Syntax
path = plan(planner,startState,goalState)
[ ___ ,solutionInfo] = plan(planner,startState,goalState)
[ ___ ] = plan(planner,startState,goalSampleFcn)

Description
path = plan(planner,startState,goalState) tries to find a valid path between startState
and goalState.

The planning is carried out based on the state propagator, which leverages a kinematic model and
controllers of the system to search the configuration space. The planner returns a navPathControl
object, path, which contains the propagator used during planning and a sequence of states, controls,
target states, and control durations.

[ ___ ,solutionInfo] = plan(planner,startState,goalState) also returns the solution
information solutionInfo of the path planning.

[ ___ ] = plan(planner,startState,goalSampleFcn) takes in a function handle that
produces a goal configuration when called. The function handle should take no inputs and generate a
goal state whose size matches startState.

Examples

Plan Kinodynamic Path with Controls for Mobile Robot

Plan control paths for a bicycle kinematic model with the mobileRobotPropagator object. Specify
a map for the environment, set state bounds, and define a start and goal location. Plan a path using
the control-based RRT algorithm, which uses a state propagator for planning motion and the required
control commands.

Set State and State Propagator Parameters

Load a ternary map matrix and create an occupancyMap object. Create the state propagator using
the map. By default, the state propagator uses a bicycle kinematic model.

load('exampleMaps','ternaryMap')
map = occupancyMap(ternaryMap,10);

propagator = mobileRobotPropagator(Environment=map); % Bicycle model

Set the state bounds on the state space based on the map world limits.

propagator.StateSpace.StateBounds(1:2,:) = ...
                    [map.XWorldLimits; map.YWorldLimits];
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Plan Path

Create the path planner from the state propagator.

planner = plannerControlRRT(propagator);

Specify the start and goal states.

start = [10 15 0];
goal  = [40 30 0];

Plan a path between the states. For repeatable results, reset the random number generator before
planning. The plan function outputs a navPathControl object, which contains the states, control
commands, and durations.

rng("default")
path = plan(planner,start,goal)

path = 
  navPathControl with properties:

    StatePropagator: [1x1 mobileRobotPropagator]
             States: [192x3 double]
           Controls: [191x2 double]
          Durations: [191x1 double]
       TargetStates: [191x3 double]
          NumStates: 192
        NumSegments: 191

Visualize Results

Visualize the map and plot the path states.

show(map)
hold on
plot(start(1),start(2),"rx")
plot(goal(1),goal(2),"go")
plot(path.States(:,1),path.States(:,2),"b")
hold off
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Display the [v psi] control inputs of forward velocity and steering angle.

plot(path.Controls)
ylim([-1 1])
legend(["Velocity (m/s)","Steering Angle (rad)"])
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Input Arguments
planner — Path planner
plannerControlRRT object

Path planner, specified as a plannerControlRRT object.

startState — Start state of path
s-element vector

Initial state of the path, specified as an s-element vector. s is the number of state variables in the
state space. For example, a robot in the SE(2) space has a state vector of [x y theta].
Example: [1 1 pi/6]
Data Types: single | double

goalState — Goal state of path
s-element vector

Goal state of the path, specified as an s-element vector. s is the number of state variables in the state
space. For example, a robot in the SE(2) space has a state vector of [x y theta].
Example: [2 2 pi/3]
Data Types: single | double

2 Classes

2-1200



goalSampleFcn — Goal state sample function
function handle

Goal state sample function, specified as a function handle. The function handle should take no inputs
and generate a goal state whose size matches startState.
Example:
Data Types: function_handle

Output Arguments
path — Planned path information
navPathControl object

Planned path information, returned as a navPathControl object.

solutionInfo — Solution Information
structure

Solution Information, returned as a structure. The structure contains these fields:

Field Description
IsPathFound Indicates whether a path is found. It returns as 1

if a path is found. Otherwise, it returns as 0.
ExitFlag Indicates the terminate status of the planner,

returned as one of these options:

• 1 — Goal successfully reached
• 2 — Exceeded maximum number of iterations
• 3 — Exceeded maximum number of nodes
• 4 — Exceeded maximum planning time

NumTreeNode Number of nodes in the search tree when the
planner terminates excluding the root node.

NumIterations Number of target states propagated.
PlanningTime Elapsed time while planning, returned as a scalar

in seconds.
TreeInfo Collection of explored states that reflects the

status of the search tree when the planner
terminates. Note that the planner inserts NaN
values as delimiters to separate each individual
edge.

Data Types: structure

Version History
Introduced in R2021b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
plannerControlRRT

Functions
copy

2 Classes

2-1202



copy
Creates deep copy of planner object

Syntax
plannerCopy = copy(planner)

Description
plannerCopy = copy(planner) creates a deep copy of the planner object with the same
properties.

Examples

Create Copy of plannerControlRRT Object

Create an occupancy map from an example map and set the map resolution as 10 cells/meter.

load("exampleMaps","ternaryMap")
map = occupancyMap(ternaryMap,10);

Create the state propagator using the map. By default, the state propagator uses a bicycle kinematic
model.

propagator = mobileRobotPropagator(Environment=map);

Set the state bounds on the state space based on the map world limits.

propagator.StateSpace.StateBounds(1:2,:) = ...
                    [map.XWorldLimits; map.YWorldLimits];

Create a plannerControlRRT object.

planner = plannerControlRRT(propagator)

planner = 
  plannerControlRRT with properties:

             StatePropagator: [1x1 mobileRobotPropagator]
    ContinueAfterGoalReached: 0
             MaxPlanningTime: Inf
              MaxNumTreeNode: 10000
             MaxNumIteration: 10000
            NumGoalExtension: 1
                    GoalBias: 0.1000
              GoalReachedFcn: @plannerControlRRT.GoalReachedDefault

Create a copy of the plannerControlRRT object.

plannerNew = copy(planner)
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plannerNew = 
  plannerControlRRT with properties:

             StatePropagator: [1x1 mobileRobotPropagator]
    ContinueAfterGoalReached: 0
             MaxPlanningTime: Inf
              MaxNumTreeNode: 10000
             MaxNumIteration: 10000
            NumGoalExtension: 1
                    GoalBias: 0.1000
              GoalReachedFcn: @plannerControlRRT.GoalReachedDefault

Input Arguments
planner — Path planner
plannerControlRRT object

Path planner, specified as a plannerControlRRT object.

Output Arguments
plannerCopy — Copy of path planner
plannerControlRRT object

Copy of path planner, returned as a plannerControlRRT object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
plannerControlRRT

Functions
plan
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plannerHybridAStar
Hybrid A* path planner

Description
The Hybrid A* path planner object generates a smooth path in a given 2-D space for vehicles with
nonholonomic constraints.

plannerHybridAStar object uses the Reeds-Shepp connection to find an obstacle-free path. You
can modify the behavior of the connection by tuning properties like MinTurningRadius,
ForwardCost, and ReverseCost. You can use the AnalyticExpansionInterval property to set
the cycle to check for the Reeds-Shepp connection.

Note The Hybrid A* planner checks for collisions in the map by interpolating the motion primitives
and analytic expansion based on the ValidationDistance property of the stateValidator
object. If the ValidationDistance property is set to Inf, the object interpolates based on the cell
size of the map specified in the state validator. Inflate the occupancy map before assigning it to the
planner to account for the vehicle size.

Creation
Syntax
planner = plannerHybridAStar(validator)
planner = plannerHybridAStar(validator,Name,Value)

Description

planner = plannerHybridAStar(validator) creates a path planner object using the Hybrid A*
algorithm. Specify the validator input as a validatorOccupancyMap or
validatorVehicleCostmap object. The validator input sets the value of the “StateValidator” on
page 2-0  property.

planner = plannerHybridAStar(validator,Name,Value) sets “Properties” on page 2-1205 of
the path planner by using one or more name-value pair arguments. Enclose each property name
inside single quotes (' ').

Properties
StateValidator — State validator for planning
validatorOccupancyMap object | validatorVehicleCostmap object

State validator for planning, specified either as a validatorOccupancyMap or
validatorVehicleCostmap object based on SE(2) state space.

MotionPrimitiveLength — Length of motion primitives to be generated
ceil(sqrt(2)*map_CellSize) (default) | positive scalar
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Length of motion primitives to be generated, specified as the comma-separated pair consisting of
'MotionPrimitiveLength' and a positive scalar in meters. Increase the length for large maps or
sparse environments. Decrease the length for dense environments.

Note 'MotionPrimitiveLength' cannot exceed one-fourth the length of the circumference of a
circle based on the 'MinTurningRadius'.

Data Types: double

MinTurningRadius — Minimum turning radius of vehicle
(2*motion_primitive_length)/pi (default) | positive scalar

Minimum turning radius of vehicle, specified as the comma-separated pair consisting of
'MinTurningRadius' and a positive scalar in meters.

Note The value of 'MinTurningRadius' is set such that the 'MotionPrimitiveLength' cannot
exceed one-fourth the length of the circumference of a circle based on it.

Data Types: double

NumMotionPrimitives — Number of motion primitives to be generated
5 (default) | positive odd integer scalar greater than or equal to 3

Number of motion primitives to be generated, specified as the comma-separated pair consisting of
'NumMotionPrimitives' and a positive odd integer scalar greater than or equal to 3.

ForwardCost — Cost multiplier to travel in forward direction
1 (default) | positive scalar

Cost multiplier to travel in forward direction, specified as the comma-separated pair consisting of
'ForwardCost' and a positive scalar. Increase the cost value to penalize forward motion.
Data Types: double

ReverseCost — Cost multiplier to travel in reverse direction
3 (default) | positive scalar

Cost multiplier to travel in reverse direction, specified as the comma-separated pair consisting of
'ReverseCost' and a positive scalar. Increase the cost value to penalize reverse motion.
Data Types: double

DirectionSwitchingCost — Additive cost for switching direction of motion
0 (default) | positive scalar

Additive cost for switching direction of motion, specified as the comma-separated pair consisting of
'DirectionSwitchingCost' and a positive scalar. Increase the cost value to penalize direction
switching.
Data Types: double
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AnalyticExpansionInterval — Interval for attempting analytic expansion from lowest
cost node available
5 (default) | positive integer scalar

Interval for attempting analytic expansion from the lowest cost node available at that instance,
specified as the comma-separated pair consisting of 'AnalyticExpansionInterval' and a
positive integer scalar.

The Hybrid A* path planner expands the motion primitives from the nodes with the lowest cost
available at that instance:

• The number of nodes to be expanded depends upon the number of primitives to be generated in
both the direction and their validity, the cycle repeats until 'AnalyticExpansionInterval' is
reached.

• The planner then attempts an analytic expansion to reach the goal pose from the tree using a
Reeds-Shepp model. If the attempt fails, the planner repeats the cycle.

Improve the algorithm performance by reducing the interval to increase the number of checks for a
Reeds-Shepp connection to the final goal.

InterpolationDistance — Distance between interpolated poses in output path
1 (default) | positive scalar

Distance between interpolated poses in output path, specified as the comma-separated pair
consisting of 'InterpolationDistance' and a positive scalar in meters.
Data Types: double

Object Functions
plan Find obstacle-free path between two poses
show Visualize the planned path

Examples

Obstacle-Free Path Planning Using Hybrid A Star

Plan a collision-free path for a vehicle through a parking lot by using the Hybrid A* algorithm.

Create and Assign Map to State Validator

Load the cost values of cells in the vehicle costmap of a parking lot.

load parkingLotCostVal.mat % costVal

Create a binaryOccupancyMap with cost values.

resolution = 3;
map = binaryOccupancyMap(costVal,resolution);

Create a state space.

ss = stateSpaceSE2;

Update state space bounds to be the same as map limits.
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ss.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Create a state validator object for collision checking.

sv = validatorOccupancyMap(ss);

Assign the map to the state validator object.

sv.Map = map;

Plan and Visualize Path

Initialize the plannerHybridAStar object with the state validator object. Specify the
MinTurningRadius and MotionPrimitiveLength properties of the planner.

planner = plannerHybridAStar(sv, ...
                             MinTurningRadius=4, ...
                             MotionPrimitiveLength=6);

Define start and goal poses for the vehicle as [x, y, theta] vectors. x and y specify the position in
meters, and theta specifies the orientation angle in radians.

startPose = [4 9 pi/2]; % [meters, meters, radians]
goalPose = [30 19 -pi/2];

Plan a path from the start pose to the goal pose.

refpath = plan(planner,startPose,goalPose,SearchMode='exhaustive');     

Visualize the path using show function.

show(planner)
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Version History
Introduced in R2019b

References
[1] Dolgov, Dmitri, Sebastian Thrun, Michael Montemerlo, and James Diebel. Practical Search

Techniques in Path Planning for Autonomous Driving. American Association for Artificial
Intelligence, 2008.

[2] Petereit, Janko, Thomas Emter, Christian W. Frey, Thomas Kopfstedt, and Andreas Beutel.
"Application of Hybrid A* to an Autonomous Mobile Robot for Path Planning in Unstructured
Outdoor Environments." ROBOTIK 2012: 7th German Conference on Robotics. 2012, pp. 1-6.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
validatorOccupancyMap | validatorVehicleCostmap | navPath
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Topics
“Generate Code for Path Planning Using Hybrid A Star”
“Enable Vehicle Collision Checking for Path Planning Using Hybrid A*”
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plan
Find obstacle-free path between two poses

Syntax
path = plan(planner,start,goal)
[path,directions] = plan(planner,start,goal)
[path,directions,solutionInfo] = plan(planner,start,goal)
[ ___ ] = plan( ___ ,"SearchMode",mode)

Description
path = plan(planner,start,goal) computes an obstacle-free path between start and goal
poses, specified as [x y theta] vectors, using the input plannerHybridAStar object.

[path,directions] = plan(planner,start,goal) also returns the direction of motion for
each pose along the path, directions, as a column vector. A value of 1 indicates forward direction
and a value of -1 indicates reverse direction. The function returns an empty column vector when the
planner is unable to find a path.

[path,directions,solutionInfo] = plan(planner,start,goal) also returns
solutionInfo that contains the solution information of the path planning as a structure.

[ ___ ] = plan( ___ ,"SearchMode",mode) specifies the search algorithm mode mode in addition
to any combination of arguments from previous syntaxes.

Examples

Obstacle-Free Path Planning Using Hybrid A Star

Plan a collision-free path for a vehicle through a parking lot by using the Hybrid A* algorithm.

Create and Assign Map to State Validator

Load the cost values of cells in the vehicle costmap of a parking lot.

load parkingLotCostVal.mat % costVal

Create a binaryOccupancyMap with cost values.

resolution = 3;
map = binaryOccupancyMap(costVal,resolution);

Create a state space.

ss = stateSpaceSE2;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

 plan

2-1211



Create a state validator object for collision checking.

sv = validatorOccupancyMap(ss);

Assign the map to the state validator object.

sv.Map = map;

Plan and Visualize Path

Initialize the plannerHybridAStar object with the state validator object. Specify the
MinTurningRadius and MotionPrimitiveLength properties of the planner.

planner = plannerHybridAStar(sv, ...
                             MinTurningRadius=4, ...
                             MotionPrimitiveLength=6);

Define start and goal poses for the vehicle as [x, y, theta] vectors. x and y specify the position in
meters, and theta specifies the orientation angle in radians.

startPose = [4 9 pi/2]; % [meters, meters, radians]
goalPose = [30 19 -pi/2];

Plan a path from the start pose to the goal pose.

refpath = plan(planner,startPose,goalPose,SearchMode='exhaustive');     

Visualize the path using show function.

show(planner)
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Input Arguments
planner — Hybrid A* path planner
plannerHybridAStar object

Hybrid A* path planner, specified as a plannerHybridAStar object.

start — Start location of path
three-element vector

Start location of path, specified as a 1-by-3 vector in the form [x y theta]. x and y specify the
position in meters, and theta specifies the orientation angle in radians.
Example: [5 5 pi/2]
Data Types: double

goal — Final location of path
three-element vector

Final location of path, specified as a 1-by-3 vector in the form [x y theta]. x and y specify the
position in meters, and theta specifies the orientation angle in radians.
Example: [45 45 pi/4]
Data Types: double
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mode — Search algorithm mode
"greedy" (default) | "exhaustive"

Search algorithm mode, specified as one of these options:

• "greedy" — Prioritize finding a solution in the shortest time on average.
• "exhaustive" — Increase the number of nodes in the open set to optimize the solution.

Example: plan(phastar,start,goal,"SearchMode","greedy")
Data Types: string | char

Output Arguments
path — Obstacle-free path
navPath object

Obstacle-free path, returned as a navPath object.

directions — Directions of motion
column vector of 1s (forward) and –1s (reverse)

Direction of motion for each pose along the path, returned as a column vector of 1s (forward) and –1s
(reverse).
Data Types: double

solutionInfo — Solution Information
structure

Solution Information, returned as a structure. The fields of the structure are:

Fields of solutionInfo

Fields Description
IsPathFound Indicates whether a path is found. It returns as 1

if a path is found. Otherwise, it returns 0.
NumNodes Number of nodes in the search tree when the

planner terminates (excluding the root node).
NumIterations Number of planning iterations executed.

Data Types: struct

Version History
Introduced in R2019b

R2022b: Set search algorithm mode with name-value argument

Use the SearchMode name-value argument to set the search algorithm mode.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
validatorOccupancyMap | validatorVehicleCostmap | navPath

Topics
“Enable Vehicle Collision Checking for Path Planning Using Hybrid A*”
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show
Visualize the planned path

Syntax
show(planner)
show(planner,Name,Value)
axHandle = show(planner)

Description
show(planner) plots the Hybrid A* expansion tree and the planned path in the map.

show(planner,Name,Value) specifies additional options using one or more name-value pair
arguments.

axHandle = show(planner) outputs the axes handle of the figure used to plot the path.

Examples

Obstacle-Free Path Planning Using Hybrid A Star

Plan a collision-free path for a vehicle through a parking lot by using the Hybrid A* algorithm.

Create and Assign Map to State Validator

Load the cost values of cells in the vehicle costmap of a parking lot.

load parkingLotCostVal.mat % costVal

Create a binaryOccupancyMap with cost values.

resolution = 3;
map = binaryOccupancyMap(costVal,resolution);

Create a state space.

ss = stateSpaceSE2;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Create a state validator object for collision checking.

sv = validatorOccupancyMap(ss);

Assign the map to the state validator object.

sv.Map = map;
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Plan and Visualize Path

Initialize the plannerHybridAStar object with the state validator object. Specify the
MinTurningRadius and MotionPrimitiveLength properties of the planner.

planner = plannerHybridAStar(sv, ...
                             MinTurningRadius=4, ...
                             MotionPrimitiveLength=6);

Define start and goal poses for the vehicle as [x, y, theta] vectors. x and y specify the position in
meters, and theta specifies the orientation angle in radians.

startPose = [4 9 pi/2]; % [meters, meters, radians]
goalPose = [30 19 -pi/2];

Plan a path from the start pose to the goal pose.

refpath = plan(planner,startPose,goalPose,SearchMode='exhaustive');     

Visualize the path using show function.

show(planner)

Input Arguments
planner — Hybrid A* path planner
plannerHybridAStar object
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Hybrid A* path planner, specified as a plannerHybridAStar object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Positions','none'

Parent — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, specified as the comma-separated pair consisting of 'Parent' and either an
axes or uiaxes object. If you do not specify 'Parent', a new figure is created.

Tree — Display expansion tree
'on' (default) | 'off'

Display expansion tree option, specified as the comma-separated pair consisting of 'Tree' and either
'on' or 'off'.
Example: show(planner,'Tree','off')
Data Types: string

Path — Display planned path
'on' (default) | 'off'

Display planned path option, specified as the comma-separated pair consisting of 'Path' and either
'on' or 'off'.
Example: show(planner,'Path','off')
Data Types: string

Positions — Display start and goal points
'both' (default) | 'start' | 'goal' | 'none'

Display the start and goal points, specified as the comma-separated pair consisting of 'Positions'
and one of the following:

• 'start' — Display the start point.
• 'goal' — Display the goal point.
• 'both' — Display the start and goal points.
• 'none' — Do not display any points.

Example: show(planner,'Positions','start')
Data Types: string

HeadingLength — Length of heading
0.4*InterpolationDistance (default) | positive numeric scalar
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Length of heading, specified as positive numeric scalar. No poses will be visualized when this value is
set to 0.
Data Types: single | double

Output Arguments
axHandle — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, returned as either an axes or uiaxes object.

Version History
Introduced in R2019b

See Also
validatorOccupancyMap | validatorVehicleCostmap | navPath
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plannerPRM
Create probabilistic roadmap path planner

Description
The probabilistic roadmap path planner constructs a roadmap without start and goal states. Use the
plan function to find an obstacle-free path between the specified start and goal states. If the plan
function does not find a connected path between the start and the goal states, it returns an empty
path.

Creation

Syntax
planner = plannerPRM(stateSpace,stateVal)
planner = plannerPRM( ___ ,Name=Value)

Description

planner = plannerPRM(stateSpace,stateVal) creates a PRM planner from a state space
object, stateSpace, and a state validator object, stateVal. The state space of stateVal must be
the same as stateSpace. stateSpace and stateVal also sets the StateSpace and
StateValidator properties, respectively, of the planner.

planner = plannerPRM( ___ ,Name=Value) sets properties using one or more name-value pair
arguments in addition to the input arguments in the previous syntax. You can specify the
MaxNumNodes or MaxConnectionDistance properties as name-value pairs.

Properties
StateSpace — State space for planner
state space object

State space for the planner, specified as a state space object. You can use state space objects such as
stateSpaceSE2, stateSpaceDubins, and stateSpaceReedsShepp. You can also customize a
state space object using the nav.StateSpace object.

StateValidator — State validator for planner
state validator object

State validator for the planner, specified as a state validator object. You can use state validator
objects such as validatorOccupancyMap and validatorVehicleCostmap. You can also
customize a state validator object using the nav.StateValidator object.

MaxNumNodes — Maximum number of nodes in graph
50 (default) | positive scalar
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Maximum number of nodes in the graph, specified as a positive scalar. By increasing this value, the
chance of finding a path increases while also increasing the computation time for the path planner.

MaxConnectionDistance — Maximum connection distance between two states
inf (default) | positive scalar

Maximum distance between two connected nodes, specified as a positive scalar in meters. Nodes with
distance greater than this value will not be connected in the graph.

Object Functions
copy Create deep copy of plannerPRM object
graphData Retrieve graph as digraph object
plan Plan path between start and goal states on roadmap

Examples

Plan Obstacle-Free Path Using Probabilistic Roadmap Path Planner

Create an occupancy map from an example map and set the map resolution as 10 cells/meter.

map = load("exampleMaps.mat").simpleMap;
map = occupancyMap(map,10);

Create a state space and update the state space bounds to be the same as the map limits.

ss = stateSpaceSE2;
ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create a state validator with stateSpaceSE2 using the map and set the validation distance.

sv = validatorOccupancyMap(ss,Map=map);
sv.ValidationDistance = 0.01;

Create a plannerPRM object.

planner = plannerPRM(ss,sv);

Retrieve graph as a digraph object.

graph = graphData(planner);

Extract nodes and edges from graph.

edges = table2array(graph.Edges);
nodes = table2array(graph.Nodes);

Specify the start and goal states.

start = [0.5 0.5 0];
goal = [2.5 0.2 0];

Plot map and graph.

show(sv.Map)
hold on
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plot(nodes(:,1),nodes(:,2),"*","Color","b","LineWidth",2)
for i = 1:size(edges,1)
    % Samples states at distance 0.02 meters.
    states = interpolate(ss,nodes(edges(i,1),:), ...
                         nodes(edges(i,2),:),0:0.02:1);
    plot(states(:,1),states(:,2),"Color","b")
end
plot(start(1),start(2),"*","Color","g","LineWidth",3)
plot(goal(1),goal(2),"*","Color","r","LineWidth",3)

Plan a path with default settings. Set the rng seed for repeatability.

rng(100,"twister");
[pthObj, solnInfo] = plan(planner,start,goal);

Visualize the results.

if solnInfo.IsPathFound
    interpolate(pthObj,1000);
    plot(pthObj.States(:,1),pthObj.States(:,2), ...
         "Color",[0.85 0.325 0.098],"LineWidth",2)
else
    disp("Path not found")
end
hold off
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Plan Path Through 3-D Occupancy Map Using Probabilistic Roadmap Planner

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.

sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Create a probabilistic roadmap path planner with increased maximum connection distance.

planner = plannerPRM(ss,sv);

Specify start and goal poses.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister");

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the planned path.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)
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Version History
Introduced in R2022a

References
[1] L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Overmars, "Probabilistic roadmaps for path planning

in high-dimensional configuration spaces," IEEE Transactions on Robotics and Automation,
Vol. 12, No. 4, pp. 566-580, Aug 1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
copy | graphData | plan
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plannerRRT
Create an RRT planner for geometric planning

Description
The plannerRRT object creates a rapidly-exploring random tree (RRT) planner for solving geometric
planning problems. RRT is a tree-based motion planner that builds a search tree incrementally from
samples randomly drawn from a given state space. The tree eventually spans the search space and
connects the start state to the goal state. The general tree growing process is as follows:

1 The planner samples a random state xrand in the state space.
2 The planner finds a state xnear that is already in the search tree and is closest (based on the

distance definition in the state space) to xrand.
3 The planner expands from xnear towards xrand, until a state xnew is reached.
4 Then new state xnew is added to the search tree.

For geometric RRT, the expansion and connection between two states can be found analytically
without violating the constraints specified in the state space of the planner object.

Creation

Syntax
planner = plannerRRT(stateSpace,stateVal)
planner = plannerRRT( ___ ,Name=Value)

Description

planner = plannerRRT(stateSpace,stateVal) creates an RRT planner from a state space
object, stateSpace, and a state validator object, stateVal. The state space of stateVal must be
the same as stateSpace. stateSpace and stateVal also sets the StateSpace and StateValidator
properties of the planner.

planner = plannerRRT( ___ ,Name=Value) sets properties using one or more name-value
arguments in addition to the input arguments in the previous syntax. You can specify the
MaxNumTreeNodes, MaxIterations, MaxConnectionDistance, GoalReachedFcn, and GoalBias
properties as name-value arguments.

Properties
StateSpace — State space for the planner
state space object

State space for the planner, specified as a state space object. You can use state space objects such as
stateSpaceSE2, stateSpaceDubins, stateSpaceReedsShepp, and stateSpaceSE3. You can
also customize a state space object using the nav.StateSpace object.
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StateValidator — State validator for the planner
state validator object

State validator for the planner, specified as a state validator object. You can use state validator
objects such as validatorOccupancyMap, validatorVehicleCostmap, and
validatorOccupancyMap3D.

MaxNumTreeNodes — Maximum number of nodes in the search tree
1e4 (default) | positive integer

Maximum number of nodes in the search tree (excluding the root node), specified as a positive
integer.
Example: MaxNumTreeNodes=2500
Data Types: single | double

MaxIterations — Maximum number of iterations
1e4 (default) | positive integer

Maximum number of iterations, specified as a positive integer.
Example: MaxIterations=2500
Data Types: single | double

MaxConnectionDistance — Maximum length of motion
0.1 (default) | positive scalar

Maximum length of a motion allowed in the tree, specified as a scalar.
Example: MaxConnectionDistance=0.3
Data Types: single | double

GoalReachedFcn — Callback function to evaluate whether goal is reached
@nav.algs.checkIfGoalIsReached | function handle

Callback function to evaluate whether the goal is reached, specified as a function handle. You can
create your own goal reached function. The function must follow this syntax:

 function isReached = myGoalReachedFcn(planner,currentState,goalState)

where:

• planner — The created planner object, specified as plannerRRT object.
• currentState — The current state, specified as a three element real vector.
• goalState — The goal state, specified as a three element real vector.
• isReached — A boolean variable to indicate whether the current state has reached the goal state,

returned as true or false.

To use custom GoalReachedFcn in code generation workflow, this property must be set to a custom
function handle before calling the plan function and it cannot be changed after initialization.
Data Types: function handle

GoalBias — Probability of choosing goal state during state sampling
0.05 (default) | real scalar in range [0,1]
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Probability of choosing the goal state during state sampling, specified as a real scalar in range [0,1].
The property defines the probability of choosing the actual goal state during the process of randomly
selecting states from the state space. You can start by setting the probability to a small value such as
0.05.
Example: GoalBias=0.1
Data Types: single | double

Object Functions
plan Plan path between two states
copy Create copy of planner object

Examples

Plan Path Between Two States

Create a state space.

ss = stateSpaceSE2;

Create an occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupancy map from an example map and set map resolution as 10 cells/meter.

load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Create the path planner and increase the maximum connection distance.

planner = plannerRRT(ss,sv,MaxConnectionDistance=0.3);

Set the start and goal states.

start = [0.5 0.5 0];
goal = [2.5 0.2 0];

Plan a path with default settings.

rng(100,'twister'); % for repeatable result
[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the results.

show(map)
hold on
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% Tree expansion
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-')
% Draw path
plot(pthObj.States(:,1),pthObj.States(:,2),'r-','LineWidth',2)

Plan Path Through 3-D Occupancy Map Using RRT Planner

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.
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ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.

sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Create a RRT path planner with increased maximum connection distance and reduced maximum
number of iterations. Specify a custom goal function that determines that a path reaches the goal if
the Euclidean distance to the target is below a threshold of 1 meter.

planner = plannerRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          GoalReachedFcn = @(~,s,g)(norm(s(1:3)-g(1:3))<1), ...
          GoalBias = 0.1);

Specify start and goal poses.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister");

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the planned path.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)
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Version History
Introduced in R2019b

References
[1] S.M. Lavalle and J.J. Kuffner. "Randomized Kinodynamic Planning." The International Journal of

Robotics Research. Vol. 20, Number 5, 2001, pp. 378 – 400.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• To use custom GoalReachedFcn in code generation workflow, this property must be set to a
custom function handle before calling the plan function and it cannot be changed after
initialization.

See Also
Objects
plannerRRTStar | plannerBiRRT | stateSpaceReedsShepp | stateSpaceDubins |
stateSpaceSE2 | stateSpaceSE3 | validatorOccupancyMap | validatorVehicleCostmap |
validatorOccupancyMap3D

Functions
plan | copy
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plannerRRTStar
Create an optimal RRT path planner (RRT*)

Description
The plannerRRTStar object creates an asymptotically-optimal RRT planner, RRT*. The RRT*
algorithm converges to an optimal solution in terms of the state space distance. Also, its runtime is a
constant factor of the runtime of the RRT algorithm. RRT* is used to solve geometric planning
problems. A geometric planning problem requires that any two random states drawn from the state
space can be connected.

Creation
Syntax
planner = plannerRRTStar(stateSpace,stateVal)
planner = plannerRRTStar( ___ ,Name=Value)

Description

planner = plannerRRTStar(stateSpace,stateVal) creates an RRT* planner from a state
space object, stateSpace, and a state validator object, stateVal. The state space of stateVal
must be the same as stateSpace. stateSpace and stateVal also sets the StateSpace and
StateValidator properties of the planner object.

planner = plannerRRTStar( ___ ,Name=Value) sets properties using one or more name-value
arguments in addition to the input arguments in the previous syntax. You can specify the
BallRadiusConstant, ContinueAfterGoalReached, MaxNumTreeNodes, MaxIterations,
MaxConnectionDistance, GoalReachedFcn, and GoalBias properties as name-value arguments.

Properties
StateSpace — State space for the planner
state space object

State space for the planner, specified as a state space object. You can use state space objects such as
stateSpaceSE2, stateSpaceDubins, stateSpaceReedsShepp, and stateSpaceSE3. You can
also customize a state space object using the nav.StateSpace object.

StateValidator — State validator for the planner
state validator object

State validator for the planner, specified as a state validator object. You can use state validator
objects such as validatorOccupancyMap, validatorVehicleCostmap, and
validatorOccupancyMap3D.

BallRadiusConstant — Constant used to estimate the near neighbors search radius
100 (default) | positive scalar
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Constant used to estimate the near neighbors search radius, specified as a positive scalar. The radius
is estimated as following:

r = min γ log(n)
n

1
d , η

where:

• γ — The value of the BallRadiusConstant property
• n — Current number of nodes in the tree
• d — Dimension of the state space
• η — The value of the MaxConnectionDistance property

γ is defined as following:

γ = 2d
1 + 1

d
VFree

VBall

where:

• VFree — Approximate free volume in search-space
• VBall — Volume of unit ball in d dimensions

The formulae above define a BallRadiusConstant of "appropriate" size for a given space, meaning
that as the number of nodes filling the space grows and the radius shrinks, the expected number of
neighbors grows logarithmically. Higher values will result in a higher average number of neighbors
within the d-ball per iteration, leading to more rewire candidates. However, values below this
suggested minimum could lead to a single nearby neighbor, which fails to produce asymptotically
optimal results.
Example: BallRadiusConstant=80
Data Types: single | double

ContinueAfterGoalReached — Continue to optimize after goal is reached
false (default) | true

Decide if the planner continues to optimize after the goal is reached, specified as false or true. The
planner also terminates regardless of the value of this property if the maximum number of iterations
or maximum number of tree nodes is reached.
Example: ContinueAfterGoalReached=true
Data Types: logical

MaxNumTreeNodes — Maximum number of nodes in the search tree
1e4 (default) | positive integer

Maximum number of nodes in the search tree (excluding the root node), specified as a positive
integer.
Example: MaxNumTreeNodes=2500
Data Types: single | double
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MaxIterations — Maximum number of iterations
1e4 (default) | positive integer

Maximum number of iterations, specified as a positive integer.
Example: MaxIterations=2500
Data Types: single | double

MaxConnectionDistance — Maximum length of motion
0.1 (default) | positive scalar

Maximum length of a motion allowed in the tree, specified as a scalar.
Example: MaxConnectionDistance=0.3
Data Types: single | double

GoalReachedFcn — Callback function to determine whether goal is reached
@nav.algs.checkIfGoalIsReached | function handle

Callback function to determine whether the goal is reached, specified as a function handle. You can
create your own goal reached function. The function must follow this syntax:

 function isReached = myGoalReachedFcn(planner,currentState,goalState)

where:

• planner — The created planner object, specified as plannerRRTStar object.
• currentState — The current state, specified as a three element real vector.
• goalState — The goal state, specified as a three element real vector.
• isReached — A boolean variable to indicate whether the current state has reached the goal state,

returned as true or false.

To use custom GoalReachedFcn in code generation workflow, this property must be set to a custom
function handle before calling the plan function and it cannot be changed after initialization.
Data Types: function handle

GoalBias — Probability of choosing goal state during state sampling
0.05 (default) | real scalar in range [0,1]

Probability of choosing the goal state during state sampling, specified as a real scalar in range [0,1].
The property defines the probability of choosing the actual goal state during the process of randomly
selecting states from the state space. You can start by setting the probability to a small value such as
0.05.
Example: GoalBias=0.1
Data Types: single | double

Object Functions
plan Plan path between two states
copy Create copy of planner object
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Examples

Plan Optimal Path Between Two States

Create a state space.

ss = stateSpaceSE2;

Create an occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupancy map from an example map and set map resolution as 10 cells/meter.

load exampleMaps.mat
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create RRT* path planner and allow further optimization after goal is reached. Reduce the maximum
iterations and increase the maximum connection distance.

planner = plannerRRTStar(ss,sv, ...
          ContinueAfterGoalReached=true, ...
          MaxIterations=2500, ...
          MaxConnectionDistance=0.3);

Set the start and goal states.

start = [0.5 0.5 0];
goal = [2.5 0.2 0];

Plan a path with default settings.

rng(100,'twister') % repeatable result
[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the results.

map.show
hold on
% Tree expansion
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-')
% Draw path
plot(pthObj.States(:,1),pthObj.States(:,2),'r-','LineWidth',2)
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Plan Path Through 3-D Occupancy Map Using RRT Star Planner

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.
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sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Create a RRT star path planner with increased maximum connection distance and reduced maximum
number of iterations. Specify a custom goal function that determines that a path reaches the goal if
the Euclidean distance to the target is below a threshold of 1 meter.

planner = plannerRRTStar(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          GoalReachedFcn = @(~,s,g)(norm(s(1:3)-g(1:3))<1), ...
          GoalBias = 0.1);

Specify start and goal poses.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister");

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the planned path.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)
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Version History
Introduced in R2019b

References
[1] Karaman, S. and E. Frazzoli. "Sampling-Based Algorithms for Optimal Motion Planning." The

International Journal of Robotics Research. Vol. 30, Number 7, 2011, pp 846 – 894.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• To use custom GoalReachedFcn in code generation workflow, this property must be set to a
custom function handle before calling the plan function and it cannot be changed after
initialization.

See Also
Objects
plannerRRT | plannerBiRRT | stateSpaceReedsShepp | stateSpaceDubins | stateSpaceSE2
| stateSpaceSE3 | validatorOccupancyMap | validatorVehicleCostmap |
validatorOccupancyMap3D

Functions
plan | copy
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plan
Plan path between two states

Syntax
path = plan(planner,startState,goalState)
[path,solutionInfo] = plan(planner,startState,goalState)

Description
path = plan(planner,startState,goalState) returns a path from the start state to the goal
state.

[path,solutionInfo] = plan(planner,startState,goalState) also returns
solutionInfo that contains the solution information of the path planning.

Examples

Plan Path Between Two States

Create a state space.

ss = stateSpaceSE2;

Create an occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupancy map from an example map and set map resolution as 10 cells/meter.

load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Create the path planner and increase the maximum connection distance.

planner = plannerRRT(ss,sv,MaxConnectionDistance=0.3);

Set the start and goal states.

start = [0.5 0.5 0];
goal = [2.5 0.2 0];

Plan a path with default settings.
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rng(100,'twister'); % for repeatable result
[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the results.

show(map)
hold on
% Tree expansion
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-')
% Draw path
plot(pthObj.States(:,1),pthObj.States(:,2),'r-','LineWidth',2)

Plan Path Through 3-D Occupancy Map Using RRT Planner

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.
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mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.

sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Create a RRT path planner with increased maximum connection distance and reduced maximum
number of iterations. Specify a custom goal function that determines that a path reaches the goal if
the Euclidean distance to the target is below a threshold of 1 meter.

planner = plannerRRT(ss,sv, ...
          MaxConnectionDistance = 50, ...
          MaxIterations = 1000, ...
          GoalReachedFcn = @(~,s,g)(norm(s(1:3)-g(1:3))<1), ...
          GoalBias = 0.1);

Specify start and goal poses.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister");

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the planned path.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)
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Input Arguments
planner — Path planner
plannerRRT object | plannerRRTStar object

Path planner, specified as a plannerRRT object or a plannerRRTStar object.

startState — Start state of the path
N-element real-valued vector

Start state of the path, specified as an N-element real-valued vector. N is the dimension of the state
space.
Example: [1 1 pi/6]
Example: [40 180 25 0.7 0.2 0 0.1]
Data Types: single | double
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goalState — Goal state of the path
N-element real-valued vector

Goal state of the path, specified as an N-element real-valued vector. N is the dimension of the state
space.
Example: [2 2 pi/3]
Example: [150 33 35 0.3 0 0.1 0.6]
Data Types: single | double

Output Arguments
path — Object that holds planned path information
navPath object

An object that holds the planned path information, returned as a navPath object.

solutionInfo — Solution Information
structure

Solution Information, returned as a structure. The fields of the structure are:

 plan
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Fields of solutionInfo

Fields Description
IsPathFound Indicates whether a path is found. It returns as 1

if a path is found. Otherwise, it returns 0.
ExitFlag Indicates the terminate status of the planner,

returned as

• 1 — if the goal is reached
• 2 — if the maximum number of iterations is

reached
• 3 — if the maximum number of nodes is

reached
NumNodes Number of nodes in the search tree when the

planner terminates (excluding the root node).
NumIterations Number of "extend" routines executed.
TreeData A collection of explored states that reflects the

status of the search tree when planner
terminates. Note that NaN values are inserted as
delimiters to separate each individual edge.

PathCosts Contains the cost of the path at each iteration.
Value for iterations when path has not reached
the goal is denoted by a NaN. Size of the array is
NumIterations-by-1. Last element contains the
cost of the final path.

Note This field is applicable only for
plannerRRTStar object.

Data Types: structure

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navPath | plannerRRT | plannerRRTStar

Functions
copy
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copy
Create copy of planner object

Syntax
planner2 = copy(planner1)

Description
planner2 = copy(planner1) creates a planner object, planner2, form a planner object,
planner1.

Examples

Create Copy of plannerRRT Object

Create an occupancy map from an example map and set the map resolution as 10 cells/meter.

map = load("exampleMaps.mat").simpleMap;
map = occupancyMap(map,10);

Create a state space and update the state space bounds to be the same as the map limits.

ss = stateSpaceSE2;
ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create a state validator with stateSpaceSE2 using the map and set the validation distance.

sv = validatorOccupancyMap(ss,Map=map);
sv.ValidationDistance = 0.01;

Create a plannerRRT object.

planner = plannerRRT(ss,sv)

planner = 
  plannerRRT with properties:

               StateSpace: [1x1 stateSpaceSE2]
           StateValidator: [1x1 validatorOccupancyMap]
          MaxNumTreeNodes: 10000
            MaxIterations: 10000
    MaxConnectionDistance: 0.1000
           GoalReachedFcn: @nav.algs.checkIfGoalIsReached
                 GoalBias: 0.0500

Create a copy of the plannerRRT object.

plannerNew = copy(planner)

plannerNew = 
  plannerRRT with properties:
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               StateSpace: [1x1 stateSpaceSE2]
           StateValidator: [1x1 validatorOccupancyMap]
          MaxNumTreeNodes: 10000
            MaxIterations: 10000
    MaxConnectionDistance: 0.1000
           GoalReachedFcn: @nav.algs.checkIfGoalIsReached
                 GoalBias: 0.0500

Input Arguments
planner1 — Path planner
plannerRRT object | plannerRRTStar object

Path planner, specified as a plannerRRT object or a plannerRRTStar object.

Output Arguments
planner2 — Path planner
plannerRRT object | plannerRRTStar object

Path planner, returned as a plannerRRT object or a plannerRRTStar object.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
plannerRRT | plannerRRTStar

Functions
plan
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poseGraph
Create 2-D pose graph

Description
A poseGraph object stores information for a 2-D pose graph representation. A pose graph contains
nodes connected by edges. Each node estimate is connected to the graph by edge constraints that
define the relative pose between nodes and the uncertainty on that measurement.

To construct a pose graph iteratively, use the addRelativePose function to add relative pose
estimates and connect them to an existing node with specified edge constraints. Pose nodes must be
specified relative to a pose node. Specify the uncertainty of the measurement using an information
matrix.

Adding an edge between two nonsequential nodes creates a loop closure in the graph. Multiple edges
or multiedges between node pairs are also supported, which includes loop closures. To add additional
edge constraints or loop closures, specify the node IDs using the addRelativePose function. When
optimizing the pose graph, the optimizePoseGraph function finds a solution to satisfy all these
edge constraints.
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To add landmark point nodes, use the addPointLandmark function. This function specifies nodes as
xy-points without orientation estimates. Landmarks must be specified relative to a pose node.

The lidarSLAM object performs lidar-based simultaneous localization and mapping, which is based
around the optimization of a 2-D pose graph.

For 3-D pose graphs, see the poseGraph3D object or the “Landmark SLAM Using AprilTag Markers”
example.
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Creation

Syntax
poseGraph = poseGraph
poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)

Description

poseGraph = poseGraph creates a 2-D pose graph object. Add poses using addRelativePose to
construct a pose graph iteratively.

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This syntax is only required when generating code.

Properties
NumNodes — Number of nodes in pose graph
1 (default) | positive integer

This property is read-only.

Number of nodes in pose graph, specified as a positive integer. Each node represents a pose
measurement or a point landmark measurement. To specify relative poses between nodes, use
addRelativePose. To specify a landmark pose, use addLandmarkPose. To get a list of all nodes,
use edgeNodePairs.

NumEdges — Number of edges in pose graph
0 (default) | nonnegative integer

This property is read-only.

Number of edges in pose graph, specified as a nonnegative integer. Each edge connects two nodes in
the pose graph. Loop closure edges and landmark edges are included.

NumLoopClosureEdges — Number of loop closures
0 (default) | nonnegative integer

This property is read-only.

Number of loop closures in pose graph, specified as a nonnegative integer. To get the edge IDs of the
loop closures, use the LoopClosureEdgeIDs property.

LoopClosureEdgeIDs — Loop closure edge IDs
vector

This property is read-only.

Loop closure edges IDs, specified as a vector of edge IDs.

LandmarkNodeIDs — Landmark node IDs
vector
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This property is read-only.

Landmark node IDs, specified as a vector of IDs for each node.

Object Functions
addPointLandmark Add landmark point node to pose graph
addRelativePose Add relative pose to pose graph
copy Create copy of pose graph
edgeNodePairs Edge node pairs in pose graph
edgeConstraints Edge constraints in pose graph
edgeResidualErrors Compute pose graph edge residual errors
findEdgeID Find edge ID of edge
nodeEstimates Poses of nodes in pose graph
removeEdges Remove loop closure edges from graph
show Plot pose graph

Examples

Optimize a 2-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in this example
is from the Intel Research Lab Dataset and was generated from collecting wheel odometry and a laser
range finder sensor information in an indoor lab.

Load the Intel data set that contains a 2-D pose graph. Inspect the poseGraph object to view the
number of nodes and loop closures.

load intel-2d-posegraph.mat pg
disp(pg)

  poseGraph with properties:

               NumNodes: 1228
               NumEdges: 1483
    NumLoopClosureEdges: 256
     LoopClosureEdgeIDs: [1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 ... ]
        LandmarkNodeIDs: [1x0 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

show(pg,'IDs','off');
title('Original Pose Graph')
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Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop closures. Plot
the optimized pose graph to see the adjustment of the nodes with loop closures.

updatedPG = optimizePoseGraph(pg);
figure
show(updatedPG,'IDs','off');
title('Updated Pose Graph')

 poseGraph

2-1253



Version History
Introduced in R2019b

References
[1] Grisetti, G., R. Kummerle, C. Stachniss, and W. Burgard. "A Tutorial on Graph-Based SLAM." IEEE

Intelligent Transportation Systems Magazine. Vol. 2, No. 4, 2010, pp. 31–43. doi:10.1109/
mits.2010.939925.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph objects for code generation: poseGraph =
poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an upper bound
on the number of edges and nodes allowed in the pose graph when generating code. This limit is only
required when generating code.
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See Also
Functions
optimizePoseGraph | addRelativePose | addPointLandmark | show

Objects
lidarSLAM | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Landmark SLAM Using AprilTag Markers”

 poseGraph
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addPointLandmark
Add landmark point node to pose graph

Syntax
addPointLandmark(poseGraph,measurement)
addPointLandmark(poseGraph,measurement,infoMat)
addPointLandmark(poseGraph,measurement,infoMat,poseNodeID)
addPointLandmark(poseGraph,measurement,infoMat,poseNodeID,pointNodeID)
[nodePair,edgeID] = addPointLandmark( ___ )

Description
addPointLandmark(poseGraph,measurement) adds a landmark point node, based on the input
position measurement that connects to the last pose node in the pose graph. To add pose
measurement nodes, see the addRelativePose function.

addPointLandmark(poseGraph,measurement,infoMat) also specifies the information matrix as
part of the edge constraint, which represents the uncertainty of the landmark measurement.

addPointLandmark(poseGraph,measurement,infoMat,poseNodeID) adds a new landmark
point node and connects it to the pose node specified by poseNodeID.

addPointLandmark(poseGraph,measurement,infoMat,poseNodeID,pointNodeID) creates
an edge by specifying a point measurement between existing nodes, specified by poseNodeID and
pointNodeID. If the node pair already exists, the function appends the new measurement.

[nodePair,edgeID] = addPointLandmark( ___ ) returns the newly added edge and edge ID
using any combination of inputs from the previous syntaxes.

Examples

Add Landmark Point Node to Pose Graph

Create a 2-D pose graph object.

pg = poseGraph;

Add relative poses to the pose graph.

addRelativePose(pg,[1 1 pi/2]);
addRelativePose(pg,[2 2 pi/3]);

Add a landmark point node to the last pose node in the pose graph.

addPointLandmark(pg,[1 1]);
show(pg);
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List all poses in the pose graph.

nodeEstimates(pg)

ans = 4×3

         0         0         0
    1.0000    1.0000    1.5708
   -1.0000    3.0000    2.6180
   -2.3660    2.6340       NaN

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

measurement — Relative position of landmark point
two-element vector of form [x y] | three-element vector of form [x y z]

Relative position of the landmark point, specified as one of the following:

For poseGraph (2-D), the pose is a two-element vector of form of the form [x y], which defines an
xy-position for the landmark.
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For poseGraph3D, the pose is a three-element vector of the form [x y z], which defines an xyz-
position for the landmark.

infoMat — Information matrix for landmark
three-element vector | six-element vector

Information matrix for the landmark, specified as a three-element or six-element vector.

Each vector is the compact form of the upper triangle of the square information matrix. An
information matrix represents the uncertainty of the measurement. The matrix is calculated as the
inverse of the covariance. If the measurement is an [x y] vector, the covariance matrix is a 2-by-2
matrix of pairwise covariance calculations. Typically, the uncertainty is determined by the sensor
model.

For poseGraph (2-D), each information matrix is a three-element vector. The default is [1 1 0].

For poseGraph3D, each information matrix is a six-element vector. The default is [1 0 0 1 0 1].

poseNodeID — Pose node to attach from
positive integer

Pose node to attach from, specified as a positive integer. This integer corresponds to the node ID of a
pose node in poseGraph. When specified without the pointNodeID input, addPointLandmark
creates a new landmark point node and adds an edge between the new node and the poseNodeID
node.

pointNodeID — Landmark point node to attach to
positive integer

Landmark point node to attach to, specified as a positive integer. This integer corresponds to the ID
of a landmark node in the pose graph. See the LandmarkNodeIDs property of the pose graph.

Output Arguments
nodePair — Edge node pair in pose graph
two-element vector

Edge node pair in the pose graph, returned as a two-element vector that lists the IDs of the two nodes
that the edge connects. Multiple edges may exist between the same pair of nodes.

edgeID — ID of added edge
positive integer

ID of added edge, returned as a positive integer.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

poseGraph = poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)

See Also
Functions
optimizePoseGraph | findEdgeID | edgeNodePairs | edgeConstraints | nodeEstimates |
removeEdges

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Landmark SLAM Using AprilTag Markers”
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addRelativePose
Add relative pose to pose graph

Syntax
addRelativePose(poseGraph,measurement)
addRelativePose(poseGraph,measurement,infoMat)
addRelativePose(poseGraph,measurement,infoMat,fromNodeID)
addRelativePose(poseGraph,measurement,infoMat,fromNodeID,toNodeID)
[nodePair,edgeID] = addRelativePose( ___ )

Description
addRelativePose(poseGraph,measurement) creates a node based on the input measurement
that connects to the last pose node in the pose graph. To add landmark nodes, see the
addPointLandmark function.

addRelativePose(poseGraph,measurement,infoMat) also specifies the information matrix as
part of the edge constraint, which represents the uncertainty of the pose measurement.

addRelativePose(poseGraph,measurement,infoMat,fromNodeID) creates a new pose node
and connects it to the specific node specified by fromNodeID.

addRelativePose(poseGraph,measurement,infoMat,fromNodeID,toNodeID) creates an
edge by specifying a relative pose measurement between existing nodes specified by fromNodeID
and toNodeID. This edge is called a loop closure. If a loop closure already exists, the function
appends the new measurement. Calling the optimizePoseGraph function combines multiple
appended measurements into a single edge. This syntax does not support adding edges to a landmark
node.

[nodePair,edgeID] = addRelativePose( ___ ) returns the newly added edge and edge ID
using any of the previous syntaxes.

Examples

Identify and Remove Spurious Loop Closures from Pose Graph

This example shows how to identify and remove spurious loop closures from pose graph. To do this,
you can modify the relative pose of a loop closure edge and try optimizing the pose graph with and
without removing the auto spurious loop closure and compare the results.

Load the Intel Research Lab Dataset that contains a 2-D pose graph. Optimize the pose graph. Plot
the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

load intel-2d-posegraph.mat pg
optimizedPG = optimizePoseGraph(pg);
show(optimizedPG,IDs="off");
title("Optimized Pose Graph")
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Modify the relative pose of the loop closure edge 1386 to some random values.

loopclosureId = 1386;
nodePair = edgeNodePairs(optimizedPG,loopclosureId);
[relPose,infoMat] = edgeConstraints(optimizedPG,loopclosureId);
relPose(2) = -5;
relPose(3) = 1.5;
addRelativePose(optimizedPG,relPose,infoMat,nodePair(1),nodePair(2));

Optimize the pose graph without auto loop closure trimming. Plot the optimized pose graph to see the
poor adjustment of the nodes with loop closures.

[updatedPG,solutionInfo] = optimizePoseGraph(optimizedPG);
show(updatedPG,IDs="off");
title("Updated Pose Graph")
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Certain loop closures should be trimmed from the pose graph. Use the trimLoopClosures function
to trim these bad loop closures. Set the truncation threshold and maximum iterations for the trimmer
parameters.

trimParams = struct("TruncationThreshold",0.5,"MaxIterations",100);

Generate solver options.

solverOptions = poseGraphSolverOptions("g2o-levenberg-marquardt");

Use the trimLoopClosures function with the trimmer parameters and solver options. Plot the new
pose graph to see the bad loop closures were removed.

[newPG,trimInfo] = trimLoopClosures(updatedPG,trimParams,solverOptions);
show(newPG,IDs="off");
title("New Pose Graph")
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Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

measurement — Relative pose between nodes
[x y theta] vector | [x y z qw qx qy qz] vector

Relative pose between nodes, specified as one of the following:

For poseGraph (2-D), the pose is a [x y theta] vector, which defines a xy-position and orientation
angle, theta.

For poseGraph3D, the pose is a [x y z qw qx qy qz] vector, which defines by an xyz-position
and quaternion orientation, [qw qx qy qz]

Note Many other sources for 3-D pose graphs, including .g2o formats, specify the quaternion
orientation in a different order, for example, [qx qy qz qw]. Check the source of your pose graph
data before adding nodes to your poseGraph3D object.
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infoMat — Information matrix
six-element vector | 21-element vector

Information matrices, specified in compact form as a six-element vector or 21-element vector.

Each vector is the compact form of the upper triangle of the square information matrix. An
information matrix represents the uncertainty of the measurement. The matrix is calculated as the
inverse of the covariance. If the measurement is an [x y theta] vector, the covariance matrix is a
3-by-3 of pairwise covariance calculations. Typically, the uncertainty is determined by the sensor
model.

For poseGraph (2-D), each information matrix is a six-element vector. The default is [1 0 0 1 0
1]. For landmark nodes, the last three elements are returned as NaN.

For poseGraph3D, each information matrix is a 21-element vector. The default is [1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1].

fromNodeID — Node to attach from
positive integer

Node to attach from, specified as a positive integer. This integer corresponds to the node ID of a node
in poseGraph. When specified without toNodeID, addRelativePose creates a new node and adds
an edge between the new node and the fromNodeID node.

toNodeID — Node to attach to
positive integer

Node to attach to, specified as a positive integer. This integer corresponds to the node ID of a node in
poseGraph. addRelativePose adds an edge between this node and the fromNodeID node.

Output Arguments
nodePair — Edge node pair in pose graph
two-element vector

Edge node pairs in pose graph, returned as two-element vector that lists the IDs of the two nodes that
each edge connects. Multiple edges may exist between the same pair of nodes.

edgeID — ID of added edge
positive integer

ID of added edge, returned as a positive integer.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:
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poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

poseGraph = poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)

See Also
Functions
optimizePoseGraph | findEdgeID | edgeNodePairs | edgeConstraints | nodeEstimates |
removeEdges

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Landmark SLAM Using AprilTag Markers”
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copy
Create copy of pose graph

Syntax
poseGraph2 = copy(poseGraph1)

Description
poseGraph2 = copy(poseGraph1) creates a deep copy of the pose graph object with the same
properties.

Examples

Create Copy of Pose Graph

Create a 2-D pose graph object.

pg = poseGraph

pg = 
  poseGraph with properties:

               NumNodes: 1
               NumEdges: 0
    NumLoopClosureEdges: 0
     LoopClosureEdgeIDs: [1x0 double]
        LandmarkNodeIDs: []

Create copy of the pose graph object.

pgNew = copy(pg)

pgNew = 
  poseGraph with properties:

               NumNodes: 1
               NumEdges: 0
    NumLoopClosureEdges: 0
     LoopClosureEdgeIDs: [1x0 double]
        LandmarkNodeIDs: []

Input Arguments
poseGraph1 — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.
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Output Arguments
poseGraph2 — Copy of pose graph
poseGraph object | poseGraph3D object

Copy of pose graph, returned as a poseGraph or poseGraph3D object.

Version History
Introduced in R2019b

See Also
poseGraph | poseGraph3D
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edgeConstraints
Edge constraints in pose graph

Syntax
measurements = edgeConstraints(poseGraph)
[measurements,infoMats] = edgeConstraints(poseGraph)
[measurements,infoMats] = edgeConstraints(poseGraph,edgeIDs)

Description
measurements = edgeConstraints(poseGraph) lists all edge constraints in the specified pose
graph as a relative pose.

[measurements,infoMats] = edgeConstraints(poseGraph) also returns the information
matrices for each edge. The information matrix is the inverse of the covariance of the pose
measurement.

[measurements,infoMats] = edgeConstraints(poseGraph,edgeIDs) returns edge
constraints for the specified edge IDs.

Examples

Identify and Remove Spurious Loop Closures from Pose Graph

This example shows how to identify and remove spurious loop closures from pose graph. To do this,
you can modify the relative pose of a loop closure edge and try optimizing the pose graph with and
without removing the auto spurious loop closure and compare the results.

Load the Intel Research Lab Dataset that contains a 2-D pose graph. Optimize the pose graph. Plot
the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

load intel-2d-posegraph.mat pg
optimizedPG = optimizePoseGraph(pg);
show(optimizedPG,IDs="off");
title("Optimized Pose Graph")
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Modify the relative pose of the loop closure edge 1386 to some random values.

loopclosureId = 1386;
nodePair = edgeNodePairs(optimizedPG,loopclosureId);
[relPose,infoMat] = edgeConstraints(optimizedPG,loopclosureId);
relPose(2) = -5;
relPose(3) = 1.5;
addRelativePose(optimizedPG,relPose,infoMat,nodePair(1),nodePair(2));

Optimize the pose graph without auto loop closure trimming. Plot the optimized pose graph to see the
poor adjustment of the nodes with loop closures.

[updatedPG,solutionInfo] = optimizePoseGraph(optimizedPG);
show(updatedPG,IDs="off");
title("Updated Pose Graph")

 edgeConstraints
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Certain loop closures should be trimmed from the pose graph. Use the trimLoopClosures function
to trim these bad loop closures. Set the truncation threshold and maximum iterations for the trimmer
parameters.

trimParams = struct("TruncationThreshold",0.5,"MaxIterations",100);

Generate solver options.

solverOptions = poseGraphSolverOptions("g2o-levenberg-marquardt");

Use the trimLoopClosures function with the trimmer parameters and solver options. Plot the new
pose graph to see the bad loop closures were removed.

[newPG,trimInfo] = trimLoopClosures(updatedPG,trimParams,solverOptions);
show(newPG,IDs="off");
title("New Pose Graph")
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Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

edgeIDs — Edge IDs
vector of positive integers

Edge IDs, specified as a vector of positive integers.

Output Arguments
measurements — Measurements between nodes
n-by-3 matrix | n-by-7 matrix

Measurements between nodes, returned as an n-by-3 matrix or n-by-7 matrix.

For poseGraph (2-D), each row is an [x y theta] vector, which defines the relative xy-position and
orientation angle, theta, of a pose in the graph. For landmark positions, theta is returned as NaN.

For poseGraph3D, each row is an [x y z qw qx qy qz] vector, which defines the relative xyz-
position and quaternion orientation, [qw qx qy qz], of a pose in the graph.
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Note Many other sources for 3-D pose graphs, including .g2o formats, specify the quaternion
orientation in a different order, for example, [qx qy qz qw]. Check the source of your pose graph
data before adding nodes to your poseGraph3D object.

infoMats — Information matrices
n-by-6 matrix | n-by-21 matrix

Information matrices, specified in compact form as a n-by-6 or n-by-21 matrix, where n is the number
of poses in the pose graph.

Each row is the upper triangle of the square information matrix. An information matrix represents the
uncertainty of the measurement. The matrix is calculated as the inverse of the covariance. If the
measurement is an [x y theta] vector, the covariance matrix is a 3-by-3 of pairwise covariance
calculations. Typically, the uncertainty is determined by the sensor model.

For poseGraph (2-D), each information matrix is a six-element vector. The default is [1 0 0 1 0
1]. For landmark nodes, the last three elements are returned as NaN.

For poseGraph3D, each information matrix is a 21-element vector. The default is [1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1].

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

See Also
Functions
edgeNodePairs | optimizePoseGraph | addRelativePose | findEdgeID | nodeEstimates |
removeEdges

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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edgeNodePairs
Edge node pairs in pose graph

Syntax
nodePairs = edgeNodePairs(poseGraph)
nodePairs = edgeNodePairs(poseGraph,edgeIDs)

Description
nodePairs = edgeNodePairs(poseGraph) returns all edges in the specified pose graph as a list
of node ID pairs. Each row of the edges output is a pair of nodes that form an edge. Multiple edges
may exist between the same pair of nodes.

nodePairs = edgeNodePairs(poseGraph,edgeIDs) returns edges corresponding to the
specified edge IDs. Each edge in the pose graph has a unique ID even if the node pairs are the same.

Examples

Identify and Remove Spurious Loop Closures from Pose Graph

This example shows how to identify and remove spurious loop closures from pose graph. To do this,
you can modify the relative pose of a loop closure edge and try optimizing the pose graph with and
without removing the auto spurious loop closure and compare the results.

Load the Intel Research Lab Dataset that contains a 2-D pose graph. Optimize the pose graph. Plot
the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

load intel-2d-posegraph.mat pg
optimizedPG = optimizePoseGraph(pg);
show(optimizedPG,IDs="off");
title("Optimized Pose Graph")
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Modify the relative pose of the loop closure edge 1386 to some random values.

loopclosureId = 1386;
nodePair = edgeNodePairs(optimizedPG,loopclosureId);
[relPose,infoMat] = edgeConstraints(optimizedPG,loopclosureId);
relPose(2) = -5;
relPose(3) = 1.5;
addRelativePose(optimizedPG,relPose,infoMat,nodePair(1),nodePair(2));

Optimize the pose graph without auto loop closure trimming. Plot the optimized pose graph to see the
poor adjustment of the nodes with loop closures.

[updatedPG,solutionInfo] = optimizePoseGraph(optimizedPG);
show(updatedPG,IDs="off");
title("Updated Pose Graph")
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Certain loop closures should be trimmed from the pose graph. Use the trimLoopClosures function
to trim these bad loop closures. Set the truncation threshold and maximum iterations for the trimmer
parameters.

trimParams = struct("TruncationThreshold",0.5,"MaxIterations",100);

Generate solver options.

solverOptions = poseGraphSolverOptions("g2o-levenberg-marquardt");

Use the trimLoopClosures function with the trimmer parameters and solver options. Plot the new
pose graph to see the bad loop closures were removed.

[newPG,trimInfo] = trimLoopClosures(updatedPG,trimParams,solverOptions);
show(newPG,IDs="off");
title("New Pose Graph")
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Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

edgeIDs — Edge IDs
vector of positive integers

Edge IDs, specified as a vector of positive integers.

Output Arguments
nodePairs — Edge node pairs in pose graph
n-by-2 matrix

Edge node pairs in pose graph, returned as n-by-2 matrix that lists the IDs of the two nodes that each
edge connects. Each row is a pair of nodes that form an edge. Multiple edges may exist between the
same pair of nodes, so the matrix may contain duplicate entries.

Version History
Introduced in R2019b
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R2019b: edgeNodePairs was renamed
Behavior change in future release

The edgeNodePairs object function was renamed from edges. Use edgeNodePairs when calling
the function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

See Also
Functions
optimizePoseGraph | addRelativePose | findEdgeID | edgeConstraints | nodeEstimates |
removeEdges

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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edgeResidualErrors
Compute pose graph edge residual errors

Syntax
resErrorVec = edgeResidualErrors(poseGraphObj)

Description
resErrorVec = edgeResidualErrors(poseGraphObj) returns the residual errors for each edge
in the pose graph with the current pose node estimates. The residual errors order matches the order
of edge IDs in poseGraph.

Examples

Optimize and Trim Loop Closures For 2-D Pose Graphs

Optimize a pose graph based on the nodes and edge constraints. Trim loop closed based on their
edge residual errors.

Load the data set that contains a 2-D pose graph. Inspect the poseGraph object to view the number
of nodes and loop closures.

load grid-2d-posegraph.mat pg
disp(pg)

  poseGraph with properties:

               NumNodes: 120
               NumEdges: 193
    NumLoopClosureEdges: 74
     LoopClosureEdgeIDs: [120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 ... ]
        LandmarkNodeIDs: [1x0 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset. The poses
in the graph should follow a grid pattern, but show evidence of drift over time.

show(pg,'IDs','off');
title('Original Pose Graph')
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Optimize the pose graph using the optimizePoseGraph function. By default, this function uses the
"builtin-trust-region" solver. Because the pose graph contains some bad loop closures, the
resulting pose graph is actual not desirable.

pgOptim = optimizePoseGraph(pg);
figure;
show(pgOptim);

 edgeResidualErrors
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Look at the edge residual errors for the original pose graph. Large outlier error values at the end
indicate bad loop closures.

resErrorVec = edgeResidualErrors(pg);
plot(resErrorVec);
title('Edge Residual Errors by Edge ID')
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Certain loop closures should be trimmed from the pose graph based on their residual error. Use the
trimLoopClosures function to trim these bad loop closures. Set the maximum and truncation
threshold for the trimmer parameters. This threshold is set based on the measurement accuracy and
should be tuned for your system.

trimParams.MaxIterations = 100;
trimParams.TruncationThreshold = 25;

solverOptions = poseGraphSolverOptions; 

Use the trimLoopClosures function with the trimmer parameters and solver options.

[pgNew, trimInfo, debugInfo] = trimLoopClosures(pg,trimParams,solverOptions);

From the trimInfo output, plot the loop closures removed from the optimized pose graph. By
plotting with the residual errors plot before, you can see the large error loop closures were removed.

removedLCs = trimInfo.LoopClosuresToRemove;

hold on
plot(removedLCs,zeros(length(removedLCs)),'or')
title('Edge Residual Errors and Removed Loop Closures')
legend('Residual Errors', 'Removed Loop Closures')
xlabel('Edge IDs')
ylabel('Edge Residual Error')
hold off
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Show the new pose graph with the bad loop closures trimmed.

show(pgNew,"IDs","off");
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Input Arguments
poseGraphObj — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

Output Arguments
resErrorVec — Edge residual errors for pose graph
vector of positive scalars

Edge residual errors for pose graph, specified as a vector of positive scalars.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 edgeResidualErrors

2-1283



Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

See Also
Functions
edgeNodePairs | optimizePoseGraph | addRelativePose | findEdgeID | nodeEstimates |
removeEdges

Objects
poseGraph | poseGraph3D | lidarSLAM
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findEdgeID
Find edge ID of edge

Syntax
edgeID = findEdgeID(poseGraph,nodePairs)

Description
edgeID = findEdgeID(poseGraph,nodePairs) finds the edge ID for a specified edge. Edges are
defined by the IDs of the two nodes that connect them.

Examples

Remove Loop Closure Edges from Pose Graph

Load the Intel Research Lab Dataset that contains a 2-D pose graph. Optimize the pose graph. Plot
the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

load intel-2d-posegraph.mat pg
optimizedPG = optimizePoseGraph(pg);
show(optimizedPG,IDs="off");
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Find the loop closure edge ID for the specified edge node pair in pose graph.

nodePair = [133 1085];
edgeID = findEdgeID(optimizedPG,nodePair)

edgeID = 1386

Remove the loop closure edge from the pose graph.

removeEdges(optimizedPG,edgeID)
show(optimizedPG,IDs="off");

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

nodePairs — Edge node pairs in pose graph
two-element vector

Edge node pairs in pose graph, specified as a two-element vector that lists the IDs of the two nodes
that the edge connects.
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Output Arguments
edgeID — Edge ID
positive integer | vector

Edge IDs, returned as a positive integer or vector of positive integers. The pose graph can contain
multiple edges between each node pair, so multiple edge IDs may be returned for a single edge ID.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

See Also
Functions
optimizePoseGraph | addRelativePose | edgeNodePairs | edgeConstraints |
nodeEstimates | removeEdges

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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nodeEstimates
Poses of nodes in pose graph

Syntax
measurements = nodeEstimates(poseGraph)
measurements = nodeEstimates(poseGraph,nodeIDs)

Description
measurements = nodeEstimates(poseGraph) lists all poses in the specified pose graph.

measurements = nodeEstimates(poseGraph,nodeIDs) lists the poses with the specified node
IDs.

Examples

Add Landmark Point Node to Pose Graph

Create a 2-D pose graph object.

pg = poseGraph;

Add relative poses to the pose graph.

addRelativePose(pg,[1 1 pi/2]);
addRelativePose(pg,[2 2 pi/3]);

Add a landmark point node to the last pose node in the pose graph.

addPointLandmark(pg,[1 1]);
show(pg);
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List all poses in the pose graph.

nodeEstimates(pg)

ans = 4×3

         0         0         0
    1.0000    1.0000    1.5708
   -1.0000    3.0000    2.6180
   -2.3660    2.6340       NaN

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

nodeIDs — Node IDs
positive integer | vector of positive integers

Node IDs, specified as a positive integer or vector of positive integers. Each node added gets an ID
sequentially in the graph.

 nodeEstimates

2-1289



Output Arguments
measurements — Measurements between nodes
n-by-3 matrix | n-by-7 matrix

Measurements between nodes, returned as an n-by-3 matrix or n-by-7 matrix.

For poseGraph (2-D), each row is an [x y theta] vector, which defines the relative xy-position and
orientation angle, theta, of a pose in the graph. For landmark positions, theta is returned as NaN.

For poseGraph3D, each row is an [x y z qw qx qy qz] vector, which defines the relative xyz-
position and quaternion orientation, [qw qx qy qz], of a pose in the graph.

Note Many other sources for 3-D pose graphs, including .g2o formats, specify the quaternion
orientation in a different order, for example, [qx qy qz qw]. Check the source of your pose graph
data before adding nodes to your poseGraph3D object.

Version History
Introduced in R2019b

R2019b: nodeEstimates was renamed
Behavior change in future release

The nodeEstimates object function was renamed from nodes. Use nodeEstimates when calling
the function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

See Also
Functions
optimizePoseGraph | addRelativePose | edgeNodePairs | findEdgeID | removeEdges |
edgeConstraints

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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removeEdges
Remove loop closure edges from graph

Syntax
removeEdges(poseGraph,edgeIDs)

Description
removeEdges(poseGraph,edgeIDs) removes loop closure edges, landmark edges, or duplicate
incremental edges from the pose graph.

Examples

Remove Loop Closure Edges from Pose Graph

Load the Intel Research Lab Dataset that contains a 2-D pose graph. Optimize the pose graph. Plot
the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

load intel-2d-posegraph.mat pg
optimizedPG = optimizePoseGraph(pg);
show(optimizedPG,IDs="off");

 removeEdges

2-1291

https://www.ipb.uni-bonn.de/datasets/


Find the loop closure edge ID for the specified edge node pair in pose graph.

nodePair = [133 1085];
edgeID = findEdgeID(optimizedPG,nodePair)

edgeID = 1386

Remove the loop closure edge from the pose graph.

removeEdges(optimizedPG,edgeID)
show(optimizedPG,IDs="off");

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

edgeIDs — Edge IDs
vector of positive integers

Edge IDs, specified as a vector of positive integers. To get edge IDs based on node pairs, see the
findEdgeID function.
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

See Also
Functions
optimizePoseGraph | findEdgeID | addRelativePose | edgeNodePairs | edgeConstraints |
nodeEstimates

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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show
Plot pose graph

Syntax
show(poseGraph)
show(poseGraph,Name,Value)
axes = show( ___ )

Description
show(poseGraph) plots the specified pose graph in a figure.

show(poseGraph,Name,Value) specifies options using Name,Value pair arguments. For example,
'IDs','on' plots all node and edge IDs of the pose graph.

axes = show( ___ ) returns the axes handle that the pose graph is plotted to using any of previous
syntaxes.

Examples
Optimize a 2-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in this example
is from the Intel Research Lab Dataset and was generated from collecting wheel odometry and a laser
range finder sensor information in an indoor lab.

Load the Intel data set that contains a 2-D pose graph. Inspect the poseGraph object to view the
number of nodes and loop closures.

load intel-2d-posegraph.mat pg
disp(pg)

  poseGraph with properties:

               NumNodes: 1228
               NumEdges: 1483
    NumLoopClosureEdges: 256
     LoopClosureEdgeIDs: [1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 ... ]
        LandmarkNodeIDs: [1x0 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

show(pg,'IDs','off');
title('Original Pose Graph')
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Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop closures. Plot
the optimized pose graph to see the adjustment of the nodes with loop closures.

updatedPG = optimizePoseGraph(pg);
figure
show(updatedPG,'IDs','off');
title('Updated Pose Graph')

 show
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Optimize a 3-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in this example
is taken from the MIT Dataset and was generated using information extracted from a parking garage.

Load the pose graph from the MIT dataset. Inspect the poseGraph3D object to view the number of
nodes and loop closures.

load parking-garage-posegraph.mat pg
disp(pg);

  poseGraph3D with properties:

               NumNodes: 1661
               NumEdges: 6275
    NumLoopClosureEdges: 4615
     LoopClosureEdgeIDs: [128 129 130 132 133 134 135 137 138 139 140 142 143 144 146 147 148 150 151 204 205 207 208 209 211 212 213 215 216 217 218 220 221 222 223 225 226 227 228 230 231 232 233 235 236 237 238 240 241 242 243 244 246 247 248 ... ]
        LandmarkNodeIDs: [1x0 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

title('Original Pose Graph')
show(pg,'IDs','off');
view(-30,45)
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Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop closures. Plot
the optimized pose graph to see the adjustment of the nodes with loop closures.

updatedPG = optimizePoseGraph(pg);
figure
title('Updated Pose Graph')
show(updatedPG,'IDs','off');
view(-30,45)

 show
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Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IDs','off'

Parent — Axes used to plot pose graph
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of 'Parent' and
either an Axes or UIAxesobject. See axes or uiaxes.

IDs — Display of IDs on pose graph
'loopclosures' (default) | 'all' | 'nodes' | 'off'
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Display of IDs on pose graph, specified as the comma-separated pair consisting of 'IDs' and one of
the following:

• 'all' — Plot all node and edge IDs.
• 'nodes' — Plot all node IDs and loop closure IDs.
• 'loopclosures' — Plot only loop closure edge IDs.
• 'off' — Do not plot any IDs.

Output Arguments
axes — Axes used to plot the map
Axes object | UIAxes object

Axes used to plot the map, returned as either an Axes or UIAxes object. See axes or uiaxes.

Version History
Introduced in R2019b

See Also
Functions
optimizePoseGraph | addRelativePose

Objects
poseGraph | poseGraph3D | lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Landmark SLAM Using AprilTag Markers”
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poseGraph3D
Create 3-D pose graph

Description
A poseGraph3D object stores information for a 3-D pose graph representation. A pose graph contains
nodes connected by edges. Each node estimate is connected to the graph by edge constraints that
define the relative pose between nodes and the uncertainty on that measurement.

To construct a pose graph iteratively, use the addRelativePose function to add relative pose
estimates and connect them to an existing node with specified edge constraints. Pose nodes must be
specified relative to a pose node. Specify the uncertainty of the measurement using an information
matrix.

Adding an edge between two nonsequential nodes creates a loop closure in the graph. Multiple edges
or multiedges between node pairs are also supported, which includes loop closures. To add additional
edge constraints or loop closures, specify the node IDs using the addRelativePose function. When
optimizing the pose graph, the optimizePoseGraph function finds a solution to satisfy all these
edge constraints.
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To add landmark point nodes, use the addPointLandmark function. This function specifies nodes as
xyz-points without orientation estimates. Landmarks must be specified relative to a pose node.

For 2-D pose graphs, see poseGraph.

For an example that builds and optimizes a 3-D pose graph from real-world sensor data, see
“Landmark SLAM Using AprilTag Markers”.

 poseGraph3D
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Creation

Syntax
poseGraph = poseGraph3D
poseGraph = poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)

Description

poseGraph = poseGraph3D creates a 3-D pose graph object. Add poses using addRelativePose
to construct a pose graph iteratively.

poseGraph = poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies
an upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

Properties
NumNodes — Number of nodes in pose graph
1 (default) | positive integer

This property is read-only.

Number of nodes in pose graph, specified as a positive integer. Each node represents a pose
measurement or a point landmark measurement. To specify relative poses between nodes, use
addRelativePose. To specify a landmark pose, use addLandmarkPose. To get a list of all nodes,
use edgeNodePairs.

NumEdges — Number of edges in pose graph
0 (default) | nonnegative integer

This property is read-only.

Number of edges in pose graph, specified as a nonnegative integer. Each edge connects two nodes in
the pose graph. Loop closure edges and landmark edges are included.

NumLoopClosureEdges — Number of loop closures
0 (default) | nonnegative integer

This property is read-only.

Number of loop closures in pose graph, specified as a nonnegative integer. To get the edge IDs of the
loop closures, use the LoopClosureEdgeIDs property.

LoopClosureEdgeIDs — Loop closure edge IDs
vector

This property is read-only.

Loop closure edges IDs, specified as a vector of edge IDs.

LandmarkNodeIDs — Landmark node IDs
vector
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This property is read-only.

Landmark node IDs, specified as a vector of IDs for each node.

Object Functions
addPointLandmark Add landmark point node to pose graph
addRelativePose Add relative pose to pose graph
copy Create copy of pose graph
edgeNodePairs Edge node pairs in pose graph
edgeConstraints Edge constraints in pose graph
edgeResidualErrors Compute pose graph edge residual errors
findEdgeID Find edge ID of edge
nodeEstimates Poses of nodes in pose graph
removeEdges Remove loop closure edges from graph
show Plot pose graph

Examples

Optimize a 3-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in this example
is taken from the MIT Dataset and was generated using information extracted from a parking garage.

Load the pose graph from the MIT dataset. Inspect the poseGraph3D object to view the number of
nodes and loop closures.

load parking-garage-posegraph.mat pg
disp(pg);

  poseGraph3D with properties:

               NumNodes: 1661
               NumEdges: 6275
    NumLoopClosureEdges: 4615
     LoopClosureEdgeIDs: [128 129 130 132 133 134 135 137 138 139 140 142 143 144 146 147 148 150 151 204 205 207 208 209 211 212 213 215 216 217 218 220 221 222 223 225 226 227 228 230 231 232 233 235 236 237 238 240 241 242 243 244 246 247 248 ... ]
        LandmarkNodeIDs: [1x0 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

title('Original Pose Graph')
show(pg,'IDs','off');
view(-30,45)

 poseGraph3D
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Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop closures. Plot
the optimized pose graph to see the adjustment of the nodes with loop closures.

updatedPG = optimizePoseGraph(pg);
figure
title('Updated Pose Graph')
show(updatedPG,'IDs','off');
view(-30,45)
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Version History
Introduced in R2019b

References
[1] Carlone, Luca, Roberto Tron, Kostas Daniilidis, and Frank Dellaert. "Initialization Techniques for

3D SLAM: a Survey on Rotation Estimation and its Use in Pose Graph Optimization." 2015
IEEE International Conference on Robotics and Automation (ICRA). 2015, pp. 4597–4604.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph3D objects for code generation:

poseGraph = poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies
an upper bound on the number of edges and nodes allowed in the pose graph when generating code.
This limit is only required when generating code.

 poseGraph3D
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See Also
Functions
optimizePoseGraph | addRelativePose | addPointLandmark

Objects
poseGraph | lidarSLAM

Topics
“Landmark SLAM Using AprilTag Markers”
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quaternion
Create a quaternion array

Description
A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations.

A quaternion number is represented in the form a + bi + c j + dk, where a, b, c, and d parts are real
numbers, and i, j, and k are the basis elements, satisfying the equation: i2 = j2 = k2 = ijk = −1.

The set of quaternions, denoted by H, is defined within a four-dimensional vector space over the real
numbers, R4. Every element of H has a unique representation based on a linear combination of the
basis elements, i, j, and k.

All rotations in 3-D can be described by an axis of rotation and angle about that axis. An advantage of
quaternions over rotation matrices is that the axis and angle of rotation is easy to interpret. For
example, consider a point in R3. To rotate the point, you define an axis of rotation and an angle of
rotation.

The quaternion representation of the rotation may be expressed as
q = cos θ 2 + sin θ 2 ubi + uc j + udk , where θ is the angle of rotation and [ub, uc, and ud] is the axis
of rotation.

Creation
Syntax
quat = quaternion()
quat = quaternion(A,B,C,D)
quat = quaternion(matrix)
quat = quaternion(RV,'rotvec')

 quaternion
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quat = quaternion(RV,'rotvecd')
quat = quaternion(RM,'rotmat',PF)
quat = quaternion(E,'euler',RS,PF)
quat = quaternion(E,'eulerd',RS,PF)
quat = quaternion(transformation)
quat = quaternion(rotation)

Description

quat = quaternion() creates an empty quaternion.

quat = quaternion(A,B,C,D) creates a quaternion array where the four quaternion parts are
taken from the arrays A, B, C, and D. All the inputs must have the same size and be of the same data
type.

quat = quaternion(matrix) creates an N-by-1 quaternion array from an N-by-4 matrix, where
each column becomes one part of the quaternion.

quat = quaternion(RV,'rotvec') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in radians.

quat = quaternion(RV,'rotvecd') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in degrees.

quat = quaternion(RM,'rotmat',PF) creates an N-by-1 quaternion array from the 3-by-3-by-N
array of rotation matrices, RM. PF can be either 'point' if the Euler angles represent point rotations
or 'frame' for frame rotations.

quat = quaternion(E,'euler',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in radians. The angles in E are rotations
about the axes in sequence RS.

quat = quaternion(E,'eulerd',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in degrees. The angles in E are rotations
about the axes in sequence RS.

quat = quaternion(transformation) creates a quaternion array from the SE(3) transformation
transformation.

quat = quaternion(rotation) creates an quaternion array from the SO(3) rotation rotation.

Input Arguments

A,B,C,D — Quaternion parts
comma-separated arrays of the same size

Parts of a quaternion, specified as four comma-separated scalars, matrices, or multi-dimensional
arrays of the same size.
Example: quat = quaternion(1,2,3,4) creates a quaternion of the form 1 + 2i + 3j + 4k.
Example: quat = quaternion([1,5],[2,6],[3,7],[4,8]) creates a 1-by-2 quaternion array
where quat(1,1) = 1 + 2i + 3j + 4k and quat(1,2) = 5 + 6i + 7j + 8k
Data Types: single | double
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matrix — Matrix of quaternion parts
N-by-4 matrix

Matrix of quaternion parts, specified as an N-by-4 matrix. Each row represents a separate quaternion.
Each column represents a separate quaternion part.
Example: quat = quaternion(rand(10,4)) creates a 10-by-1 quaternion array.
Data Types: single | double

RV — Matrix of rotation vectors
N-by-3 matrix

Matrix of rotation vectors, specified as an N-by-3 matrix. Each row of RV represents the [X Y Z]
elements of a rotation vector. A rotation vector is a unit vector representing the axis of rotation scaled
by the angle of rotation in radians or degrees.

To use this syntax, specify the first argument as a matrix of rotation vectors and the second argument
as the 'rotvec' or 'rotvecd'.
Example: quat = quaternion(rand(10,3),'rotvec') creates a 10-by-1 quaternion array.
Data Types: single | double

RM — Rotation matrices
3-by-3 matrix | 3-by-3-by-N array

Array of rotation matrices, specified by a 3-by-3 matrix or 3-by-3-by-N array. Each page of the array
represents a separate rotation matrix.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: single | double

PF — Type of rotation matrix
'point' | 'frame'

Type of rotation matrix, specified by 'point' or 'frame'.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: char | string

E — Matrix of Euler angles
N-by-3 matrix

Matrix of Euler angles, specified by an N-by-3 matrix. If using the 'euler' syntax, specify E in
radians. If using the 'eulerd' syntax, specify E in degrees.
Example: quat = quaternion(E,'euler','YZY','point')
Example: quat = quaternion(E,'euler','XYZ','frame')
Data Types: single | double

RS — Rotation sequence
character vector | scalar string

 quaternion
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Rotation sequence, specified as a three-element character vector:

• 'YZY'
• 'YXY'
• 'ZYZ'
• 'ZXZ'
• 'XYX'
• 'XZX'
• 'XYZ'
• 'YZX'
• 'ZXY'
• 'XZY'
• 'ZYX'
• 'YXZ'

Assume you want to determine the new coordinates of a point when its coordinate system is rotated
using frame rotation. The point is defined in the original coordinate system as:

point = [sqrt(2)/2,sqrt(2)/2,0];

In this representation, the first column represents the x-axis, the second column represents the y-
axis, and the third column represents the z-axis.

You want to rotate the point using the Euler angle representation [45,45,0]. Rotate the point using
two different rotation sequences:

• If you create a quaternion rotator and specify the 'ZYX' sequence, the frame is first rotated 45°
around the z-axis, then 45° around the new y-axis.

quatRotator = quaternion([45,45,0],'eulerd','ZYX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.7071   -0.0000    0.7071

• If you create a quaternion rotator and specify the 'YZX' sequence, the frame is first rotated 45°
around the y-axis, then 45° around the new z-axis.
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quatRotator = quaternion([45,45,0],'eulerd','YZX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.8536    0.1464    0.5000

Data Types: char | string

transformation — Homogeneous transformation
se3 object | N-element array of se3 objects

Transformation, specified as an se3 object, or as an N-element array of se3 objects. N is the total
number of transformations.

The quaternion object ignores the translational component of the transformation and converts the
rotational 3-by-3 submatrix of the transformation to a quaternion.

rotation — Orthonormal rotation
so3 object | N-element array of so3 objects

Orthonormal rotation, specified as an so3 object, or as an N-element array of so3 objects. N is the
total number of rotations.

Object Functions
angvel Angular velocity from quaternion array
classUnderlying Class of parts within quaternion
compact Convert quaternion array to N-by-4 matrix
conj Complex conjugate of quaternion
' Complex conjugate transpose of quaternion array
dist Angular distance in radians
euler Convert quaternion to Euler angles (radians)
eulerd Convert quaternion to Euler angles (degrees)
exp Exponential of quaternion array
.\,ldivide Element-wise quaternion left division
log Natural logarithm of quaternion array
meanrot Quaternion mean rotation
- Quaternion subtraction
* Quaternion multiplication
norm Quaternion norm
normalize Quaternion normalization
ones Create quaternion array with real parts set to one and imaginary parts set to zero
parts Extract quaternion parts
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.^,power Element-wise quaternion power
prod Product of a quaternion array
randrot Uniformly distributed random rotations
./,rdivide Element-wise quaternion right division
rotateframe Quaternion frame rotation
rotatepoint Quaternion point rotation
rotmat Convert quaternion to rotation matrix
rotvec Convert quaternion to rotation vector (radians)
rotvecd Convert quaternion to rotation vector (degrees)
slerp Spherical linear interpolation
.*,times Element-wise quaternion multiplication
' Transpose a quaternion array
- Quaternion unary minus
zeros Create quaternion array with all parts set to zero

Examples

Create Empty Quaternion

quat = quaternion()

quat = 

  0x0 empty quaternion array

By default, the underlying class of the quaternion is a double.

classUnderlying(quat)

ans = 
'double'

Create Quaternion by Specifying Individual Quaternion Parts

You can create a quaternion array by specifying the four parts as comma-separated scalars, matrices,
or multidimensional arrays of the same size.

Define quaternion parts as scalars.

A = 1.1;
B = 2.1;
C = 3.1;
D = 4.1;
quatScalar = quaternion(A,B,C,D)

quatScalar = quaternion
     1.1 + 2.1i + 3.1j + 4.1k

Define quaternion parts as column vectors.

A = [1.1;1.2];
B = [2.1;2.2];
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C = [3.1;3.2];
D = [4.1;4.2];
quatVector = quaternion(A,B,C,D)

quatVector = 2x1 quaternion array
     1.1 + 2.1i + 3.1j + 4.1k
     1.2 + 2.2i + 3.2j + 4.2k

Define quaternion parts as matrices.
A = [1.1,1.3; ...
     1.2,1.4];
B = [2.1,2.3; ...
     2.2,2.4];
C = [3.1,3.3; ...
     3.2,3.4];
D = [4.1,4.3; ...
     4.2,4.4];
quatMatrix = quaternion(A,B,C,D)

quatMatrix = 2x2 quaternion array
     1.1 + 2.1i + 3.1j + 4.1k     1.3 + 2.3i + 3.3j + 4.3k
     1.2 + 2.2i + 3.2j + 4.2k     1.4 + 2.4i + 3.4j + 4.4k

Define quaternion parts as three dimensional arrays.
A = randn(2,2,2);
B = zeros(2,2,2);
C = zeros(2,2,2);
D = zeros(2,2,2);
quatMultiDimArray = quaternion(A,B,C,D)

quatMultiDimArray = 2x2x2 quaternion array
quatMultiDimArray(:,:,1) = 

     0.53767 +       0i +       0j +       0k     -2.2588 +       0i +       0j +       0k
      1.8339 +       0i +       0j +       0k     0.86217 +       0i +       0j +       0k

quatMultiDimArray(:,:,2) = 

     0.31877 +       0i +       0j +       0k    -0.43359 +       0i +       0j +       0k
     -1.3077 +       0i +       0j +       0k     0.34262 +       0i +       0j +       0k

Create Quaternion by Specifying Quaternion Parts Matrix

You can create a scalar or column vector of quaternions by specify an N-by-4 matrix of quaternion
parts, where columns correspond to the quaternion parts A, B, C, and D.

Create a column vector of random quaternions.

quatParts = rand(3,4)

quatParts = 3×4

 quaternion

2-1313



    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706

quat = quaternion(quatParts)

quat = 3x1 quaternion array
     0.81472 + 0.91338i +  0.2785j + 0.96489k
     0.90579 + 0.63236i + 0.54688j + 0.15761k
     0.12699 + 0.09754i + 0.95751j + 0.97059k

To retrieve the quatParts matrix from quaternion representation, use compact.

retrievedquatParts = compact(quat)

retrievedquatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706

Create Quaternion by Specifying Rotation Vectors

You can create an N-by-1 quaternion array by specifying an N-by-3 matrix of rotation vectors in
radians or degrees. Rotation vectors are compact spatial representations that have a one-to-one
relationship with normalized quaternions.

Rotation Vectors in Radians

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [0.3491,0.6283,0.3491];
quat = quaternion(rotationVector,'rotvec')

quat = quaternion
     0.92124 + 0.16994i + 0.30586j + 0.16994k

norm(quat)

ans = 1.0000

You can convert from quaternions to rotation vectors in radians using the rotvec function. Recover
the rotationVector from the quaternion, quat.

rotvec(quat)

ans = 1×3

    0.3491    0.6283    0.3491

2 Classes

2-1314



Rotation Vectors in Degrees

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [20,36,20];
quat = quaternion(rotationVector,'rotvecd')

quat = quaternion
     0.92125 + 0.16993i + 0.30587j + 0.16993k

norm(quat)

ans = 1

You can convert from quaternions to rotation vectors in degrees using the rotvecd function. Recover
the rotationVector from the quaternion, quat.

rotvecd(quat)

ans = 1×3

   20.0000   36.0000   20.0000

Create Quaternion by Specifying Rotation Matrices

You can create an N-by-1 quaternion array by specifying a 3-by-3-by-N array of rotation matrices.
Each page of the rotation matrix array corresponds to one element of the quaternion array.

Create a scalar quaternion using a 3-by-3 rotation matrix. Specify whether the rotation matrix should
be interpreted as a frame or point rotation.

rotationMatrix = [1 0         0; ...
                  0 sqrt(3)/2 0.5; ...
                  0 -0.5      sqrt(3)/2];
quat = quaternion(rotationMatrix,'rotmat','frame')

quat = quaternion
     0.96593 + 0.25882i +       0j +       0k

You can convert from quaternions to rotation matrices using the rotmat function. Recover the
rotationMatrix from the quaternion, quat.

rotmat(quat,'frame')

ans = 3×3

    1.0000         0         0
         0    0.8660    0.5000
         0   -0.5000    0.8660
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Create Quaternion by Specifying Euler Angles

You can create an N-by-1 quaternion array by specifying an N-by-3 array of Euler angles in radians or
degrees.

Euler Angles in Radians

Use the euler syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in radians.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [pi/2,0,pi/4];
quat = quaternion(E,'euler','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles using the euler function. Recover the Euler
angles, E, from the quaternion, quat.

euler(quat,'ZYX','frame')

ans = 1×3

    1.5708         0    0.7854

Euler Angles in Degrees

Use the eulerd syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in degrees.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [90,0,45];
quat = quaternion(E,'eulerd','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles in degrees using the eulerd function. Recover the
Euler angles, E, from the quaternion, quat.

eulerd(quat,'ZYX','frame')

ans = 1×3

   90.0000         0   45.0000

Quaternion Algebra

Quaternions form a noncommutative associative algebra over the real numbers. This example
illustrates the rules of quaternion algebra.
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Addition and Subtraction

Quaternion addition and subtraction occur part-by-part, and are commutative:

Q1 = quaternion(1,2,3,4)

Q1 = quaternion
     1 + 2i + 3j + 4k

Q2 = quaternion(9,8,7,6)

Q2 = quaternion
     9 + 8i + 7j + 6k

Q1plusQ2 = Q1 + Q2

Q1plusQ2 = quaternion
     10 + 10i + 10j + 10k

Q2plusQ1 = Q2 + Q1

Q2plusQ1 = quaternion
     10 + 10i + 10j + 10k

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
    -8 - 6i - 4j - 2k

Q2minusQ1 = Q2 - Q1

Q2minusQ1 = quaternion
     8 + 6i + 4j + 2k

You can also perform addition and subtraction of real numbers and quaternions. The first part of a
quaternion is referred to as the real part, while the second, third, and fourth parts are referred to as
the vector. Addition and subtraction with real numbers affect only the real part of the quaternion.

Q1plusRealNumber = Q1 + 5

Q1plusRealNumber = quaternion
     6 + 2i + 3j + 4k

Q1minusRealNumber = Q1 - 5

Q1minusRealNumber = quaternion
    -4 + 2i + 3j + 4k
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Multiplication

Quaternion multiplication is determined by the products of the basis elements and the distributive
law. Recall that multiplication of the basis elements, i, j, and k, are not commutative, and therefore
quaternion multiplication is not commutative.

Q1timesQ2 = Q1 * Q2

Q1timesQ2 = quaternion
    -52 + 16i + 54j + 32k

Q2timesQ1 = Q2 * Q1

Q2timesQ1 = quaternion
    -52 + 36i + 14j + 52k

isequal(Q1timesQ2,Q2timesQ1)

ans = logical
   0

You can also multiply a quaternion by a real number. If you multiply a quaternion by a real number,
each part of the quaternion is multiplied by the real number individually:

Q1times5 = Q1*5

Q1times5 = quaternion
      5 + 10i + 15j + 20k

Multiplying a quaternion by a real number is commutative.

isequal(Q1*5,5*Q1)

ans = logical
   1

Conjugation

The complex conjugate of a quaternion is defined such that each element of the vector portion of the
quaternion is negated.

Q1

Q1 = quaternion
     1 + 2i + 3j + 4k

conj(Q1)

ans = quaternion
     1 - 2i - 3j - 4k

Multiplication between a quaternion and its conjugate is commutative:
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isequal(Q1*conj(Q1),conj(Q1)*Q1)

ans = logical
   1

Quaternion Array Manipulation

You can organize quaternions into vectors, matrices, and multidimensional arrays. Built-in MATLAB®
functions have been enhanced to work with quaternions.

Concatenate

Quaternions are treated as individual objects during concatenation and follow MATLAB rules for
array manipulation.

Q1 = quaternion(1,2,3,4);
Q2 = quaternion(9,8,7,6);

qVector = [Q1,Q2]

qVector = 1x2 quaternion array
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k

Q3 = quaternion(-1,-2,-3,-4);
Q4 = quaternion(-9,-8,-7,-6);

qMatrix = [qVector;Q3,Q4]

qMatrix = 2x2 quaternion array
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,1) = qMatrix;
qMultiDimensionalArray(:,:,2) = qMatrix

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Indexing

To access or assign elements in a quaternion array, use indexing.

qLoc2 = qMultiDimensionalArray(2)
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qLoc2 = quaternion
    -1 - 2i - 3j - 4k

Replace the quaternion at index two with a quaternion one.

qMultiDimensionalArray(2) = ones('quaternion')

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Reshape

To reshape quaternion arrays, use the reshape function.

qMatReshaped = reshape(qMatrix,4,1)

qMatReshaped = 4x1 quaternion array
     1 + 2i + 3j + 4k
    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k
    -9 - 8i - 7j - 6k

Transpose

To transpose quaternion vectors and matrices, use the transpose function.

qMatTransposed = transpose(qMatrix)

qMatTransposed = 2x2 quaternion array
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Permute

To permute quaternion vectors, matrices, and multidimensional arrays, use the permute function.

qMultiDimensionalArray

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

2 Classes

2-1320



     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMatPermute = permute(qMultiDimensionalArray,[3,1,2])

qMatPermute = 2x2x2 quaternion array
qMatPermute(:,:,1) = 

     1 + 2i + 3j + 4k     1 + 0i + 0j + 0k
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k

qMatPermute(:,:,2) = 

     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
se3 | so3

Topics
“Rotations, Orientation, and Quaternions”
“Lowpass Filter Orientation Using Quaternion SLERP”
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angvel
Angular velocity from quaternion array

Syntax
AV = angvel(Q,dt,'frame')
AV = angvel(Q,dt,'point')
[AV,qf] = angvel(Q,dt,fp,qi)

Description
AV = angvel(Q,dt,'frame') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to frame rotation. The initial quaternion is assumed to represent
zero rotation.

AV = angvel(Q,dt,'point') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to point rotation. The initial quaternion is assumed to represent zero
rotation.

[AV,qf] = angvel(Q,dt,fp,qi) allows you to specify the initial quaternion, qi, and the type of
rotation, fp. It also returns the final quaternion, qf.

Examples

Generate Angular Velocity From Quaternion Array

Create an array of quaternions.

eulerAngles = [(0:10:90).',zeros(numel(0:10:90),2)];
q = quaternion(eulerAngles,'eulerd','ZYX','frame');

Specify the time step and generate the angular velocity array.

dt = 1;
av = angvel(q,dt,'frame') % units in rad/s

av = 10×3

         0         0         0
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
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Input Arguments
Q — Quaternions
N-by-1 vector of quaternions

Quaternions, specified as an N-by-1 vector of quaternions.
Data Types: quaternion

dt — Time step
nonnegative scalar

Time step, specified as a nonnegative scalar.
Data Types: single | double

fp — Type of rotation
'frame' | 'point'

Type of rotation, specified as 'frame' or 'point'.

qi — Initial quaternion
quaternion

Initial quaternion, specified as a quaternion.
Data Types: quaternion

Output Arguments
AV — Angular velocity
N-by-3 real matrix

Angular velocity, returned as an N-by-3 real matrix. N is the number of quaternions given in the input
Q. Each row of the matrix corresponds to an angular velocity vector.

qf — Final quaternion
quaternion

Final quaternion, returned as a quaternion. qf is the same as the last quaternion in the Q input.
Data Types: quaternion

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion
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Topics
“Rotations, Orientation, and Quaternions”
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classUnderlying
Class of parts within quaternion

Syntax
underlyingClass = classUnderlying(quat)

Description
underlyingClass = classUnderlying(quat) returns the name of the class of the parts of the
quaternion quat.

Examples

Get Underlying Class of Quaternion

A quaternion is a four-part hyper-complex number used in three-dimensional representations. The
four parts of the quaternion are of data type single or double.

Create two quaternions, one with an underlying data type of single, and one with an underlying
data type of double. Verify the underlying data types by calling classUnderlying on the
quaternions.

qSingle = quaternion(single([1,2,3,4]))

qSingle = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qSingle)

ans = 
'single'

qDouble = quaternion([1,2,3,4])

qDouble = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qDouble)

ans = 
'double'

You can separate quaternions into their parts using the parts function. Verify the parts of each
quaternion are the correct data type. Recall that double is the default MATLAB® type.

[aS,bS,cS,dS] = parts(qSingle)

aS = single
    1
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bS = single
    2

cS = single
    3

dS = single
    4

[aD,bD,cD,dD] = parts(qDouble)

aD = 1

bD = 2

cD = 3

dD = 4

Quaternions follow the same implicit casting rules as other data types in MATLAB. That is, a
quaternion with underlying data type single that is combined with a quaternion with underlying
data type double results in a quaternion with underlying data type single. Multiply qDouble and
qSingle and verify the resulting underlying data type is single.

q = qDouble*qSingle;
classUnderlying(q)

ans = 
'single'

Input Arguments
quat — Quaternion to investigate
scalar | vector | matrix | multi-dimensional array

Quaternion to investigate, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
underlyingClass — Underlying class of quaternion object
'single' | 'double'

Underlying class of quaternion, returned as the character vector 'single' or 'double'.
Data Types: char

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
compact | parts

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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compact
Convert quaternion array to N-by-4 matrix

Syntax
matrix = compact(quat)

Description
matrix = compact(quat) converts the quaternion array, quat, to an N-by-4 matrix. The columns
are made from the four quaternion parts. The ith row of the matrix corresponds to quat(i).

Examples

Convert Quaternion Array to Compact Representation of Parts

Create a scalar quaternion with random parts. Convert the parts to a 1-by-4 vector using compact.

randomParts = randn(1,4)

randomParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

quat = quaternion(randomParts)

quat = quaternion
     0.53767 +  1.8339i -  2.2588j + 0.86217k

quatParts = compact(quat)

quatParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

Create a 2-by-2 array of quaternions, then convert the representation to a matrix of quaternion parts.
The output rows correspond to the linear indices of the quaternion array.

quatArray = [quaternion([1:4;5:8]),quaternion([9:12;13:16])]

quatArray = 2x2 quaternion array
      1 +  2i +  3j +  4k      9 + 10i + 11j + 12k
      5 +  6i +  7j +  8k     13 + 14i + 15j + 16k

quatArrayParts = compact(quatArray)

quatArrayParts = 4×4
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     1     2     3     4
     5     6     7     8
     9    10    11    12
    13    14    15    16

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
matrix — Quaternion in matrix form
N-by-4 matrix

Quaternion in matrix form, returned as an N-by-4 matrix, where N = numel(quat).
Data Types: single | double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
parts | classUnderlying

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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conj
Complex conjugate of quaternion

Syntax
quatConjugate = conj(quat)

Description
quatConjugate = conj(quat) returns the complex conjugate of the quaternion, quat.

If q = a + bi + c j + dk, the complex conjugate of q is q* = a− bi− c j− dk. Considered as a rotation
operator, the conjugate performs the opposite rotation. For example,

q = quaternion(deg2rad([16 45 30]),'rotvec');
a = q*conj(q);
rotatepoint(a,[0,1,0])

ans =

     0     1     0

Examples

Complex Conjugate of Quaternion

Create a quaternion scalar and get the complex conjugate.

q = normalize(quaternion([0.9 0.3 0.3 0.25]))

q = quaternion
     0.87727 + 0.29242i + 0.29242j + 0.24369k

qConj = conj(q)

qConj = quaternion
     0.87727 - 0.29242i - 0.29242j - 0.24369k

Verify that a quaternion multiplied by its conjugate returns a quaternion one.

q*qConj

ans = quaternion
     1 + 0i + 0j + 0k
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Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to conjugate, specified as a scalar, vector, matrix, or array of quaternions.
Data Types: quaternion

Output Arguments
quatConjugate — Quaternion conjugate
scalar | vector | matrix | multidimensional array

Quaternion conjugate, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | .*,times

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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ctranspose, '
Complex conjugate transpose of quaternion array

Syntax
quatTransposed = quat'

Description
quatTransposed = quat' returns the complex conjugate transpose of the quaternion, quat.

Examples

Vector Complex Conjugate Transpose

Create a vector of quaternions and compute its complex conjugate transpose.

quat = quaternion(randn(4,4))

quat = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat'

quatTransposed = 1x4 quaternion array
      0.53767 -  0.31877i -   3.5784j -   0.7254k       1.8339 +   1.3077i -   2.7694j + 0.063055k      -2.2588 +  0.43359i +   1.3499j -  0.71474k      0.86217 -  0.34262i -   3.0349j +  0.20497k

Matrix Complex Conjugate Transpose

Create a matrix of quaternions and compute its complex conjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat'

quatTransposed = 2x2 quaternion array
      0.53767 +   2.2588i -  0.31877j +  0.43359k       1.8339 -  0.86217i +   1.3077j -  0.34262k
       3.5784 +   1.3499i -   0.7254j -  0.71474k       2.7694 -   3.0349i + 0.063055j +  0.20497k
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Input Arguments
quat — Quaternion to transpose
scalar | vector | matrix

Quaternion to transpose, specified as a vector or matrix or quaternions. The complex conjugate
transpose is defined for 1-D and 2-D arrays.
Data Types: quaternion

Output Arguments
quatTransposed — Conjugate transposed quaternion
scalar | vector | matrix

Conjugate transposed quaternion, returned as an N-by-M array, where quat was specified as an M-
by-N array.
Data Types: quaternion

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
transpose, '

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

 ctranspose, '

2-1333



dist
Angular distance in radians

Syntax
distance = dist(quatA,quatB)

Description
distance = dist(quatA,quatB) returns the angular distance in radians between two
quaternions, quatA and quatB.

Examples

Calculate Quaternion Distance

Calculate the quaternion distance between a single quaternion and each element of a vector of
quaternions. Define the quaternions using Euler angles.

q = quaternion([0,0,0],'eulerd','zyx','frame')

q = quaternion
     1 + 0i + 0j + 0k

qArray = quaternion([0,45,0;0,90,0;0,180,0;0,-90,0;0,-45,0],'eulerd','zyx','frame')

qArray = 5x1 quaternion array
       0.92388 +         0i +   0.38268j +         0k
       0.70711 +         0i +   0.70711j +         0k
    6.1232e-17 +         0i +         1j +         0k
       0.70711 +         0i -   0.70711j +         0k
       0.92388 +         0i -   0.38268j +         0k

quaternionDistance = rad2deg(dist(q,qArray))

quaternionDistance = 5×1

   45.0000
   90.0000
  180.0000
   90.0000
   45.0000

If both arguments to dist are vectors, the quaternion distance is calculated between corresponding
elements. Calculate the quaternion distance between two quaternion vectors.

angles1 = [30,0,15; ...
           30,5,15; ...
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           30,10,15; ...
           30,15,15];
angles2 = [30,6,15; ...
           31,11,15; ...
           30,16,14; ...
           30.5,21,15.5];

qVector1 = quaternion(angles1,'eulerd','zyx','frame');
qVector2 = quaternion(angles2,'eulerd','zyx','frame');

rad2deg(dist(qVector1,qVector2))

ans = 4×1

    6.0000
    6.0827
    6.0827
    6.0287

Note that a quaternion represents the same rotation as its negative. Calculate a quaternion and its
negative.

qPositive = quaternion([30,45,-60],'eulerd','zyx','frame')

qPositive = quaternion
     0.72332 - 0.53198i + 0.20056j +  0.3919k

qNegative = -qPositive

qNegative = quaternion
    -0.72332 + 0.53198i - 0.20056j -  0.3919k

Find the distance between the quaternion and its negative.

dist(qPositive,qNegative)

ans = 0

The components of a quaternion may look different from the components of its negative, but both
expressions represent the same rotation.

Input Arguments
quatA,quatB — Quaternions to calculate distance between
scalar | vector | matrix | multidimensional array

Quaternions to calculate distance between, specified as comma-separated quaternions or arrays of
quaternions. quatA and quatB must have compatible sizes:

• size(quatA) == size(quatB), or
• numel(quatA) == 1, or
• numel(quatB) == 1, or

 dist
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• if [Adim1,…,AdimN] = size(quatA) and [Bdim1,…,BdimN] = size(quatB), then for i =
1:N, either Adimi==Bdimi or Adim==1 or Bdim==1.

If one of the quaternion arguments contains only one quaternion, then this function returns the
distances between that quaternion and every quaternion in the other argument.

Data Types: quaternion

Output Arguments
distance — Angular distance (radians)
scalar | vector | matrix | multidimensional array

Angular distance in radians, returned as an array. The dimensions are the maximum of the union of
size(quatA) and size(quatB).
Data Types: single | double

Algorithms
The dist function returns the angular distance between two quaternions.

A quaternion may be defined by an axis (ub,uc,ud) and angle of rotation θq:
q = cos θq 2 + sin θq 2 ubi + uc j + udk .

Given a quaternion in the form, q = a + bi + c j + dk, where a is the real part, you can solve for the
angle of q as θq = 2cos−1(a).

Consider two quaternions, p and q, and the product z = p * conjugate(q). As p approaches q, the angle
of z goes to 0, and z approaches the unit quaternion.

The angular distance between two quaternions can be expressed as θz = 2cos−1 real z .

Using the quaternion data type syntax, the angular distance is calculated as:

angularDistance = 2*acos(abs(parts(p*conj(q))));
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
parts | conj

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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euler
Convert quaternion to Euler angles (radians)

Syntax
eulerAngles = euler(quat,rotationSequence,rotationType)

Description
eulerAngles = euler(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles.

Examples

Convert Quaternion to Euler Angles in Radians

Convert a quaternion frame rotation to Euler angles in radians using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesRandians = euler(quat,'ZYX','frame')

eulerAnglesRandians = 1×3

         0         0    1.5708

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string
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rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (radians)
N-by-3 matrix

Euler angle representation in radians, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first element corresponds to the first axis in the rotation
sequence, the second element corresponds to the second axis in the rotation sequence, and the third
element corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
eulerd | rotateframe | rotatepoint

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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eulerd
Convert quaternion to Euler angles (degrees)

Syntax
eulerAngles = eulerd(quat,rotationSequence,rotationType)

Description
eulerAngles = eulerd(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles in degrees.

Examples

Convert Quaternion to Euler Angles in Degrees

Convert a quaternion frame rotation to Euler angles in degrees using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesDegrees = eulerd(quat,'ZYX','frame')

eulerAnglesDegrees = 1×3

         0         0   90.0000

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler angle representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string
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rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (degrees)
N-by-3 matrix

Euler angle representation in degrees, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first column corresponds to the first axis in the rotation sequence,
the second column corresponds to the second axis in the rotation sequence, and the third column
corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | rotateframe | rotatepoint

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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exp
Exponential of quaternion array

Syntax
B = exp(A)

Description
B = exp(A) computes the exponential of the elements of the quaternion array A.

Examples

Exponential of Quaternion Array

Create a 4-by-1 quaternion array A.

A = quaternion(magic(4))

A = 4x1 quaternion array
     16 +  2i +  3j + 13k
      5 + 11i + 10j +  8k
      9 +  7i +  6j + 12k
      4 + 14i + 15j +  1k

Compute the exponential of A.

B = exp(A)

B = 4x1 quaternion array
     5.3525e+06 + 1.0516e+06i + 1.5774e+06j + 6.8352e+06k
        -57.359 -     89.189i -     81.081j -     64.865k
        -6799.1 +     2039.1i +     1747.8j +     3495.6k
          -6.66 +     36.931i +     39.569j +     2.6379k

Input Arguments
A — Input quaternion
scalar | vector | matrix | multidimensional array

Input quaternion, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Result
scalar | vector | matrix | multidimensional array
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Result of quaternion exponential, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + bi + c j + dk = a + v, the exponential is computed by

exp(A) = ea cos v + v
v sin v

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.^,power | log

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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ldivide, .\
Element-wise quaternion left division

Syntax
C = A.\B

Description
C = A.\B performs quaternion element-wise division by dividing each element of quaternion B by
the corresponding element of quaternion A.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A.\B

C = 2x1 quaternion array
     0.066667 -  0.13333i -      0.2j -  0.26667k
     0.057471 - 0.068966i -  0.08046j - 0.091954k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(q1,2,2)

A = 2x2 quaternion array
     1 + 2i + 3j + 4k     4 + 5i + 6j + 7k
     2 + 3i + 4j + 5k     5 + 6i + 7j + 8k

q2 = quaternion(magic(4));
B = reshape(q2,2,2)
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B = 2x2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

C = A.\B

C = 2x2 quaternion array
          2.7 -      1.9i -      0.9j -      1.7k       1.5159 -  0.37302i -  0.15079j -  0.02381k
       2.2778 +  0.46296i -  0.57407j + 0.092593k       1.2471 +  0.91379i -  0.33908j -   0.1092k

Input Arguments
A — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = p . \A =
a1
p +

a2
p i +

a3
p j +

a4
p k
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Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes, then

C = A . \B = A−1 . * B = con j(A)
norm(A)2

. * B

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.*,times | conj | norm | ./,ldivide

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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log
Natural logarithm of quaternion array

Syntax
B = log(A)

Description
B = log(A) computes the natural logarithm of the elements of the quaternion array A.

Examples

Logarithmic Values of Quaternion Array

Create a 3-by-1 quaternion array A.

A = quaternion(randn(3,4))

A = 3x1 quaternion array
     0.53767 + 0.86217i - 0.43359j +  2.7694k
      1.8339 + 0.31877i + 0.34262j -  1.3499k
     -2.2588 -  1.3077i +  3.5784j +  3.0349k

Compute the logarithmic values of A.

B = log(A)

B = 3x1 quaternion array
      1.0925 + 0.40848i - 0.20543j +  1.3121k
      0.8436 + 0.14767i + 0.15872j - 0.62533k
      1.6807 - 0.53829i +   1.473j +  1.2493k

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Logarithm values
scalar | vector | matrix | multidimensional array
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Quaternion natural logarithm values, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + v = a + bi + c j + dk, the logarithm is computed by

log(A) = log A + v
v arccos a

A

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | .^,power

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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meanrot
Quaternion mean rotation

Syntax
quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot( ___ ,nanflag)

Description
quatAverage = meanrot(quat) returns the average rotation of the elements of quat along the
first array dimension whose size not does equal 1.

• If quat is a vector, meanrot(quat) returns the average rotation of the elements.
• If quat is a matrix, meanrot(quat) returns a row vector containing the average rotation of each

column.
• If quat is a multidimensional array, then mearot(quat) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. This dimension becomes 1 while the
sizes of all other dimensions remain the same.

The meanrot function normalizes the input quaternions, quat, before calculating the mean.

quatAverage = meanrot(quat,dim) return the average rotation along dimension dim. For
example, if quat is a matrix, then meanrot(quat,2) is a column vector containing the mean of each
row.

quatAverage = meanrot( ___ ,nanflag) specifies whether to include or omit NaN values from
the calculation for any of the previous syntaxes. meanrot(quat,'includenan') includes all NaN
values in the calculation while mean(quat,'omitnan') ignores them.

Examples

Quaternion Mean Rotation

Create a matrix of quaternions corresponding to three sets of Euler angles.

eulerAngles = [40 20 10; ...
               50 10 5; ...
               45 70 1];

quat = quaternion(eulerAngles,'eulerd','ZYX','frame');

Determine the average rotation represented by the quaternions. Convert the average rotation to
Euler angles in degrees for readability.

quatAverage = meanrot(quat)
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quatAverage = quaternion
      0.88863 - 0.062598i +  0.27822j +  0.35918k

eulerAverage = eulerd(quatAverage,'ZYX','frame')

eulerAverage = 1×3

   45.7876   32.6452    6.0407

Average Out Rotational Noise

Use meanrot over a sequence of quaternions to average out additive noise.

Create a vector of 1e6 quaternions whose distance, as defined by the dist function, from
quaternion(1,0,0,0) is normally distributed. Plot the Euler angles corresponding to the noisy
quaternion vector.

nrows = 1e6;
ax = 2*rand(nrows,3) - 1;   
ax = ax./sqrt(sum(ax.^2,2));
ang = 0.5*randn(size(ax,1),1);
q = quaternion(ax.*ang ,'rotvec');

noisyEulerAngles = eulerd(q,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)')
hold on
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Use meanrot to determine the average quaternion given the vector of quaternions. Convert to Euler
angles and plot the results.

qAverage = meanrot(q);

qAverageInEulerAngles = eulerd(qAverage,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(ones(nrows,1)*qAverageInEulerAngles(:,1))
title('Z-Axis')

subplot(3,1,2)
plot(ones(nrows,1)*qAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)
plot(ones(nrows,1)*qAverageInEulerAngles(:,3))
title('X-Axis')
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The meanrot Algorithm and Limitations

The meanrot Algorithm

The meanrot function outputs a quaternion that minimizes the squared Frobenius norm of the
difference between rotation matrices. Consider two quaternions:

• q0 represents no rotation.
• q90 represents a 90 degree rotation about the x-axis.

q0 = quaternion([0 0 0],'eulerd','ZYX','frame');
q90 = quaternion([0 0 90],'eulerd','ZYX','frame');

Create a quaternion sweep, qSweep, that represents rotations from 0 to 180 degrees about the x-axis.

eulerSweep = (0:1:180)';
qSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep], ...
    'eulerd','ZYX','frame');

Convert q0, q90, and qSweep to rotation matrices. In a loop, calculate the metric to minimize for
each member of the quaternion sweep. Plot the results and return the value of the Euler sweep that
corresponds to the minimum of the metric.

r0     = rotmat(q0,'frame');
r90    = rotmat(q90,'frame');
rSweep = rotmat(qSweep,'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r90),'fro').^2;
end
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plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 45

The minimum of the metric corresponds to the Euler angle sweep at 45 degrees. That is, meanrot
defines the average between quaterion([0 0 0],'ZYX','frame') and quaternion([0 0
90],'ZYX','frame') as quaternion([0 0 45],'ZYX','frame'). Call meanrot with q0 and
q90 to verify the same result.

eulerd(meanrot([q0,q90]),'ZYX','frame')

ans = 1×3

         0         0   45.0000

Limitations

The metric that meanrot uses to determine the mean rotation is not unique for quaternions
significantly far apart. Repeat the experiment above for quaternions that are separated by 180
degrees.
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q180 = quaternion([0 0 180],'eulerd','ZYX','frame');
r180 = rotmat(q180,'frame');

for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r180),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 159

Quaternion means are usually calculated for rotations that are close to each other, which makes the
edge case shown in this example unlikely in real-world applications. To average two quaternions that
are significantly far apart, use the slerp function. Repeat the experiment using slerp and verify
that the quaternion mean returned is more intuitive for large distances.

qMean = slerp(q0,q180,0.5);
q0_q180 = eulerd(qMean,'ZYX','frame')

q0_q180 = 1×3
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         0         0   90.0000

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the mean, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(quatAverage,dim) is
1, while the sizes of all other dimensions remain the same.
Data Types: double | single

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' –– Include NaN values when computing the mean rotation, resulting in NaN.
• 'omitnan' –– Ignore all NaN values in the input.

Data Types: char | string

Output Arguments
quatAverage — Quaternion average rotation
scalar | vector | matrix | multidimensional array

Quaternion average rotation, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Algorithms
meanrot determines a quaternion mean, q, according to [1]. q is the quaternion that minimizes the
squared Frobenius norm of the difference between rotation matrices:

q = arg
min

q ∈ S3 ∑i = 1

n
A q − A qi F

2

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | slerp

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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minus, -
Quaternion subtraction

Syntax
C = A - B

Description
C = A - B subtracts quaternion B from quaternion A using quaternion subtraction. Either A or B
may be a real number, in which case subtraction is performed with the real part of the quaternion
argument.

Examples

Subtract a Quaternion from a Quaternion

Quaternion subtraction is defined as the subtraction of the corresponding parts of each quaternion.
Create two quaternions and perform subtraction.

Q1 = quaternion([1,0,-2,7]);
Q2 = quaternion([1,2,3,4]);

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
     0 - 2i - 5j + 3k

Subtract a Real Number from a Quaternion

Addition and subtraction of real numbers is defined for quaternions as acting on the real part of the
quaternion. Create a quaternion and then subtract 1 from the real part.

Q = quaternion([1,1,1,1])

Q = quaternion
     1 + 1i + 1j + 1k

Qminus1 = Q - 1

Qminus1 = quaternion
     0 + 1i + 1j + 1k
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Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion subtraction, returned as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
-,uminus | .*,times | *,mtimes

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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mtimes, *
Quaternion multiplication

Syntax
quatC = A*B

Description
quatC = A*B implements quaternion multiplication if either A or B is a quaternion. Either A or B
must be a scalar.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the order of the desired
sequence of rotations. For example, to apply a p quaternion followed by a q quaternion, multiply in
the order pq. The rotation operator becomes pq ∗v pq , where v represents the object to rotate
specified in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Quaternion Scalar and Quaternion Vector

Create a 4-by-1 column vector, A, and a scalar, b. Multiply A times b.

A = quaternion(randn(4,4))

A = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

b = quaternion(randn(1,4))

b = quaternion
    -0.12414 +  1.4897i +   1.409j +  1.4172k

C = A*b

C = 4x1 quaternion array
      -6.6117 +   4.8105i +  0.94224j -   4.2097k
      -2.0925 +   6.9079i +   3.9995j -   3.3614k
       1.8155 -   6.2313i -    1.336j -     1.89k
      -4.6033 +   5.8317i + 0.047161j -    2.791k
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Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If B is nonscalar, then A must be scalar.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If A is nonscalar, then B must be scalar.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a quaternion or array of quaternions.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
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j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table:

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

Version History
Introduced in R2019b

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.
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norm
Quaternion norm

Syntax
N = norm(quat)

Description
N = norm(quat) returns the norm of the quaternion, quat.

Given a quaternion of the form Q = a + bi + c j + dk, the norm of the quaternion is defined as
norm(Q) = a2 + b2 + c2 + d2.

Examples

Calculate Quaternion Norm

Create a scalar quaternion and calculate its norm.

quat = quaternion(1,2,3,4);
norm(quat)

ans = 5.4772

The quaternion norm is defined as the square root of the sum of the quaternion parts squared.
Calculate the quaternion norm explicitly to verify the result of the norm function.

[a,b,c,d] = parts(quat);
sqrt(a^2+b^2+c^2+d^2)

ans = 5.4772

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the norm, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

Output Arguments
N — Quaternion norm
scalar | vector | matrix | multidimensional array
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Quaternion norm. If the input quat is an array, the output is returned as an array the same size as
quat. Elements of the array are real numbers with the same data type as the underlying data type of
the quaternion, quat.
Data Types: single | double

Version History
Introduced in R2019b
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normalize | parts | conj

Objects
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normalize
Quaternion normalization

Syntax
quatNormalized = normalize(quat)

Description
quatNormalized = normalize(quat) normalizes the quaternion.

Given a quaternion of the form Q = a + bi + c j + dk, the normalized quaternion is defined as
Q/ a2 + b2 + c2 + d2.

Examples

Normalize Elements of Quaternion Vector

Quaternions can represent rotations when normalized. You can use normalize to normalize a scalar,
elements of a matrix, or elements of a multi-dimensional array of quaternions. Create a column vector
of quaternions, then normalize them.

quatArray = quaternion([1,2,3,4; ...
                        2,3,4,1; ...
                        3,4,1,2]);
quatArrayNormalized = normalize(quatArray)

quatArrayNormalized = 3x1 quaternion array
     0.18257 + 0.36515i + 0.54772j +  0.7303k
     0.36515 + 0.54772i +  0.7303j + 0.18257k
     0.54772 +  0.7303i + 0.18257j + 0.36515k

Input Arguments
quat — Quaternion to normalize
scalar | vector | matrix | multidimensional array

Quaternion to normalize, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
quatNormalized — Normalized quaternion
scalar | vector | matrix | multidimensional array
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Normalized quaternion, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Version History
Introduced in R2019b
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Generate C and C++ code using MATLAB® Coder™.
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ones
Create quaternion array with real parts set to one and imaginary parts set to zero

Syntax
quatOnes = ones('quaternion')
quatOnes = ones(n,'quaternion')
quatOnes = ones(sz,'quaternion')
quatOnes = ones(sz1,...,szN,'quaternion')

quatOnes = ones( ___ ,'like',prototype,'quaternion')

Description
quatOnes = ones('quaternion') returns a scalar quaternion with the real part set to 1 and the
imaginary parts set to 0.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.

quatOnes = ones(n,'quaternion') returns an n-by-n quaternion matrix with the real parts set
to 1 and the imaginary parts set to 0.

quatOnes = ones(sz,'quaternion') returns an array of quaternion ones where the size vector,
sz, defines size(qOnes).
Example: ones([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternions with the real
parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of ones where
sz1,…,szN indicates the size of each dimension.

quatOnes = ones( ___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar One

Create a quaternion scalar one.

quatOnes = ones('quaternion')

quatOnes = quaternion
     1 + 0i + 0j + 0k
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Square Matrix of Quaternion Ones

Create an n-by-n matrix of quaternion ones.

n = 3;
quatOnes = ones(n,'quaternion')

quatOnes = 3x3 quaternion array
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Multidimensional Array of Quaternion Ones

Create a multidimensional array of quaternion ones by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers. Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatOnesSyntax1 = ones(dims,'quaternion')

quatOnesSyntax1 = 3x1x2 quaternion array
quatOnesSyntax1(:,:,1) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

quatOnesSyntax1(:,:,2) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalency of the two
syntaxes:

quatOnesSyntax2 = ones(3,1,2,'quaternion');
isequal(quatOnesSyntax1,quatOnesSyntax2)

ans = logical
   1

Underlying Class of Quaternion Ones

A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations. You can specify the underlying data type of the parts as single or double. The default
is double.
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Create a quaternion array of ones with the underlying data type set to single.

quatOnes = ones(2,'like',single(1),'quaternion')

quatOnes = 2x2 quaternion array
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Verify the underlying class using the classUnderlying function.

classUnderlying(quatOnes)

ans = 
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value.

If n is zero or negative, then quatOnes is returned as an empty matrix.
Example: ones(4,'quaternion') returns a 4-by-4 matrix of quaternions with the real parts set to
1 and the imaginary parts set to 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatOnes. If the size of any dimension is 0 or negative, then quatOnes
is returned as an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: ones(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers. If the size of any dimension is 0 or
negative, then quatOnes is returned as an empty array.
Example: ones(2,3,'quaternion') returns a 2-by-3 matrix of quaternions with the real parts set
to 1 and the imaginary parts set to 0.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatOnes — Quaternion ones
scalar | vector | matrix | multidimensional array

Quaternion ones, returned as a scalar, vector, matrix, or multidimensional array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.
Data Types: quaternion

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
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Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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parts
Extract quaternion parts

Syntax
[a,b,c,d] = parts(quat)

Description
[a,b,c,d] = parts(quat) returns the parts of the quaternion array as arrays, each the same size
as quat.

Examples

Convert Quaternion to Matrix of Quaternion Parts

Convert a quaternion representation to parts using the parts function.

Create a two-element column vector of quaternions by specifying the parts.

quat = quaternion([1:4;5:8])

quat = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

Recover the parts from the quaternion matrix using the parts function. The parts are returned as
separate output arguments, each the same size as the input 2-by-1 column vector of quaternions.

[qA,qB,qC,qD] = parts(quat)

qA = 2×1

     1
     5

qB = 2×1

     2
     6

qC = 2×1

     3
     7

qD = 2×1
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     4
     8

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
[a,b,c,d] — Quaternion parts
scalar | vector | matrix | multidimensional array

Quaternion parts, returned as four arrays: a, b, c, and d. Each part is the same size as quat.
Data Types: single | double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | compact

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

 parts

2-1373



power, .^
Element-wise quaternion power

Syntax
C = A.^b

Description
C = A.^b raises each element of A to the corresponding power in b.

Examples

Raise a Quaternion to a Real Scalar Power

Create a quaternion and raise it to a real scalar power.

A = quaternion(1,2,3,4)

A = quaternion
     1 + 2i + 3j + 4k

b = 3;
C = A.^b

C = quaternion
     -86 -  52i -  78j - 104k

Raise a Quaternion Array to Powers from a Multidimensional Array

Create a 2-by-1 quaternion array and raise it to powers from a 2-D array.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

b = [1 0 2; 3 2 1]

b = 2×3

     1     0     2
     3     2     1

C = A.^b
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C = 2x3 quaternion array
        1 +    2i +    3j +    4k        1 +    0i +    0j +    0k      -28 +    4i +    6j +    8k
    -2110 -  444i -  518j -  592k     -124 +   60i +   70j +   80k        5 +    6i +    7j +    8k

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion | single | double

b — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a real scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Each element of quaternion A raised to the corresponding power in b, returned as a scalar, vector,
matrix, or multidimensional array.
Data Types: quaternion

Algorithms
The polar representation of a quaternion A = a + bi + c j + dk is given by

A = A cosθ + u sinθ

where θ is the angle of rotation, and û is the unit quaternion.

Quaternion A raised by a real exponent b is given by

P = A . ^b = A b cos bθ + u sin bθ

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 power, .^

2-1375



See Also
Functions
log | exp

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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prod
Product of a quaternion array

Syntax
quatProd = prod(quat)
quatProd = prod(quat,dim)

Description
quatProd = prod(quat) returns the quaternion product of the elements of the array.

quatProd = prod(quat,dim) calculates the quaternion product along dimension dim.

Examples

Product of Quaternions in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A = reshape(quaternion(randn(9,4)),3,3)

A = 3x3 quaternion array
      0.53767 +   2.7694i +    1.409j -  0.30344k      0.86217 +   0.7254i -   1.2075j +   0.8884k     -0.43359 -  0.20497i +  0.48889j -   0.8095k
       1.8339 -   1.3499i +   1.4172j +  0.29387k      0.31877 - 0.063055i +  0.71724j -   1.1471k      0.34262 -  0.12414i +   1.0347j -   2.9443k
      -2.2588 +   3.0349i +   0.6715j -  0.78728k      -1.3077 +  0.71474i +   1.6302j -   1.0689k       3.5784 +   1.4897i +  0.72689j +   1.4384k

Find the product of the quaternions in each column. The length of the first dimension is 1, and the
length of the second dimension matches size(A,2).

B = prod(A)

B = 1x3 quaternion array
     -19.837 -  9.1521i +  15.813j -  19.918k     -5.4708 - 0.28535i +   3.077j -  1.2295k      -10.69 -  8.5199i -  2.8801j - 0.65338k

Product of Specified Dimension of Quaternion Array

You can specify which dimension of a quaternion array to take the product of.

Create a 2-by-2-by-2 quaternion array.

A = reshape(quaternion(randn(8,4)),2,2,2);

Find the product of the elements in each page of the array. The length of the first dimension matches
size(A,1), the length of the second dimension matches size(A,2), and the length of the third
dimension is 1.
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dim = 3;
B = prod(A,dim)

B = 2x2 quaternion array
     -2.4847 +  1.1659i - 0.37547j +  2.8068k     0.28786 - 0.29876i - 0.51231j -  4.2972k
     0.38986 -  3.6606i -  2.0474j -   6.047k      -1.741 - 0.26782i +  5.4346j +  4.1452k

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Example: qProd = prod(quat) calculates the quaternion product along the first non-singleton
dimension of quat.
Data Types: quaternion

dim — Dimension
first non-singleton dimension (default) | positive integer

Dimension along which to calculate the quaternion product, specified as a positive integer. If dim is
not specified, prod operates along the first non-singleton dimension of quat.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatProd — Quaternion product
positive integer

Quaternion product, returned as quaternion array with one less non-singleton dimension than quat.

For example, if quat is a 2-by-2-by-5 array,

• prod(quat,1) returns a 1-by-2-by-5 array.
• prod(quat,2) returns a 2-by-1-by-5 array.
• prod(quat,3) returns a 2-by-2 array.

Data Types: quaternion

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Functions
mtimes | .*,times

Objects
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rdivide, ./
Element-wise quaternion right division

Syntax
C = A./B

Description
C = A./B performs quaternion element-wise division by dividing each element of quaternion A by
the corresponding element of quaternion B.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A./B

C = 2x1 quaternion array
     0.5 +   1i + 1.5j +   2k
     2.5 +   3i + 3.5j +   4k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion(magic(4));
A = reshape(q1,2,2)

A = 2x2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

q2 = quaternion([1:4;3:6;2:5;4:7]);
B = reshape(q2,2,2)
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B = 2x2 quaternion array
     1 + 2i + 3j + 4k     2 + 3i + 4j + 5k
     3 + 4i + 5j + 6k     4 + 5i + 6j + 7k

C = A./B

C = 2x2 quaternion array
          2.7 -      0.1i -      2.1j -      1.7k       2.2778 + 0.092593i -  0.46296j -  0.57407k
       1.8256 - 0.081395i +  0.45349j -  0.24419k       1.4524 -      0.5i +   1.0238j -   0.2619k

Input Arguments
A — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = A . /p =
a1
p +

a2
p i +

a3
p j +

a4
p k
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Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes,

C = A . /B = A . * B−1 = A . * con j(B)
norm(B)2

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | ./,ldivide | norm | .*,times

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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randrot
Uniformly distributed random rotations

Syntax
R = randrot
R = randrot(m)
R = randrot(m1,...,mN)
R = randrot([m1,...,mN])

Description
R = randrot returns a unit quaternion drawn from a uniform distribution of random rotations.

R = randrot(m) returns an m-by-m matrix of unit quaternions drawn from a uniform distribution of
random rotations.

R = randrot(m1,...,mN) returns an m1-by-...-by-mN array of random unit quaternions, where m1,
…, mN indicate the size of each dimension. For example, randrot(3,4) returns a 3-by-4 matrix of
random unit quaternions.

R = randrot([m1,...,mN]) returns an m1-by-...-by-mN array of random unit quaternions, where
m1,…, mN indicate the size of each dimension. For example, randrot([3,4]) returns a 3-by-4 matrix
of random unit quaternions.

Examples

Matrix of Random Rotations

Generate a 3-by-3 matrix of uniformly distributed random rotations.

r = randrot(3)

r = 3x3 quaternion array
      0.17446 +  0.59506i -  0.73295j +  0.27976k      0.69704 - 0.060589i +  0.68679j -  0.19695k      0.35191 +  0.74478i +  0.52322j -  0.21842k
      0.21908 -  0.89875i -    0.298j +  0.23548k    -0.049744 +  0.59691i +  0.56459j +  0.56786k      0.17527 -  0.46955i +  0.52986j -  0.68414k
       0.6375 +  0.49338i -  0.24049j +  0.54068k       0.2979 -  0.53568i +  0.31819j +  0.72323k     -0.30189 -  0.22864i -  0.83159j +  0.40626k

Create Uniform Distribution of Random Rotations

Create a vector of 500 random quaternions. Use rotatepoint to visualize the distribution of the
random rotations applied to point (1, 0, 0).

q = randrot(500,1);

pt = rotatepoint(q, [1 0 0]);
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figure
scatter3(pt(:,1), pt(:,2), pt(:,3))
axis equal

Input Arguments
m — Size of square matrix
integer

Size of square quaternion matrix, specified as an integer value. If m is 0 or negative, then R is
returned as an empty matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m1,...,mN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values. If the size of any dimension is 0 or
negative, then R is returned as an empty array.
Example: randrot(2,3) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

[m1,...,mN] — Vector of size of each dimension
row vector of integer values
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Vector of size of each dimension, specified as a row vector of two or more integer values. If the size of
any dimension is 0 or negative, then R is returned as an empty array.
Example: randrot([2,3]) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
R — Random quaternions
scalar | vector | matrix | multidimensional array

Random quaternions, returned as a quaternion or array of quaternions.
Data Types: quaternion

Version History
Introduced in R2019b

References
[1] Shoemake, K. "Uniform Random Rotations." Graphics Gems III (K. David, ed.). New York:

Academic Press, 1992.
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rotateframe
Quaternion frame rotation

Syntax
rotationResult = rotateframe(quat,cartesianPoints)

Description
rotationResult = rotateframe(quat,cartesianPoints) rotates the frame of reference for
the Cartesian points using the quaternion, quat. The elements of the quaternion are normalized
before use in the rotation.

Examples

Rotate Frame Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in the order x, y,
and z. For convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;
plot(x,y,'ko')
hold on
axis([-1 1 -1 1])
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Create a quaternion vector specifying two separate rotations, one to rotate the frame 45 degrees and
another to rotate the point -90 degrees about the z-axis. Use rotateframe to perform the rotations.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','frame');
               
rereferencedPoint = rotateframe(quat,[x,y,z])

rereferencedPoint = 2×3

    0.7071   -0.0000         0
   -0.5000    0.5000         0

Plot the rereferenced points.

plot(rereferencedPoint(1,1),rereferencedPoint(1,2),'bo')
plot(rereferencedPoint(2,1),rereferencedPoint(2,2),'go')
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Rereference Group of Points using Quaternion

Define two points in three-dimensional space. Define a quaternion to rereference the points by first
rotating the reference frame about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotateframe to reference both points using the quaternion rotation operator. Display the result.

rP = rotateframe(quat,[a;b])

rP = 2×3

    0.6124   -0.3536    0.7071
    0.5000    0.8660   -0.0000

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
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grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion or vector of quaternions.
Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix
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Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Re-referenced Cartesian points
vector | matrix

Cartesian points defined in reference to rotated reference frame, returned as a vector or matrix the
same size as cartesianPoints.

The data type of the re-referenced Cartesian points is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Quaternion frame rotation re-references a point specified in R3 by rotating the original frame of
reference according to a specified quaternion:

Lq u = q*uq

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotateframe function takes a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],

point = [x,y,z];
rereferencedPoint = rotateframe(q,point)

the rotateframe function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = q*uqq
4 Converts the quaternion output, vq, back to R3

Version History
Introduced in R2019b
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C/C++ Code Generation
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See Also
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Objects
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Topics
“Rotations, Orientation, and Quaternions”
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rotatepoint
Quaternion point rotation

Syntax
rotationResult = rotatepoint(quat,cartesianPoints)

Description
rotationResult = rotatepoint(quat,cartesianPoints) rotates the Cartesian points using
the quaternion, quat. The elements of the quaternion are normalized before use in the rotation.

Examples

Rotate Point Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in order x, y, z. For
convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;

plot(x,y,'ko')
hold on
axis([-1 1 -1 1])
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Create a quaternion vector specifying two separate rotations, one to rotate the point 45 and another
to rotate the point -90 degrees about the z-axis. Use rotatepoint to perform the rotation.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','point');
               
rotatedPoint = rotatepoint(quat,[x,y,z])

rotatedPoint = 2×3

   -0.0000    0.7071         0
    0.5000   -0.5000         0

Plot the rotated points.

plot(rotatedPoint(1,1),rotatedPoint(1,2),'bo')
plot(rotatedPoint(2,1),rotatedPoint(2,2),'go')
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Rotate Group of Points Using Quaternion

Define two points in three-dimensional space. Define a quaternion to rotate the point by first rotating
about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotatepoint to rotate both points using the quaternion rotation operator. Display the result.

rP = rotatepoint(quat,[a;b])

rP = 2×3

    0.6124    0.5000   -0.6124
   -0.3536    0.8660    0.3536

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
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grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion, row vector of quaternions, or
column vector of quaternions.
Data Types: quaternion
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cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Repositioned Cartesian points
vector | matrix

Rotated Cartesian points defined using the quaternion rotation, returned as a vector or matrix the
same size as cartesianPoints.
Data Types: single | double

Algorithms
Quaternion point rotation rotates a point specified in R3 according to a specified quaternion:

Lq(u) = quq*

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotatepoint function takes in a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],
for example,

rereferencedPoint = rotatepoint(q,[x,y,z])

the rotatepoint function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = quqq*
4 Converts the quaternion output, vq, back to R3

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotateframe

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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rotmat
Convert quaternion to rotation matrix

Syntax
rotationMatrix = rotmat(quat,rotationType)

Description
rotationMatrix = rotmat(quat,rotationType) converts the quaternion, quat, to an
equivalent rotation matrix representation.

Examples

Convert Quaternion to Rotation Matrix for Point Rotation

Define a quaternion for use in point rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','point')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j + 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'point')

rotationMatrix = 3×3

    0.7071   -0.0000    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           sind(theta) ; ...
      0             1           0           ; ...
     -sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) -sind(gamma) ;     ...
      0             sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry
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rotationMatrixVerification = 3×3

    0.7071         0    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

Convert Quaternion to Rotation Matrix for Frame Rotation

Define a quaternion for use in frame rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','frame')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j - 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'frame')

rotationMatrix = 3×3

    0.7071   -0.0000   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           -sind(theta) ; ...
      0             1           0           ; ...
     sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) sind(gamma) ;     ...
      0             -sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

rotationMatrixVerification = 3×3

    0.7071         0   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124
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Convert Quaternion Vector to Rotation Matrices

Create a 3-by-1 normalized quaternion vector.

qVec = normalize(quaternion(randn(3,4)));

Convert the quaternion array to rotation matrices. The pages of rotmatArray correspond to the
linear index of qVec.

rotmatArray = rotmat(qVec,'frame');

Assume qVec and rotmatArray correspond to a sequence of rotations. Combine the quaternion
rotations into a single representation, then apply the quaternion rotation to arbitrarily initialized
Cartesian points.

loc = normalize(randn(1,3));
quat = prod(qVec);
rotateframe(quat,loc)

ans = 1×3

    0.9524    0.5297    0.9013

Combine the rotation matrices into a single representation, then apply the rotation matrix to the
same initial Cartesian points. Verify the quaternion rotation and rotation matrix result in the same
orientation.

totalRotMat = eye(3);
for i = 1:size(rotmatArray,3)
    totalRotMat = rotmatArray(:,:,i)*totalRotMat;
end
totalRotMat*loc'

ans = 3×1

    0.9524
    0.5297
    0.9013

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

rotationType — Type or rotation
'frame' | 'point'

Type of rotation represented by the rotationMatrix output, specified as 'frame' or 'point'.
Data Types: char | string
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Output Arguments
rotationMatrix — Rotation matrix representation
3-by-3 matrix | 3-by-3-by-N multidimensional array

Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N multidimensional array.

• If quat is a scalar, rotationMatrix is returned as a 3-by-3 matrix.
• If quat is non-scalar, rotationMatrix is returned as a 3-by-3-by-N multidimensional array,

where rotationMatrix(:,:,i) is the rotation matrix corresponding to quat(i).

The data type of the rotation matrix is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Given a quaternion of the form

q = a + bi + c j + dk ,

the equivalent rotation matrix for frame rotation is defined as

2a2− 1 + 2b2 2bc + 2ad 2bd− 2ac
2bc− 2ad 2a2− 1 + 2c2 2cd + 2ab

2bd + 2ac 2cd− 2ab 2a2− 1 + 2d2

.

The equivalent rotation matrix for point rotation is the transpose of the frame rotation matrix:

2a2− 1 + 2b2 2bc− 2ad 2bd + 2ac
2bc + 2ad 2a2− 1 + 2c2 2cd− 2ab

2bd− 2ac 2cd + 2ab 2a2− 1 + 2d2

.

Version History
Introduced in R2019b

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.
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rotvec
Convert quaternion to rotation vector (radians)

Syntax
rotationVector = rotvec(quat)

Description
rotationVector = rotvec(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in radians. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Radians

Convert a random quaternion scalar to a rotation vector in radians

quat = quaternion(randn(1,4));
rotvec(quat)

ans = 1×3

    1.6866   -2.0774    0.7929

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar quaternion, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (radians)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotations vectors, where each row
represents the [X Y Z] angles of the rotation vectors in radians. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double
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Algorithms
All rotations in 3-D can be represented by a three-element axis of rotation and a rotation angle, for a
total of four elements. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Version History
Introduced in R2019b
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rotvecd
Convert quaternion to rotation vector (degrees)

Syntax
rotationVector = rotvecd(quat)

Description
rotationVector = rotvecd(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in degrees. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Degrees

Convert a random quaternion scalar to a rotation vector in degrees.

quat = quaternion(randn(1,4));
rotvecd(quat)

ans = 1×3

   96.6345 -119.0274   45.4312

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (degrees)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotation vectors, where each row
represents the [x y z] angles of the rotation vectors in degrees. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double
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Algorithms
All rotations in 3-D can be represented by four elements: a three-element axis of rotation and a
rotation angle. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation in degrees, and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Version History
Introduced in R2019b
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slerp
Spherical linear interpolation

Syntax
q0 = slerp(q1,q2,T)

Description
q0 = slerp(q1,q2,T) spherically interpolates between q1 and q2 by the interpolation coefficient
T. The function always chooses the shorter interpolation path between q1 and q2.

Examples

Interpolate Between Two Quaternions

Create two quaternions with the following interpretation:

1 a = 45 degree rotation around the z-axis
2 c = -45 degree rotation around the z-axis

a = quaternion([45,0,0],'eulerd','ZYX','frame');
c = quaternion([-45,0,0],'eulerd','ZYX','frame');

Call slerp with the quaternions a and c and specify an interpolation coefficient of 0.5.

interpolationCoefficient = 0.5;

b = slerp(a,c,interpolationCoefficient);

The output of slerp, b, represents an average rotation of a and c. To verify, convert b to Euler angles
in degrees.

averageRotation = eulerd(b,'ZYX','frame')

averageRotation = 1×3

     0     0     0

The interpolation coefficient is specified as a normalized value between 0 and 1, inclusive. An
interpolation coefficient of 0 corresponds to the a quaternion, and an interpolation coefficient of 1
corresponds to the c quaternion. Call slerp with coefficients 0 and 1 to confirm.

b = slerp(a,c,[0,1]);
eulerd(b,'ZYX','frame')

ans = 2×3

   45.0000         0         0

 slerp
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  -45.0000         0         0

You can create smooth paths between quaternions by specifying arrays of equally spaced
interpolation coefficients.

path = 0:0.1:1;

interpolatedQuaternions = slerp(a,c,path);

For quaternions that represent rotation only about a single axis, specifying interpolation coefficients
as equally spaced results in quaternions equally spaced in Euler angles. Convert
interpolatedQuaternions to Euler angles and verify that the difference between the angles in
the path is constant.

k = eulerd(interpolatedQuaternions,'ZYX','frame');
abc = abs(diff(k))

abc = 10×3

    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0

Alternatively, you can use the dist function to verify that the distance between the interpolated
quaternions is consistent. The dist function returns angular distance in radians; convert to degrees
for easy comparison.

def = rad2deg(dist(interpolatedQuaternions(2:end),interpolatedQuaternions(1:end-1)))

def = 1×10

    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000

SLERP Minimizes Great Circle Path

The SLERP algorithm interpolates along a great circle path connecting two quaternions. This
example shows how the SLERP algorithm minimizes the great circle path.

Define four quaternions:

1 q0 - quaternion indicating no rotation from the global frame
2 q179 - quaternion indicating a 179 degree rotation about the z-axis
3 q180 - quaternion indicating a 180 degree rotation about the z-axis
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4 q181 - quaternion indicating a 181 degree rotation about the z-axis

q0 = ones(1,'quaternion');

q179 = quaternion([179,0,0],'eulerd','ZYX','frame');

q180 = quaternion([180,0,0],'eulerd','ZYX','frame');

q181 = quaternion([181,0,0],'eulerd','ZYX','frame');

Use slerp to interpolate between q0 and the three quaternion rotations. Specify that the paths are
traveled in 10 steps.

T = linspace(0,1,10);

q179path = slerp(q0,q179,T);
q180path = slerp(q0,q180,T);
q181path = slerp(q0,q181,T);

Plot each path in terms of Euler angles in degrees.

q179pathEuler = eulerd(q179path,'ZYX','frame');
q180pathEuler = eulerd(q180path,'ZYX','frame');
q181pathEuler = eulerd(q181path,'ZYX','frame');

plot(T,q179pathEuler(:,1),'bo', ...
     T,q180pathEuler(:,1),'r*', ...
     T,q181pathEuler(:,1),'gd');
legend('Path to 179 degrees', ...
       'Path to 180 degrees', ...
       'Path to 181 degrees')
xlabel('Interpolation Coefficient')
ylabel('Z-Axis Rotation (Degrees)')
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The path between q0 and q179 is clockwise to minimize the great circle distance. The path between
q0 and q181 is counterclockwise to minimize the great circle distance. The path between q0 and
q180 can be either clockwise or counterclockwise, depending on numerical rounding.

Show Interpolated Quaternions on Sphere

Create two quaternions.

q1 = quaternion([75,-20,-10],'eulerd','ZYX','frame');
q2 = quaternion([-45,20,30],'eulerd','ZYX','frame');

Define the interpolation coefficient.

T = 0:0.01:1;

Obtain the interpolated quaternions.

quats = slerp(q1,q2,T);

Obtain the corresponding rotate points.

pts = rotatepoint(quats,[1 0 0]);

Show the interpolated quaternions on a unit sphere.

figure
[X,Y,Z] = sphere;
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surf(X,Y,Z,'FaceColor',[0.57 0.57 0.57])
hold on;

scatter3(pts(:,1),pts(:,2),pts(:,3))
view([69.23 36.60])
axis equal

Note that the interpolated quaternions follow the shorter path from q1 to q2.

Input Arguments
q1 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of them is 1.
Data Types: quaternion

q2 — Quaternion
scalar | vector | matrix | multidimensional array

 slerp

2-1411



Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: quaternion

T — Interpolation coefficient
scalar | vector | matrix | multidimensional array

Interpolation coefficient, specified as a scalar, vector, matrix, or multidimensional array of numbers
with each element in the range [0,1].

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: single | double

Output Arguments
q0 — Interpolated quaternion
scalar | vector | matrix | multidimensional array

Interpolated quaternion, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion spherical linear interpolation (SLERP) is an extension of linear interpolation along a
plane to spherical interpolation in three dimensions. The algorithm was first proposed in [1]. Given
two quaternions, q1 and q2, SLERP interpolates a new quaternion, q0, along the great circle that
connects q1 and q2. The interpolation coefficient, T, determines how close the output quaternion is to
either q1 and q2.

The SLERP algorithm can be described in terms of sinusoids:

q0 = sin (1− T)θ
sin θ q1 + sin Tθ

sin θ q2

where q1 and q2 are normalized quaternions, and θ is half the angular distance between q1 and q2.

Version History
Introduced in R2019b

References
[1] Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGGRAPH Computer

Graphics Vol. 19, Issue 3, 1985, pp. 245–254.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | meanrot

Objects
quaternion

Topics
“Lowpass Filter Orientation Using Quaternion SLERP”
“Rotations, Orientation, and Quaternions”
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times, .*
Element-wise quaternion multiplication

Syntax
quatC = A.*B

Description
quatC = A.*B returns the element-by-element quaternion multiplication of quaternion arrays.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the same order as the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the order pq. The rotation operator becomes pq ∗v pq , where v represents the object
to rotate in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Two Quaternion Vectors

Create two vectors, A and B, and multiply them element by element.

A = quaternion([1:4;5:8]);
B = A;
C = A.*B

C = 2x1 quaternion array
     -28 +   4i +   6j +   8k
    -124 +  60i +  70j +  80k

Multiply Two Quaternion Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by element.

A = reshape(quaternion(randn(9,4)),3,3);
B = reshape(quaternion(randn(9,4)),3,3);
C = A.*B

C = 3x3 quaternion array
     0.60169 +  2.4332i -  2.5844j + 0.51646k    -0.49513 +  1.1722i +  4.4401j -   1.217k      2.3126 + 0.16856i +  1.0474j -  1.0921k
     -4.2329 +  2.4547i +  3.7768j + 0.77484k    -0.65232 - 0.43112i -  1.4645j - 0.90073k     -1.8897 - 0.99593i +  3.8331j + 0.12013k
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     -4.4159 +  2.1926i +  1.9037j -  4.0303k     -2.0232 +  0.4205i - 0.17288j +  3.8529k     -2.9137 -  5.5239i -  1.3676j +  3.0654k

Note that quaternion multiplication is not commutative:

isequal(C,B.*A)

ans = logical
   0

Multiply Quaternion Row and Column Vectors

Create a row vector a and a column vector b, then multiply them. The 1-by-3 row vector and 4-by-1
column vector combine to produce a 4-by-3 matrix with all combinations of elements multiplied.

a = [zeros('quaternion'),ones('quaternion'),quaternion(randn(1,4))]

a = 1x3 quaternion array
           0 +       0i +       0j +       0k           1 +       0i +       0j +       0k     0.53767 +  1.8339i -  2.2588j + 0.86217k

b = quaternion(randn(4,4))

b = 4x1 quaternion array
      0.31877 +   3.5784i +   0.7254j -  0.12414k
      -1.3077 +   2.7694i - 0.063055j +   1.4897k
     -0.43359 -   1.3499i +  0.71474j +    1.409k
      0.34262 +   3.0349i -  0.20497j +   1.4172k

a.*b

ans = 4x3 quaternion array
            0 +        0i +        0j +        0k      0.31877 +   3.5784i +   0.7254j -  0.12414k      -4.6454 +   2.1636i +   2.9828j +   9.6214k
            0 +        0i +        0j +        0k      -1.3077 +   2.7694i - 0.063055j +   1.4897k      -7.2087 -   4.2197i +   2.5758j +   5.8136k
            0 +        0i +        0j +        0k     -0.43359 -   1.3499i +  0.71474j +    1.409k       2.6421 -     5.32i -   2.3841j -   1.3547k
            0 +        0i +        0j +        0k      0.34262 +   3.0349i -  0.20497j +   1.4172k      -7.0663 -  0.76439i -  0.86648j +   7.5369k

Input Arguments
A — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

 times, .*

2-1415



B — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion,

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:
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z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table.

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

Version History
Introduced in R2019b

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
prod | mtimes, *

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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transpose, .'
Transpose a quaternion array

Syntax
Y = quat.'

Description
Y = quat.' returns the non-conjugate transpose of the quaternion array, quat.

Examples

Vector Transpose

Create a vector of quaternions and compute its nonconjugate transpose.

quat = quaternion(randn(4,4))

quat = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat.'

quatTransposed = 1x4 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k       1.8339 -   1.3077i +   2.7694j - 0.063055k      -2.2588 -  0.43359i -   1.3499j +  0.71474k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Matrix Transpose

Create a matrix of quaternions and compute its nonconjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat.'

quatTransposed = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       1.8339 +  0.86217i -   1.3077j +  0.34262k
       3.5784 -   1.3499i +   0.7254j +  0.71474k       2.7694 +   3.0349i - 0.063055j -  0.20497k
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Input Arguments
quat — Quaternion array to transpose
vector | matrix

Quaternion array to transpose, specified as a vector or matrix of quaternions. transpose is defined
for 1-D and 2-D arrays. For higher-order arrays, use permute.
Data Types: quaternion

Output Arguments
Y — Transposed quaternion array
vector | matrix

Transposed quaternion array, returned as an N-by-M array, where quat was specified as an M-by-N
array.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ctranspose, '

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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uminus, -
Quaternion unary minus

Syntax
mQuat = -quat

Description
mQuat = -quat negates the elements of quat and stores the result in mQuat.

Examples

Negate Elements of Quaternion Matrix

Unary minus negates each part of a the quaternion. Create a 2-by-2 matrix, Q.

Q = quaternion(randn(2),randn(2),randn(2),randn(2))

Q = 2x2 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k      -2.2588 -  0.43359i -   1.3499j +  0.71474k
       1.8339 -   1.3077i +   2.7694j - 0.063055k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Negate the parts of each quaternion in Q.

R = -Q

R = 2x2 quaternion array
     -0.53767 -  0.31877i -   3.5784j -   0.7254k       2.2588 +  0.43359i +   1.3499j -  0.71474k
      -1.8339 +   1.3077i -   2.7694j + 0.063055k     -0.86217 -  0.34262i -   3.0349j +  0.20497k

Input Arguments
quat — Quaternion array
scalar | vector | matrix | multidimensional array

Quaternion array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
mQuat — Negated quaternion array
scalar | vector | matrix | multidimensional array

Negated quaternion array, returned as the same size as quat.
Data Types: quaternion
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
minus, -

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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zeros
Create quaternion array with all parts set to zero

Syntax
quatZeros = zeros('quaternion')
quatZeros = zeros(n,'quaternion')
quatZeros = zeros(sz,'quaternion')
quatZeros = zeros(sz1,...,szN,'quaternion')

quatZeros = zeros( ___ ,'like',prototype,'quaternion')

Description
quatZeros = zeros('quaternion') returns a scalar quaternion with all parts set to zero.

quatZeros = zeros(n,'quaternion') returns an n-by-n matrix of quaternions.

quatZeros = zeros(sz,'quaternion') returns an array of quaternions where the size vector,
sz, defines size(quatZeros).

quatZeros = zeros(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of
quaternions where sz1,…,szN indicates the size of each dimension.

quatZeros = zeros( ___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar Zero

Create a quaternion scalar zero.

quatZeros = zeros('quaternion')

quatZeros = quaternion
     0 + 0i + 0j + 0k

Square Matrix of Quaternions

Create an n-by-n array of quaternion zeros.

n = 3;
quatZeros = zeros(n,'quaternion')

quatZeros = 3x3 quaternion array
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
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     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k

Multidimensional Array of Quaternion Zeros

Create a multidimensional array of quaternion zeros by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers.

Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatZerosSyntax1 = zeros(dims,'quaternion')

quatZerosSyntax1 = 3x1x2 quaternion array
quatZerosSyntax1(:,:,1) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

quatZerosSyntax1(:,:,2) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalence of the two
syntaxes:

quatZerosSyntax2 = zeros(3,1,2,'quaternion');
isequal(quatZerosSyntax1,quatZerosSyntax2)

ans = logical
   1

Underlying Class of Quaternion Zeros

A quaternion is a four-part hyper-complex number used in three-dimensional representations. You can
specify the underlying data type of the parts as single or double. The default is double.

Create a quaternion array of zeros with the underlying data type set to single.

quatZeros = zeros(2,'like',single(1),'quaternion')

quatZeros = 2x2 quaternion array
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
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Verify the underlying class using the classUnderlying function.

classUnderlying(quatZeros)

ans = 
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value. If n is 0 or negative, then quatZeros
is returned as an empty matrix.
Example: zeros(4,'quaternion') returns a 4-by-4 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatZeros. If the size of any dimension is 0 or negative, then
quatZeros is returned as an empty array.
Example: zeros([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: zeros(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers.

• If the size of any dimension is 0, then quatZeros is returned as an empty array.
• If the size of any dimension is negative, then it is treated as 0.

Example: zeros(2,3,'quaternion') returns a 2-by-3 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatZeros — Quaternion zeros
scalar | vector | matrix | multidimensional array
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Quaternion zeros, returned as a quaternion or array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion zero is defined as
Q = 0 + 0i + 0j + 0k.
Data Types: quaternion

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ones

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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rateControl
Execute loop at fixed frequency

Description
The rateControl object enables you to run a loop at a fixed frequency. It also collects statistics
about the timing of the loop iterations. Use waitfor in the loop to pause code execution until the
next time step. The loop operates every DesiredPeriod seconds, unless the enclosed code takes
longer to operate. The object uses the OverrunAction property to determine how it handles longer
loop operation times. The default setting, 'slip', immediately executes the loop if LastPeriod is
greater than DesiredPeriod. Using 'drop' causes the waitfor method to wait until the next
multiple of DesiredPeriod is reached to execute the next loop.

Tip The scheduling resolution of your operating system and the level of other system activity can
affect rate execution accuracy. As a result, accurate rate timing is limited to 100 Hz for execution of
MATLAB code. To improve performance and execution speeds, use code generation.

Creation
Syntax
rateObj = rateControl(desiredRate)

Description

rateObj = rateControl(desiredRate) creates an object that operates loops at a fixed-rate
based on your system time and directly sets the DesireRate property.

Properties
DesiredRate — Desired execution rate
scalar

Desired execution rate of loop, specified as a scalar in Hz. When using waitfor, the loop operates
every DesiredRate seconds, unless the loop takes longer. It then begins the next loop based on the
specified OverrunAction.

DesiredPeriod — Desired time period between executions
scalar

Desired time period between executions, specified as a scalar in seconds. This property is equal to
the inverse of DesiredRate.

TotalElapsedTime — Elapsed time since construction or reset
scalar

Elapsed time since construction or reset, specified as a scalar in seconds.
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LastPeriod — Elapsed time between last two calls to waitfor
NaN (default) | scalar

Elapsed time between last two calls to waitfor, specified as a scalar. By default, LastPeriod is set
to NaN until waitfor is called for the first time. After the first call, LastPeriod equals
TotalElapsedTime.

OverrunAction — Method for handling overruns
'slip' (default) | 'drop'

Method for handling overruns, specified as one of these character vectors:

• 'drop' — waits until the next time interval equal to a multiple of DesiredPeriod
• 'slip' — immediately executes the loop again

Each code section calls waitfor at the end of execution.

Object Functions
waitfor Pause code execution to achieve desired execution rate
statistics Statistics of past execution periods
reset Reset Rate object

Examples

 rateControl
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Run Loop at Fixed Rate

Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the object
prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
    time = r.TotalElapsedTime;
    fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
    waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.003114
Iteration: 2 - Time Elapsed: 1.003618
Iteration: 3 - Time Elapsed: 2.000382
Iteration: 4 - Time Elapsed: 3.000483
Iteration: 5 - Time Elapsed: 4.001145
Iteration: 6 - Time Elapsed: 5.011602
Iteration: 7 - Time Elapsed: 6.005804
Iteration: 8 - Time Elapsed: 7.000292
Iteration: 9 - Time Elapsed: 8.000162
Iteration: 10 - Time Elapsed: 9.006431

Each iteration executes at a 1-second interval.

Get Statistics From Rate Object Execution

Create a rateControl object for running at 20 Hz.

r = rateControl(20);

Start a loop and control operation using the rateControl object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Get Rate object statistics after loop operation.

stats = statistics(r)

stats = struct with fields:
              Periods: [0.0599 0.0418 0.0629 0.0449 0.0456 0.0591 0.0449 0.0461 0.0599 0.0449 0.0455 0.0445 0.0605 0.0445 0.0598 0.0450 0.0451 0.0599 0.0449 0.0451 0.0599 0.0360 0.0550 0.0451 0.0609 0.0455 0.0446 0.0617 0.0443 0.0458]
           NumPeriods: 30
        AveragePeriod: 0.0501
    StandardDeviation: 0.0079
          NumOverruns: 0

Run Loop At Fixed Rate and Reset Rate Object

Create a rateControl object for running at 20 Hz.
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r = rateControl(2);

Start a loop and control operation using the Rate object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Display the rateControl object properties after loop operation.

disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 15.0287
          LastPeriod: 0.5118

Reset the object to restart the time statistics.

reset(r);
disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 0.0026
          LastPeriod: NaN

Version History
Introduced in R2016a

R2019b: rateControl was renamed
Behavior change in future release

The rateControl object was renamed from robotics.Rate. Use rateControl for all object
creation.

See Also
rosrate | waitfor | statistics | reset

Topics
“Execute Code at a Fixed-Rate”
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reset
Reset Rate object

Syntax
reset(rate)

Description
reset(rate) resets the state of the Rate object, including the elapsed time and all statistics about
previous periods. reset is useful if you want to run multiple successive loops at the same rate, or if
the object is created before the loop is executed.

Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired rate and other
information about the execution. See rateControl for more information.

Examples

Run Loop At Fixed Rate and Reset Rate Object

Create a rateControl object for running at 20 Hz.

r = rateControl(2);

Start a loop and control operation using the Rate object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Display the rateControl object properties after loop operation.

disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 15.0287
          LastPeriod: 0.5118

Reset the object to restart the time statistics.
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reset(r);
disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 0.0026
          LastPeriod: NaN

Version History
Introduced in R2016a

See Also
rateControl | waitfor

Topics
“Execute Code at a Fixed-Rate”

 reset
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statistics
Statistics of past execution periods

Syntax
stats = statistics(rate)

Description
stats = statistics(rate) returns statistics of previous periods of code execution. stats is a
struct with these fields: Periods, NumPeriods, AveragePeriod, StandardDeviation, and
NumOverruns.

Here is a sample execution graphic using the default setting, 'slip', for the OverrunAction
property in the Rate object. See OverrunAction for more information on overrun code execution.

The output of statistics is:

stats = 

              Periods: [0.7 0.11 0.7 0.11]
           NumPeriods: 4
        AveragePeriod: 0.09
    StandardDeviation: 0.0231
          NumOverruns: 2

Input Arguments
rate — Rate object
handle

Rate object, specified as an object handle. This object contains the information for the DesiredRate
and other info about the execution. See rateControl for more information.

Output Arguments
stats — Time execution statistics
structure
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Time execution statistics, returned as a structure. This structure contains the following fields:

• Period — All time periods (returned in seconds) used to calculate statistics as an indexed array.
stats.Period(end) is the most recent period.

• NumPeriods — Number of elements in Periods
• AveragePeriod — Average time in seconds
• StandardDeviation — Standard deviation of all periods in seconds, centered around the mean

stored in AveragePeriod
• NumOverruns — Number of periods with overrun

Examples

Get Statistics From Rate Object Execution

Create a rateControl object for running at 20 Hz.

r = rateControl(20);

Start a loop and control operation using the rateControl object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Get Rate object statistics after loop operation.

stats = statistics(r)

stats = struct with fields:
              Periods: [0.0599 0.0418 0.0629 0.0449 0.0456 0.0591 0.0449 0.0461 0.0599 0.0449 0.0455 0.0445 0.0605 0.0445 0.0598 0.0450 0.0451 0.0599 0.0449 0.0451 0.0599 0.0360 0.0550 0.0451 0.0609 0.0455 0.0446 0.0617 0.0443 0.0458]
           NumPeriods: 30
        AveragePeriod: 0.0501
    StandardDeviation: 0.0079
          NumOverruns: 0

Version History
Introduced in R2016a

See Also
rateControl | waitfor

Topics
“Execute Code at a Fixed-Rate”
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waitfor
Package: robotics

Pause code execution to achieve desired execution rate

Syntax
waitfor(rate)
numMisses = waitfor(rate)

Description
waitfor(rate) pauses execution until the code reaches the desired execution rate. The function
accounts for the time that is spent executing code between waitfor calls.

numMisses = waitfor(rate) returns the number of iterations missed while executing code
between calls.

Examples

Run Loop at Fixed Rate

Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the object
prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
    time = r.TotalElapsedTime;
    fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
    waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.003114
Iteration: 2 - Time Elapsed: 1.003618
Iteration: 3 - Time Elapsed: 2.000382
Iteration: 4 - Time Elapsed: 3.000483
Iteration: 5 - Time Elapsed: 4.001145
Iteration: 6 - Time Elapsed: 5.011602
Iteration: 7 - Time Elapsed: 6.005804
Iteration: 8 - Time Elapsed: 7.000292
Iteration: 9 - Time Elapsed: 8.000162
Iteration: 10 - Time Elapsed: 9.006431

Each iteration executes at a 1-second interval.
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Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired rate and other
information about the execution. See rateControl for more information.

Output Arguments
numMisses — Number of missed task executions
scalar

Number of missed task executions, returned as a scalar. waitfor returns the number of times the
task was missed in the Rate object based on the LastPeriod time. For example, if the desired rate
is 1 Hz and the last period was 3.2 seconds, numMisses returns 3.

Version History
Introduced in R2016a

See Also
rateControl

Topics
“Execute Code at a Fixed-Rate”
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reedsSheppConnection
Reeds-Shepp path connection type

Description
The reedSheppConnection object holds information for computing a reedsSheppPathSegment
object to connect between poses. A Reeds-Shepp path segment connects two poses as a sequence of
five motions. The motion options are:

• Straight
• Left turn at maximum steer
• Right turn at maximum steer
• No movement

A Reeds-Shepp path segment supports both forward and backward motion.

Use this connection object to define parameters for a vehicle motion model, including the minimum
turning radius and options for path types. To generate a path segment between poses using this
connection type, call the connect function.

Creation

Syntax
reedsConnObj = reedsSheppConnection
reedsConnObj = reedsSheppConnection(Name,Value)

Description

reedsConnObj = reedsSheppConnection creates an object using default property values.

reedsConnObj = reedsSheppConnection(Name,Value) specifies property values using name-
value pairs. To set multiple properties, specify multiple name-value pairs.

Properties
MinTurningRadius — Minimum turning radius
1 (default) | positive scalar in meters

Minimum turning radius for the vehicle, specified as a positive scalar in meters. The minimum
turning radius is for the smallest circle the vehicle can make with maximum steer in a single
direction.
Data Types: double

DisabledPathTypes — Path types to disable
{} (default) | vector of string scalars | cell array of character vectors
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Path types to disable, specified as a vector of string scalars or cell array of character vectors.

Motion Type Description
"Sp","Sn" Straight (p = forward, n = reverse)
"Lp","Ln" Left turn at the maximum steering angle of the

vehicle (p = forward, n = reverse)
"Rp","Rn" Right turn at the maximum steering angle of the

vehicle (p = forward, n = reverse)
"N" No motion

If a path segment has fewer than five motion types, the remaining elements are "N" (no motion).

To see all available path types, see the AllPathTypes property.
Example: ["LpSnLp","LnSnRpSn","LnSnRpSnLp"]
Data Types: cell

AllPathTypes — All possible path types
cell array of character vectors

This property is read-only.

All possible path types, specified as a cell array of character vectors. This property lists all types. To
disable certain types, specify types from this list in DisabledPathTypes.

For Reeds-Shepp connections, there are 44 possible combinations of motion types.
Data Types: cell

ForwardCost — Cost multiplier to travel forward
1 (default) | positive numeric scalar

Cost multiple to travel forward, specified as a positive numeric scalar. Increase this property to
penalize forward motion.
Data Types: double

ReverseCost — Cost multiplier to travel in reverse
1 (default) | positive numeric scalar

Cost multiple to travel in reverse, specified as a positive numeric scalar. Increase this property to
penalize reverse motion.
Data Types: double

Object Functions
connect Connect poses for given connection type

Examples
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Connect Poses Using ReedsShepp Connection Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})

Modify Connection Types for Reeds-Shepp Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.
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startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path. Notice the direction of the turns.

show(pathSegObj{1})

pathSegObj{1}.MotionTypes

ans = 1x5 cell
    {'L'}    {'R'}    {'L'}    {'N'}    {'N'}

pathSegObj{1}.MotionDirections

ans = 1×5

     1    -1     1     1     1

Disable this specific motion sequence in a new connection object. Reduce the MinTurningRadius if
the robot is more maneuverable. Increase the reverse cost to reduce the likelihood of reverse
directions being used. Connect the poses again to get a different path.
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reedsConnObj = reedsSheppConnection('DisabledPathTypes',{'LpRnLp'});
reedsConnObj.MinTurningRadius = 0.5;
reedsConnObj.ReverseCost = 5;

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);
pathSegObj{1}.MotionTypes

ans = 1x5 cell
    {'L'}    {'S'}    {'L'}    {'N'}    {'N'}

show(pathSegObj{1})
xlim([0 1.5])
ylim([0 1.5])

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
reedsSheppPathSegment | dubinsConnection | dubinsPathSegment

Functions
connect | interpolate | show
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reedsSheppPathSegment
Reeds-Shepp path segment connecting two poses

Description
The reedSheppPathSegment object holds information for a Reeds-Shepp path segment to connect
between poses. A Reeds-Shepp path segment connects two poses as a sequence of five motion types.
The motion options are:

• Straight
• Left turn at maximum steer
• Right turn at maximum steer
• No movement

Creation
To generate a reedSheppPathSegment object, use the connect function with a
reedsSheppConnection object:

reedsPathSegObj = connect(connectionObj,start,goal) connects the start and goal poses
using the specified connection type object.

To specifically define a path segment:

reedsPathSegObj =
reedsSheppPathSegment(connectionObj,start,goal,motionLengths,motionTypes)
specifies the Reeds-Shepp connection type, the start and goal poses, and the corresponding motion
lengths and types. These values are set to the corresponding properties in the object.

Properties
MinTurningRadius — Minimum turning radius of vehicle
positive scalar

This property is read-only.

Minimum turning radius of the vehicle, specified as a positive scalar in meters. This value
corresponds to the radius of the turning circle at the maximum steering angle of the vehicle.
Data Types: double

StartPose — Initial pose of vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle at the start of the path segment, specified as an [x, y, Θ] vector. x and y are
in meters. Θ is in radians.
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Data Types: double

GoalPose — Goal pose of vehicle
[x, y, Θ] vector

This property is read-only.

Goal pose of the vehicle at the end of the path segment, specified as an [x, y, Θ] vector. x and y are in
meters. Θ is in radians.
Data Types: double

MotionLengths — Length of each motion
five-element numeric vector

This property is read-only.

Length of each motion in the path segment, specified as a five-element numeric vector in meters.
Each motion length corresponds to a motion type specified in MotionTypes.
Data Types: double

MotionTypes — Type of each motion
five-element string cell array

This property is read-only.

Type of each motion in the path segment, specified as a five-element string cell array.

Motion Type Description
"S" Straight (forward, p or reverse, n)
"L" Left turn at the maximum steering angle of the

vehicle (forward, p or reverse, n)
"R" Right turn at the maximum steering angle of the

vehicle (forward, p or reverse, n)
"N" No motion

If a path segment has fewer than five motion types, the remaining elements are "N" (no motion).
Example: {"L","S","R","L","R"}
Data Types: cell

MotionDirections — Direction of each motion
five-element vector of 1s (forward motion) and –1s (reverse motion)

This property is read-only.

Direction of each motion in the path segment, specified as a five-element vector of 1s (forward
motion) and –1s (reverse motion). Each motion direction corresponds to a motion length specified in
MotionLengths and a motion type specified in MotionTypes.

When no motion occurs, that is, when a MotionTypes value is "N", then the corresponding
MotionDirections element is 1.
Example: [-1 1 -1 1 1]
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Data Types: double

Length — Length of path segment
positive scalar

This property is read-only.

Length of the path segment, specified as a positive scalar in meters. This length is just a sum of the
elements in MotionLengths.
Data Types: double

Object Functions
interpolate Interpolate poses along path segment
show Visualize path segment

Examples

Connect Poses Using ReedsShepp Connection Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Version History
Introduced in R2019b

References
[1] Reeds, J. A., and L. A. Shepp. "Optimal Paths for a Car That Goes Both Forwards and Backwards."

Pacific Journal of Mathematics. Vol. 145, Number 2, 1990, pp. 367–393.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
reedsSheppConnection | dubinsConnection | dubinsPathSegment

Functions
interpolate | show | connect
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referencePathFrenet
Smooth reference path fit to waypoints

Description
The referencePathFrenet object fits a smooth, piecewise, continuous curve to a set of waypoints
given as [x y] or [x y theta]. After fitting, points along the curve, the path points are expressed
as [x y theta kappa dkappa s], where:

• x y and theta— SE(2) state expressed in global coordinates, with x and y in meters and theta in
radians

• kappa — Curvature, or inverse of the radius, in m-1

• dkappa — Derivative of curvature with respect to arc length in m-2

• s — Arc length, or distance along path from path origin, in meters

Using this object, convert trajectories between global and Frenet coordinate systems, interpolate
states along the path based on arc length, and query the closest point on a path from a global state.

The object expresses Frenet states as a vector of form [S dS ddS L dL ddL], where S is the arc
length and L is the perpendicular deviation from the direction of the reference path. Derivatives of S
are relative to time. Derivatives of L are relative to the arc length, S.
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Creation

Syntax
refPathObj = referencePathFrenet(waypoints)
refPathObj = referencePathFrenet( ___ ,Name,Value)

Description

refPathObj = referencePathFrenet(waypoints) fits a piecewise, continuous set of curves to
the specified waypoints. The waypoints argument sets the Waypoints property.

refPathObj = referencePathFrenet( ___ ,Name,Value) sets properties using one or more
name-value pair arguments in addition to the input arguments in the previous syntax. You can specify
the DiscretizationDistance and MaxNumWaypoints properties as name-value arguments.

Properties
Waypoints — Presampled points along path
P-by-2 numeric matrix | P-by-3 numeric matrix

Presampled points along the path, specified as a P-by-2 matrix with rows of form [x y] or P-by-3
matrix with rows of form [x y theta]. Specify x and y in meters and theta in radians. P is the
number of presampled points, and must be greater than or equal to two.
Data Types: single | double

PathLength — Total arclength along the path
nonnegative scalar

This property is read-only.

Total arclength along the path in meters.
Data Types: single | double

SegmentParameters — Clothoid parameters at start of segments
N-by-6 matrix

This property is read-only.

Clothoid parameters at start of segments, specified as an N-by-6 matrix where N is the total number
of waypoints. Each row contains the parameters of the clothoidal segment to connect to the next
consecutive waypoint and is in the form [x y theta kappa dkappa s] where:

• x y and theta — SE(2) state expressed in global coordinates, with x and y in meters and theta in
radians

• kappa — Curvature, or inverse of the radius, in m-1

• dkappa — Derivative of curvature with respect to arc length in m-2

• s — Arc length, or distance along path from path origin, in meters

Data Types: single | double
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DiscretizationDistance — Arc length between interpolated path points
0.05 (default) | positive scalar

Arc length between interpolated path points, specified as a positive scalar in meters. The object uses
interpolated path points to accelerate performance of the transformation functions frenet2global
and global2frenet. A smaller discretization distance can improve accuracy at the expense of
memory and computational efficiency.
Example: refPath = referencePathFrenet(waypoints,'DiscretizationDistance',0.4)
Data Types: single | double

MaxNumWaypoints — Maximum waypoints allowed in path
Inf (default) | positive integer

Maximum number of waypoints allowed in the path, specified as either Inf for resizeable path or a
positive integer to enforce a static limit.

If MaxNumWaypoints is set to Inf, to generate code, DynamicMemoryAllocation must be set to
'on'.
Example: refPath = referencePathFrenet(waypoints,'MaxNumWaypoints',10)
Data Types: single | double

Object Functions
closestPoint Find closest point on reference path to global point
closestPointsToSequence Projects sequence of points onto path
closestProjections Find orthogonal projections between path tangent vector and query point
curvature Return curvature at arclength
changeInCurvature Return change-in-curvature at arclength
frenet2global Convert Frenet states to global states
global2frenet Convert global states to Frenet states
interpolate Interpolate reference path at provided arc lengths
position Return xy-position at arclength
tangentAngle Return tangent angle at arclength
show Display reference path in figure

Examples

Generate Alternative Trajectories for Reference Path

Generate alternative trajectories for a reference path using Frenet coordinates. Specify different
initial and terminal states for your trajectories. Tune your states based on the generated trajectories.

Generate a reference path from a set of waypoints. Create a trajectoryGeneratorFrenet object
from the reference path.

waypoints = [0 0; ...
    50 20; ...
    100 0; ...
    150 10];
refPath = referencePathFrenet(waypoints);
connector = trajectoryGeneratorFrenet(refPath);
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Generate a five-second trajectory between the path origin and a point 30 m down the path as Frenet
states.

initState = [0 0 0 0 0 0];  % [S ds ddS L dL ddL]
termState = [30 0 0 0 0 0]; % [S ds ddS L dL ddL]
[~,trajGlobal] = connect(connector,initState,termState,5);

Display the trajectory in global coordinates.

show(refPath);
hold on
axis equal
plot(trajGlobal.Trajectory(:,1),trajGlobal.Trajectory(:,2),'b')
legend(["Waypoints","Reference Path","Trajectory to 30m"])

Create a matrix of terminal states with lateral deviations between –3 m and 3 m. Generate
trajectories that cover the same arc length in 10 seconds, but deviate laterally from the reference
path. Display the new alternative paths.

termStateDeviated = termState + ([-3:3]' * [0 0 0 1 0 0]);
[~,trajGlobal] = connect(connector,initState,termStateDeviated,10);

clf
show(refPath);
hold on
axis equal
for i = 1:length(trajGlobal)
    plot(trajGlobal(i).Trajectory(:,1),trajGlobal(i).Trajectory(:,2),'g')
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end
legend(["Waypoints","Reference Path","Alternative Trajectories"])
hold off

Specify a new terminal state to generate a new trajectory. This trajectory is not desirable because it
requires reverse motion to achieve a lateral velocity of 10 m/s.

newTermState = [5 10 0 5 0 0];
[~,newTrajGlobal] = connect(connector,initState,newTermState,3);

clf
show(refPath);
hold on
axis equal
plot(newTrajGlobal.Trajectory(:,1),newTrajGlobal.Trajectory(:,2),'b');
legend(["Waypoint","Reference Path","New Trajectory"])
hold off
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Relax the restriction on the longitudinal state by specifying an arc length of NaN. Generate and
display the trajectory again. The new position shows a good alternative trajectory that deviates off
the reference path.

relaxedTermState = [NaN 10 0 5 0 0];
[~,trajGlobalRelaxed] = connect(connector,initState,relaxedTermState,3);

clf
show(refPath);
hold on
axis equal
plot(trajGlobalRelaxed.Trajectory(:,1),trajGlobalRelaxed.Trajectory(:,2),'g');
hold off
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Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Starting in MATLAB R2022a, default behavior for referencePathFrenet has changed which may
result in backwards compatibility issues. referencePathFrenet now supports fixed-size code
generation (DynamicMemoryAllocation="off"). To restore previous behavior, the
MaxNumWaypoints property and DynamicMemoryAllocation must be set to Inf and 'on'
respectively.

• If MaxNumWaypoints is specified, the returned path is variably-sized but the maximum size of the
path is set is by the MaxNumWaypoints property, regardless of DynamicMemoryAllocation.

• If DynamicMemoryAllocation is set to 'on' and:

• If waypoints are compile-time constant, then the returned path is fixed-size.
• If waypoints are variably-sized, then the returned path is variably-sized and unbounded.

• If DynamicMemoryAllocation is set to 'on' and:
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• If waypoints are fixed-sized, then the returned path is fixed-size.
• If waypoints are variably sized without specifying MaxNumWaypoints, then the path is invalid

and causes an error.

See Also
Objects
trajectoryGeneratorFrenet | navPath

Functions
closestPoint | frenet2global | global2frenet | interpolate | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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changeInCurvature
Return change-in-curvature at arclength

Syntax
dkappa = changeInCurvature(refPath,S)

Description
dkappa = changeInCurvature(refPath,S) calculates the change-in-curvature with respect to
change-in-arclength, dkappa, of the reference path at a given arclength, S.

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

S — Path arclengths
N-element column vector

Path arclengths, specified as an N-element column vector in meters, where N is the total number of
desired arclengths to calculate.

Output Arguments
dkappa — Change-in-curvature angles
N-element vector

Change-in-curvature angles, specified as an N-element vector in radians, where N is the total number
of desired arclengths to calculate.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath
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Functions
frenet2global | global2frenet | closestPoint | closestPointsToSequence |
closestProjections | curvature | tangentAngle | interpolate | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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closestPoint
Find closest point on reference path to global point

Syntax
pathPoints = closestPoint(refPath,points)
[pathPoints,inWindow] = closestPoint(refPath,points)
[_] = closestPoint(refPath,points,searchWindow)

Description
pathPoints = closestPoint(refPath,points) finds the closest point on the reference path to
each of the specified (x,y)-positions points.

[pathPoints,inWindow] = closestPoint(refPath,points) optionally returns a logical
vector inWindow, specifying whether each point for the corresponding xy coordinate in points is
projected within the search window..

[_] = closestPoint(refPath,points,searchWindow) optionally accepts a nondecreasing row
vector searchWindow, which defines the interval of the path to use to find the closest points.

Examples

Generate Trajectory from Reference Path

Generate a reference path from a set of waypoints.

waypoints = [0 0; 50 20; 100 0; 150 10];
refPath = referencePathFrenet(waypoints);

Create a trajectoryGeneratorFrenet object from the reference path.

connector = trajectoryGeneratorFrenet(refPath);

Generate a five-second trajectory between the path origin and a point 30 meters down the path as
Frenet states.

initCartState = refPath.SegmentParameters(1,:);
initFrenetState = global2frenet(refPath,initCartState);
termFrenetState = initFrenetState + [30 zeros(1,5)];
frenetTraj = connect(connector,initFrenetState,termFrenetState,5);

Convert the trajectory to the global states.

globalTraj = frenet2global(refPath,frenetTraj.Trajectory);

Display the reference path and the trajectory.

show(refPath);
axis equal
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hold on
plot(globalTraj(:,1),globalTraj(:,2),'b')

Specify global points and find the closest points on reference path.

globalPoints = waypoints(2:end,:) + [20 -50];
nearestPathPoint = closestPoint(refPath,globalPoints);

Display the global points and the closest points on reference path.

plot(globalPoints(:,1),globalPoints(:,2),'r*','MarkerSize',10)
plot(nearestPathPoint(:,1),nearestPathPoint(:,2),'b*','MarkerSize',10)

Interpolate between the arc lengths of the first two closest points along the reference path.

arclengths = linspace(nearestPathPoint(1,6),nearestPathPoint(2,6),10);
pathStates = interpolate(refPath,arclengths);

Display the interpolated path points.

plot(pathStates(:,1),pathStates(:,2),'g')
legend(["Waypoints","Reference Path","Trajectory to 30m",...
        "Global Points","Closest Points","Interpolated Path Points"])
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Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

points — Global points
P-by-2 numeric matrix

Global points, specified as a P-by-2 numeric matrix with rows of the form [x y]. P is the number of
points. Positions are in meters.

searchWindow — Search window
two-element row vector

Search window on path to determine closest points, specified as an two-element row vector.

Output Arguments
pathPoints — Closest points on reference path
N-by-6 numeric matrix

Closest points on the reference path , returned as an N-by-6 numeric matrix with rows of form [x y
theta kappa dkappa s], where:

• x y and theta — SE(2) state expressed in global coordinates, with x and y in meters and theta in
radians

• kappa — Curvature, or inverse of the radius, in m-1

• dkappa — Derivative of curvature with respect to arc length in m-2

• s — Arc length, or distance along path from path origin, in meters

N is the number of points sampled along the reference path.

inWindow — Indicator of points being in search window
N-element logical column vector

Indication whether each point nearest to the corresponding xy coordinate in points, is projected
within the search window, returned as an N-element logical column vector, where N is the number of
points in points. Points being projected within the search window are true, or false if they lie at
the end of a window.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath

Functions
frenet2global | global2frenet | closestPointsToSequence | closestProjections |
curvature | changeInCurvature | tangentAngle | interpolate | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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closestPointsToSequence
Projects sequence of points onto path

Syntax
pathPoints = closestPointsToSequence(refPath,points,initWindow)
[pathPoints,inWindow] = closestPointsToSequence(refPath,points,initWindow)

Description
pathPoints = closestPointsToSequence(refPath,points,initWindow) uses the closest
point within a sequence of points, points, to be within the valid search window, initWindow. For
each point in Points, the search window is centered at the previous point.

[pathPoints,inWindow] = closestPointsToSequence(refPath,points,initWindow)
optionally returns a logical vector inWindow, specifying whether each point for the corresponding xy
coordinate in points is projected within the search window.

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

points — Global points
P-by-2 numeric matrix

Global points, specified as a P-by-2 numeric matrix with rows of the form [x y]. P is the number of
points. Positions are in meters.

initWindow — Initial search window
two-element row vector

Initial search window, specified as a two-element row vector in the form [minimum_bound
maximum_bound] .

Output Arguments
pathPoints — Closest points on reference path
N-by-6 numeric matrix

Closest points on the reference path , returned as an N-by-6 numeric matrix with rows of form [x y
theta kappa dkappa s], where:

• x y and theta — SE(2) state expressed in global coordinates, with x and y in meters and theta in
radians

• kappa — Curvature, or inverse of the radius, in m-1
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• dkappa — Derivative of curvature with respect to arc length in m-2

• s — Arc length, or distance along path from path origin, in meters

N is the number of points sampled along the reference path.

inWindow — Indicator of points being in search window
N-element logical column vector

Indication whether each point nearest to the corresponding xy coordinate in points, is projected
within the search window, returned as an N-element logical column vector, where N is the number of
points in points. Points being projected within the search window are true, or false if they lie at
the end of a window.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath

Functions
frenet2global | global2frenet | closestPoint | closestProjections | curvature |
changeInCurvature | tangentAngle | interpolate | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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closestProjections
Find orthogonal projections between path tangent vector and query point

Syntax
[arclengths,distances] = closestProjections(refPath,points)
[ ___ ,projPoints] = closestProjections(refPath,points)
[ ___ ] = closestProjections(refPath,points,bestN)
[ ___ ] = closestProjections(refPath,points,intervals)
[ ___ ] = closestProjections(refPath,points,intervals,bestN)

Description
[arclengths,distances] = closestProjections(refPath,points) attempts to project
each xy point in the points matrix, onto each clothoid segment contained in the reference path,
refPath, such that the projection vector is orthogonal to the path tangent-angle. Returns closest
orthogonal projection between the curve and query point in each segment as a pair of two cell arrays,
arclengths and distances containing the arclengths and distances respectively.

[ ___ ,projPoints] = closestProjections(refPath,points) optionally returns the
projected points, projPoints as a cell array containing path data evaluated at the corresponding
arclengths element.

[ ___ ] = closestProjections(refPath,points,bestN) returns the nearest projections,
bestNfor each xy point in points.

[ ___ ] = closestProjections(refPath,points,intervals) accepts an optional matrix of
arclengths intervals, intervals, where each row contains a lower and upper arclength bounds.

[ ___ ] = closestProjections(refPath,points,intervals,bestN) returns up to the
nearest projections bestN for each xy point in points.

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

points — Global points
P-by-2 numeric matrix

Global points, specified as a P-by-2 numeric matrix with rows of the form [x y]. P is the number of
points. Positions are in meters.

bestN — Best N projections
scalar in the range [1,N]

Best N projections, specified as a scalar in the range [1,N], where N is the number of segments in the
path.
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intervals — Arclength intervals
N-by-2 matrix

Arclength intervals, specified as a N-by-2 matrix, where each row is of the form [minimum_arclength,
maximum_arclength] in meters, and N is the number of segments in the path.

Output Arguments
arclengths — Arclengths between curve and query points
M-element cell array

Arclengths between curve and query points, returned as an M-element cell array, where M is the
number of query points in the points input. Each cell contains a P-element column vector, where P is
in the range [0,N] and N is the number of segments in the path.

distances — Distances between curve and query points
M-element cell array

Distances between curve and query points, returned as an M-element cell array, where M is the
number of query points in the points input. Each cell contains a P-element column vector, where P is
in the range [0,N] and N is the number of segments in the path.

projPoints — Projected points
M-element cell array

Projected points, returned as an M-element cell array, where M is the number of query points in the
points input. Each cell contains a P-by-6 matrix, where P is in the range [0,N] and each row is in the
form [x y theta k dk s]. x, y, theta, k, dk, s, are the x and y positions, tangent angle, curvature, change
in curvature, at the arclength, s, respectively.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath

Functions
frenet2global | global2frenet | closestPoint | closestPointsToSequence | curvature |
changeInCurvature | tangentAngle | interpolate | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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curvature
Return curvature at arclength

Syntax
kappa = curvature(refPath,S)

Description
kappa = curvature(refPath,S) calculates the curvature angle, kappa of the reference path at a
given arclength, S.

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

S — Path arclengths
N-element column vector

Path arclengths, specified as an N-element column vector in meters, where N is the total number of
desired arclengths to calculate.

Output Arguments
kappa — Curvature angles
N-element vector

Change-in-curvature angles, specified as an N-element vector in radians, where N is the total number
of desired arclengths to calculate.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath
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Functions
frenet2global | global2frenet | closestPoint | closestPointsToSequence |
closestProjections | changeInCurvature | tangentAngle | interpolate | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”

 curvature

2-1465



frenet2global
Convert Frenet states to global states

Syntax
globalState = frenet2global(refPath,frenetState)
globalState = frenet2global(refPath,frenetState,latTimeDerivatives)

Description
globalState = frenet2global(refPath,frenetState) converts Frenet trajectory states to
global states.

globalState = frenet2global(refPath,frenetState,latTimeDerivatives) accepts
latTimeDerivatives containing 1st and 2nd order derivatives of lateral deviation with respect to
time and a flag indicating if the heading should flip during the conversion to global coordinates.

Examples

Generate Trajectory from Reference Path

Generate a reference path from a set of waypoints.

waypoints = [0 0; 50 20; 100 0; 150 10];
refPath = referencePathFrenet(waypoints);

Create a trajectoryGeneratorFrenet object from the reference path.

connector = trajectoryGeneratorFrenet(refPath);

Generate a five-second trajectory between the path origin and a point 30 meters down the path as
Frenet states.

initCartState = refPath.SegmentParameters(1,:);
initFrenetState = global2frenet(refPath,initCartState);
termFrenetState = initFrenetState + [30 zeros(1,5)];
frenetTraj = connect(connector,initFrenetState,termFrenetState,5);

Convert the trajectory to the global states.

globalTraj = frenet2global(refPath,frenetTraj.Trajectory);

Display the reference path and the trajectory.

show(refPath);
axis equal
hold on
plot(globalTraj(:,1),globalTraj(:,2),'b')

Specify global points and find the closest points on reference path.
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globalPoints = waypoints(2:end,:) + [20 -50];
nearestPathPoint = closestPoint(refPath,globalPoints);

Display the global points and the closest points on reference path.

plot(globalPoints(:,1),globalPoints(:,2),'r*','MarkerSize',10)
plot(nearestPathPoint(:,1),nearestPathPoint(:,2),'b*','MarkerSize',10)

Interpolate between the arc lengths of the first two closest points along the reference path.

arclengths = linspace(nearestPathPoint(1,6),nearestPathPoint(2,6),10);
pathStates = interpolate(refPath,arclengths);

Display the interpolated path points.

plot(pathStates(:,1),pathStates(:,2),'g')
legend(["Waypoints","Reference Path","Trajectory to 30m",...
        "Global Points","Closest Points","Interpolated Path Points"])

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.
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frenetState — States in Frenet coordinate frame
P-by-6 numeric matrix

States in the Frenet coordinate frame, returned as a P-by-6 numeric matrix with rows of form [S dS
ddS L dL ddL], where S is the arc length and L is the perpendicular deviation from the direction of
the reference path. Derivatives of S are relative to time. Derivatives of L are relative to the arc
length, S. P is the total number of Frenet states.

latTimeDerivatives — Lateral time derivatives
N-by-3 matrix

Lateral time derivatives, specified as an N-by-3 matrix where each row is of the form [dL/dt ddL/dt^2
invertHeading] and N is the total number of points in points. Each row contains the 1st and 2nd
order time derivatives of lateral deviation and a flag, invertHeading, which indicates whether the
heading should be flipped when converting to global coordinates (true) or not (false).

Note If defining latTimeDerivatives without the use of global2frenet, the following rules
should be followed:

1 The invertHeading flag should be true when:

a The vehicle is moving in reverse (speed is less than 0)
b The vehicle is stationary (speed is equal to 0), and the vehicle is facing away from the path's

tangent vector. i.e. cos(|tangentAngle(obj,S)-thetaExpected|) < 0
2 If 1b is true, then dL/dS must be negated.

Output Arguments
globalState — States in global coordinate frame
P-by-6 numeric matrix

States in the global coordinate frame, specified as a P-by-6 numeric matrix with rows of form [x y
theta kappa speed accel], where:

• x y and theta –– SE(2) state expressed in global coordinates, with x and y in meters and theta in
radians.

• kappa –– Curvature, or inverse of the radius, in m-1.
• speed –– Speed in the theta direction in m/s.
• accel –– Acceleration in the theta direction in m/s2.

P is the total number of Global states.

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath

Functions
global2frenet | closestPoint | closestPointsToSequence | closestProjections |
curvature | changeInCurvature | tangentAngle | interpolate | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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global2frenet
Convert global states to Frenet states

Syntax
frenetState = global2frenet(refPath,globalState)
[ ___ ,latTimeDerivatives] = global2frenet(refPath,globalState)
[ ___ ] = global2frenet(refPath,globalState,sFrame)

Description
frenetState = global2frenet(refPath,globalState) converts global states to Frenet
trajectory states.

[ ___ ,latTimeDerivatives] = global2frenet(refPath,globalState) returns
latTimeDerivatives containing 1st and 2nd order derivatives of lateral deviation with respect to
time and a flag indicating if the heading should flip when converting to global coordinates.

[ ___ ] = global2frenet(refPath,globalState,sFrame) accepts a vector of arclengths,
sFrame at which the Frenet frame should be centered at.

Examples

Generate Trajectory from Reference Path

Generate a reference path from a set of waypoints.

waypoints = [0 0; 50 20; 100 0; 150 10];
refPath = referencePathFrenet(waypoints);

Create a trajectoryGeneratorFrenet object from the reference path.

connector = trajectoryGeneratorFrenet(refPath);

Generate a five-second trajectory between the path origin and a point 30 meters down the path as
Frenet states.

initCartState = refPath.SegmentParameters(1,:);
initFrenetState = global2frenet(refPath,initCartState);
termFrenetState = initFrenetState + [30 zeros(1,5)];
frenetTraj = connect(connector,initFrenetState,termFrenetState,5);

Convert the trajectory to the global states.

globalTraj = frenet2global(refPath,frenetTraj.Trajectory);

Display the reference path and the trajectory.

show(refPath);
axis equal
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hold on
plot(globalTraj(:,1),globalTraj(:,2),'b')

Specify global points and find the closest points on reference path.

globalPoints = waypoints(2:end,:) + [20 -50];
nearestPathPoint = closestPoint(refPath,globalPoints);

Display the global points and the closest points on reference path.

plot(globalPoints(:,1),globalPoints(:,2),'r*','MarkerSize',10)
plot(nearestPathPoint(:,1),nearestPathPoint(:,2),'b*','MarkerSize',10)

Interpolate between the arc lengths of the first two closest points along the reference path.

arclengths = linspace(nearestPathPoint(1,6),nearestPathPoint(2,6),10);
pathStates = interpolate(refPath,arclengths);

Display the interpolated path points.

plot(pathStates(:,1),pathStates(:,2),'g')
legend(["Waypoints","Reference Path","Trajectory to 30m",...
        "Global Points","Closest Points","Interpolated Path Points"])
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Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

globalState — States in global coordinate frame
P-by-6 numeric matrix

States in the global coordinate frame, specified as a P-by-6 numeric matrix with rows of form [x y
theta kappa speed accel], where:

• x y and theta –– SE(2) state expressed in global coordinates, with x and y in meters and theta in
radians.

• kappa –– Curvature, or inverse of the radius, in m-1.
• speed –– Speed in the theta direction in m/s.
• accel –– Acceleration in the theta direction in m/s2.

P is the total number of Global states.

sFrame — Arclength frame locations
N-element vector

Arclength center locations for the Frenet frames, specified as an N-element vector in meters. For
correct results, the vector between the frame and the xy location of the globalState must be
orthogonal to the tangent angle.

Output Arguments
frenetState — States in Frenet coordinate frame
P-by-6 numeric matrix

States in the Frenet coordinate frame, returned as a P-by-6 numeric matrix with rows of form [S dS
ddS L dL ddL], where S is the arc length and L is the perpendicular deviation from the direction of
the reference path. Derivatives of S are relative to time. Derivatives of L are relative to the arc
length, S. P is the total number of Frenet states.

latTimeDerivatives — Lateral time derivatives
N-by-3 matrix

Lateral time derivatives, specified as an N-by-3 matrix where each row is of the form [dL/dt ddL/dt^2
invertHeading] and N is the total number of points in points. Each row contains the 1st and 2nd
order time derivatives of lateral deviation and a flag, invertHeading, which indicates whether the
heading should be flipped when converting to global coordinates (true) or not (false).

Note If defining latTimeDerivatives without the use of global2frenet, the following rules
should be followed:

1 The invertHeading flag should be true when:

a The vehicle is moving in reverse (speed is less than 0)
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b The vehicle is stationary (speed is equal to 0), and the vehicle is facing away from the path's
tangent vector. i.e. cos(|tangentAngle(obj,S)-thetaExpected|) < 0

2 If 1b is true, then dL/dS must be negated.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath

Functions
frenet2global | closestPoint | closestPointsToSequence | closestProjections |
curvature | changeInCurvature | tangentAngle | interpolate | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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interpolate
Interpolate reference path at provided arc lengths

Syntax
pathPoints = interpolate(refPath,arclengths)

Description
pathPoints = interpolate(refPath,arclengths) interpolates the reference path at the
provided arc lengths and returns the interpolated points on the path in global coordinates.

Examples

Generate Trajectory from Reference Path

Generate a reference path from a set of waypoints.

waypoints = [0 0; 50 20; 100 0; 150 10];
refPath = referencePathFrenet(waypoints);

Create a trajectoryGeneratorFrenet object from the reference path.

connector = trajectoryGeneratorFrenet(refPath);

Generate a five-second trajectory between the path origin and a point 30 meters down the path as
Frenet states.

initCartState = refPath.SegmentParameters(1,:);
initFrenetState = global2frenet(refPath,initCartState);
termFrenetState = initFrenetState + [30 zeros(1,5)];
frenetTraj = connect(connector,initFrenetState,termFrenetState,5);

Convert the trajectory to the global states.

globalTraj = frenet2global(refPath,frenetTraj.Trajectory);

Display the reference path and the trajectory.

show(refPath);
axis equal
hold on
plot(globalTraj(:,1),globalTraj(:,2),'b')

Specify global points and find the closest points on reference path.

globalPoints = waypoints(2:end,:) + [20 -50];
nearestPathPoint = closestPoint(refPath,globalPoints);

Display the global points and the closest points on reference path.
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plot(globalPoints(:,1),globalPoints(:,2),'r*','MarkerSize',10)
plot(nearestPathPoint(:,1),nearestPathPoint(:,2),'b*','MarkerSize',10)

Interpolate between the arc lengths of the first two closest points along the reference path.

arclengths = linspace(nearestPathPoint(1,6),nearestPathPoint(2,6),10);
pathStates = interpolate(refPath,arclengths);

Display the interpolated path points.

plot(pathStates(:,1),pathStates(:,2),'g')
legend(["Waypoints","Reference Path","Trajectory to 30m",...
        "Global Points","Closest Points","Interpolated Path Points"])

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

arclengths — Distances along reference path
N-element vector

Distances along the reference path, specified as an N-element vector. N is the number of arc lengths
at which to sample points. Each distance is in meters.

 interpolate

2-1475



Output Arguments
pathPoints — Points on reference path
N-by-6 numeric matrix

Points on the reference path , returned as an N-by-6 numeric matrix with rows of form [x y theta
kappa dkappa s], where:

• x y and theta — SE(2) state expressed in global coordinates, with x and y in meters and theta in
radians

• kappa — Curvature, or inverse of the radius, in m-1

• dkappa — Derivative of curvature with respect to arc length in m-2

• s — Arc length, or distance along path from path origin, in meters

N is the number of points sampled along the reference path.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath

Functions
closestPoint | closestPointsToSequence | closestProjections | curvature |
changeInCurvature | tangentAngle | frenet2global | global2frenet | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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show
Display reference path in figure

Syntax
show(refPath)
show(refPath,'Parent',parentAx)
ax = show( ___ )

Description
show(refPath) displays the reference path and its lateral states in the current figure.

show(refPath,'Parent',parentAx) displays the reference path on the specified axes. parentAx
is specified as an Axes handle.

ax = show( ___ ) displays the reference path using any of the previous input combinations and
returns the axes handle on which the reference path is plotted.

Examples

Generate Alternative Trajectories for Reference Path

Generate alternative trajectories for a reference path using Frenet coordinates. Specify different
initial and terminal states for your trajectories. Tune your states based on the generated trajectories.

Generate a reference path from a set of waypoints. Create a trajectoryGeneratorFrenet object
from the reference path.

waypoints = [0 0; ...
    50 20; ...
    100 0; ...
    150 10];
refPath = referencePathFrenet(waypoints);
connector = trajectoryGeneratorFrenet(refPath);

Generate a five-second trajectory between the path origin and a point 30 m down the path as Frenet
states.

initState = [0 0 0 0 0 0];  % [S ds ddS L dL ddL]
termState = [30 0 0 0 0 0]; % [S ds ddS L dL ddL]
[~,trajGlobal] = connect(connector,initState,termState,5);

Display the trajectory in global coordinates.

show(refPath);
hold on
axis equal
plot(trajGlobal.Trajectory(:,1),trajGlobal.Trajectory(:,2),'b')
legend(["Waypoints","Reference Path","Trajectory to 30m"])

 show
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Create a matrix of terminal states with lateral deviations between –3 m and 3 m. Generate
trajectories that cover the same arc length in 10 seconds, but deviate laterally from the reference
path. Display the new alternative paths.

termStateDeviated = termState + ([-3:3]' * [0 0 0 1 0 0]);
[~,trajGlobal] = connect(connector,initState,termStateDeviated,10);

clf
show(refPath);
hold on
axis equal
for i = 1:length(trajGlobal)
    plot(trajGlobal(i).Trajectory(:,1),trajGlobal(i).Trajectory(:,2),'g')
end
legend(["Waypoints","Reference Path","Alternative Trajectories"])
hold off
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Specify a new terminal state to generate a new trajectory. This trajectory is not desirable because it
requires reverse motion to achieve a lateral velocity of 10 m/s.

newTermState = [5 10 0 5 0 0];
[~,newTrajGlobal] = connect(connector,initState,newTermState,3);

clf
show(refPath);
hold on
axis equal
plot(newTrajGlobal.Trajectory(:,1),newTrajGlobal.Trajectory(:,2),'b');
legend(["Waypoint","Reference Path","New Trajectory"])
hold off
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Relax the restriction on the longitudinal state by specifying an arc length of NaN. Generate and
display the trajectory again. The new position shows a good alternative trajectory that deviates off
the reference path.

relaxedTermState = [NaN 10 0 5 0 0];
[~,trajGlobalRelaxed] = connect(connector,initState,relaxedTermState,3);

clf
show(refPath);
hold on
axis equal
plot(trajGlobalRelaxed.Trajectory(:,1),trajGlobalRelaxed.Trajectory(:,2),'g');
hold off
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Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

Output Arguments
ax — Axes on which the reference path is plotted
Axes handle

Axes on which the reference path is plotted, returned as an Axes handle.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath

Functions
closestPoint | closestPoint | closestPointsToSequence | closestProjections |
curvature | changeInCurvature | tangentAngle | frenet2global | global2frenet |
interpolate | position

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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position
Return xy-position at arclength

Syntax
pos = position(refPath,S)

Description
pos = position(refPath,S) calculates the xy-position pos of the reference path refPath at the
specified arclength, S.

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

S — Path arclengths
N-element column vector

Path arclengths, specified as an N-element column vector in meters, where N is the total number of
desired arclengths to calculate.

Output Arguments
pos — xy-position
N-by-2 matrix

xy-position, returned as N-by-2 matrix, where N is the total number of specified arclengths. Each row
is of the form [x y], containing the xy-positions for an arclength.

Version History
Introduced in R2022b

See Also
Objects
referencePathFrenet

Functions
closestPoint | closestPointsToSequence | closestProjections | curvature |
changeInCurvature | frenet2global | global2frenet | interpolate | tangentAngle | show
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tangentAngle
Return tangent angle at arclength

Syntax
theta = tangentAngle(refPath,S)

Description
theta = tangentAngle(refPath,S) calculates the tangent angle, theta, of the reference path
at specified arclength, S.

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

S — Path arclengths
N-element column vector

Path arclengths, specified as an N-element column vector in meters, where N is the total number of
desired arclengths to calculate.

Output Arguments
theta — Path tangent angles
N-element vector

Path tangent angles, specified as an N-element vector in radians, where N is the total number of
desired arclengths to calculate.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet | navPath
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Functions
frenet2global | global2frenet | closestPoint | closestPointsToSequence |
closestProjections | curvature | changeInCurvature | interpolate | position | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”

 tangentAngle
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resamplingPolicyPF
Create resampling policy object with resampling settings

Description
The resamplingPolicyPF object stores settings for when resampling should occur when using a
particle filter for state estimation. The object contains the method that triggers resampling and the
relevant threshold for this resampling. Use this object as the ResamplingPolicy property of the
stateEstimatorPF object.

Creation

Syntax
policy = resamplingPolicyPF

Description

policy = resamplingPolicyPF creates a resamplingPolicyPF object policy, which contains
properties to be modified to control when resampling should be triggered. Use this object as the
ResamplingPolicy property of the stateEstimatorPF object.

Properties
TriggerMethod — Method for determining if resampling should occur
'ratio' (default) | character vector

Method for determining if resampling should occur, specified as a character vector. Possible choices
are 'ratio' and 'interval'. The 'interval' method triggers resampling at regular intervals of
operating the particle filter. The 'ratio' method triggers resampling based on the ratio of effective
total particles.

SamplingInterval — Fixed interval between resampling
1 (default) | scalar

Fixed interval between resampling, specified as a scalar. This interval determines during which
correction steps the resampling is executed. For example, a value of 2 means the resampling is
executed every second correction step. A value of inf means that resampling is never executed.

This property only applies with the TriggerMethod is set to 'interval'.

MinEffectiveParticleRatio — Minimum desired ratio of effective to total particles
0.5 (default) | scalar

Minimum desired ratio of effective to total particles, specified as a scalar. The effective number of
particles is a measure of how well the current set of particles approximates the posterior distribution.
A lower effective particle ratio means less particles are contributing to the estimation and resampling
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might be required. If the ratio of effective particles to total particles falls below the
MinEffectiveParticleRatio, a resampling step is triggered.

Version History
Introduced in R2019b

See Also
stateEstimatorPF | correct

 resamplingPolicyPF
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se3
SE(3) homogeneous transformation

Description
The se3 object represents an SE(3) transformation as a 3-D homogeneous transformation matrix
consisting of a translation and rotation:

For more information, see the “3-D Homogeneous Transformation Matrix” on page 2-1495 section.

This object acts like a numerical matrix enabling you to compose poses using multiplication and
division.

Creation
Syntax
transformation = se3
transformation = se3(rotation)
transformation = se3(rotation,translation)
transformation = se3(transformation)

transformation = se3(euler,"eul")
transformation = se3(euler,"eul",sequence)
transformation = se3(quat,"quat")
transformation = se3(quaternion)
transformation = se3(axang,"axang")
transformation = se3(angle,axis)
transformation = se3( ___ ,translation,"trvec")

transformation = se3(translation,"trvec")
transformation = se3(pose,"xyzquat")

Description
Rotation Matrices, Translation Vectors, and Transformation Matrices

transformation = se3 creates an SE(3) transformation representing an identity rotation with no
translation.

transformation =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

transformation = se3(rotation) creates an SE(3) transformation representing a pure rotation
defined by the orthonormal rotation rotation with no translation. The rotation matrix is represented
by the elements in the top left of the transformation matrix.
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rotation =
r11 r12 r13
r11 r22 r23
r31 r32 r33

transformation =

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

transformation = se3(rotation,translation) creates an SE(3) transformation representing
a rotation defined by the orthonormal rotation rotation and the translation translation. The
function applies the rotation matrix first, then translation vector to create the transformation.

rotation =
r11 r12 r13
r11 r22 r23
r31 r32 r33

, translation =
t1
t2
t3

transformation =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

=

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

·

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

transformation = se3(transformation) creates an SE(3) transformation representing a
translation and rotation as defined by the homogeneous transformation transformation.
Other 3-D Rotation Representations

transformation = se3(euler,"eul") creates an SE(3) transformation from the rotations
defined by the Euler angles euler.

transformation = se3(euler,"eul",sequence) specifies the sequence of the Euler angle
rotations sequence. For example, the sequence "ZYX" rotates the z-axis, then the y-axis and x-axis.

transformation = se3(quat,"quat") creates an SE(3) transformation from the rotations
defined by the numeric quaternions quat.

transformation = se3(quaternion) creates an SE(3) transformation from the rotations defined
by the quaternion quaternion.

transformation = se3(axang,"axang") creates an SE(3) transformation from the rotations
defined by the axis-angle rotation axang.

transformation = se3(angle,axis) creates an SE(3) transformation from the rotations angles
about the rotation axis axis.

transformation = se3( ___ ,translation,"trvec") creates an SE(3) transformation from the
translation vector translation along with any other type of rotation input arguments.
Other Translations and Transformation Representations

transformation = se3(translation,"trvec") creates an SE(3) transformation from the
translation vector translation.
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transformation = se3(pose,"xyzquat") creates an SE(3) transformation from the 3-D
compact pose pose.

Note If any inputs contain more than one rotation, translation, or transformation, then the output
transformation is an N-element array of se3 objects corresponding to each of the N input
rotations, translations, or transformations.

Input Arguments

rotation — Orthonormal rotation
3-by-3 matrix | 3-by-3-by-N matrix | so3 object | N-element array of so3 objects

Orthonormal rotation, specified as a 3-by-3 matrix, a 3-by-3-by-N array, a scalar so3 object, or an N-
element array of so3 objects. N is the total number of rotations.

If rotation contains more than one rotation and you also specify translation at construction, the
number of translations in translation must be one or equal to the number of rotations in
rotation. The resulting number of transformation objects is equal to the value of the translation
or rotation argument, whichever is larger.
Example: eye(3)
Data Types: single | double

translation — Translation
three-element row vector | N-by-3 matrix

Translation, specified as a three-element row vector or an N-by-3 array. N is the total number of
translations and each translation is of the form [x y z].

If translation contains more than one translation, the number of rotations in rotation must be
one or equal to the number of translations in translation. The resulting number of created
transformation objects is equal to the value of the translation or rotation argument, whichever
is larger.
Example: [1 4 3]
Data Types: single | double

transformation — Homogeneous transformation
4-by-4 matrix | 4-by-4-N array | se3 object | N-element array of se3 objects

Homogeneous transformation, specified as a 4-by-4 matrix, a 4-by-4-N array, a scalar se3 object, or
an N-element array of se3 objects. N is the total number of transformations specified.

If transformation is an array, the resulting number of created se3 objects is equal to N.
Example: eye(4)
Data Types: single | double

quaternion — Quaternion
quaternion object | N-element array of quaternion objects

Quaternion, specified as a scalar quaternion object or as an N-element array of quaternion
objects. N is the total number of specified quaternions.
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If quaternion is an N-element array, the resulting number of created se3 objects is equal to N.
Example: quaternion(1,0.2,0.4,0.2)

euler — Euler angles
N-by-3 matrix

Euler angles, specified as an N-by-3 matrix, in radians. Each row represents one set of Euler angles
with the axis-rotation sequence defined by the sequence argument. The default axis-rotation
sequence is ZYX.

If euler is an N-by-3 matrix, the resulting number of created se3 objects is equal to N.
Example: [pi/2 pi pi/4]
Data Types: single | double

sequence — Axis-rotation sequence
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Axis-rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

These are orthonormal rotation matrices for rotations of ϕ, ψ, and θ about the x-, y-, and z-axis,
respectively:

Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

, Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

, Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

When constructing the rotation matrix from this sequence, each character indicates the
corresponding axis. For example, if the sequence is "XYZ", then the se3 object constructs the
rotation matrix R by multiplying the rotation about x-axis with the rotation about the y-axis, and then
multiplying that product with the rotation about the z-axis:

R = Rx(ϕ) · Ry(ψ) · Rz(θ)

Example: se3([pi/2 pi/3 pi/4],"eul","ZYZ") rotates a point by pi/4 radians about the z-
axis, then rotates the point by pi/3 radians about the y-axis, and then rotates the point by pi/2
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radians about the z-axis. This is equivalent to se3(pi/2,"rotz") * se3(pi/3,"roty") *
se3(pi/4,"rotz")

Data Types: string | char

quat — Quaternion
N-by-4 matrix

Quaternion, specified as an N-by-4 matrix. N is the number of specified quaternions. Each row
represents one quaternion of the form [qw qx qy qz], where qw is a scalar number.

If quat is an N-by-4 matrix, the resulting number of created se3 objects is equal to N.

Note The se3 object normalizes the input quaternions before converting the quaternions to a
rotation matrix.

Example: [0.7071 0.7071 0 0]
Data Types: single | double

axang — Axis-angle rotation
N-by-4 matrix

Axis-angle rotation, specified as an N-by-4 matrix in the form [x y z theta]. N is the total number of
axis-angle rotations. x, y, and z are vector components from the x-, y-, and z-axis, respectively. The
vector defines the axis to rotate by the angle theta, in radians.

If axang is an N-by-4 matrix, the resulting number of created se3 objects is equal to N.
Example: [.2 .15 .25 pi/4] rotates the axis, defined as 0.2 in the x-axis, 0.15 along the y-axis,
and 0.25 along the z-axis, by pi/4 radians.
Data Types: single | double

angle — Single-axis-angle rotation
N-by-M matrix

Single-axis-angle rotation, specified as an N-by-M matrix. Each element of the matrix is an angle, in
radians, about the axis specified using the axis argument, and the se3 object creates an se3 object
for each angle.

If angle is an N-by-M matrix, the resulting number of created se3 objects is equal to N.

The rotation angle is counterclockwise positive when you look along the specified axis toward the
origin.
Data Types: single | double

axis — Axis to rotate
"rotx" | "roty" | "rotz"

Axis to rotate, specified as one of these options:

• "rotx" — Rotate about the x-axis:
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Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

• "roty" — Rotate about the y-axis:

Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

• "rotz" — Rotate about the z-axis:

Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

Use the angle argument to specify how much to rotate about the specified axis.
Example: Rx = se3(phi,"rotx");
Example: Ry = se3(psi,"roty");
Example: Rz = se3(theta,"rotz");
Data Types: string | char

pose — 3-D compact pose
N-by-7 matrix

3-D compact pose, specified as an N-by-7 matrix, where N is the total number of compact poses. Each
row is a pose, comprised of a xyz position and quaternion, in the form [x y z qw qx qy qz]. x, y, and z
are the positions in the x-, y-, and z-axes, respectively. qw, qx, qy, and qz together are the quaternion
rotation in w, x, y, and z, respectively.

If pose is an N-by-7 matrix, the resulting number of created se3 objects is equal to N.
Data Types: single | double

Object Functions

Mathematical Operations
mtimes, * Transformation or rotation multiplication
mrdivide, / Transformation or rotation right division
rdivide, ./ Element-wise transformation or rotation right division
times, .* Element-wise transformation or rotation multiplication

Utilities
interp Interpolate between transformations
dist Calculate distance between transformations
normalize Normalize transformation or rotation matrix
transform Apply rigid body transformation to points

 se3

2-1493



Numerical Conversions
axang Convert transformation or rotation into axis-angle rotations
eul Convert transformation or rotation into Euler angles
rotm Extract rotation matrix
quat Convert transformation or rotation to numeric quaternion
quaternion Create a quaternion array
trvec Extract translation vector
tform Extract homogeneous transformation
xyzquat Convert transformation or rotation to compact 3-D pose representation

Object Conversions
so3 SO(3) rotation

Examples

Create SE(3) Transformation Using Euler Angles and Translation

Define an Euler-angle rotation of [pi/2 0 pi/7] with a "XYZ" rotation sequence, and a xyz
translation of [6 4 1].

angles = [pi/2 0 pi/7];
trvec = [6 4 1];

Create an SE(3) transformation using the Euler angles and the translation.

TF = se3(angles,"eul","XYZ",trvec)

TF = se3
    0.9010   -0.4339         0    6.0000
    0.0000    0.0000   -1.0000    4.0000
    0.4339    0.9010    0.0000    1.0000
         0         0         0    1.0000

Plot the transformation.

plotTransforms(TF,AxisLabels="on",FrameAxisLabels="on");
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Algorithms
3-D Homogeneous Transformation Matrix

3-D homogeneous transformation matrices consist of both an SO(3) rotation and an xyz-translation.

To read more about SO(3) rotations, see the “3-D Orthonormal Rotation Matrix” on page 2-1508
section of the so3 object.

The translation is along the x-, y-, and z-axes as a three-element column vector:

t =
x
y
z

The SO(3) rotation matrix R is applied to the translation vector t to create the homogeneous
translation matrix T. The rotation matrix is present in the upper-left of the transformation matrix as
3-by-3 submatrix, and the translation vector is present as a three-element vector in the last column.

T =
R t

01x3 1 =
I3 t

01x3 1
·

R 0
01x3 1
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Version History
Introduced in R2022b

R2023a: New methods and syntaxes

se3 supports new methods and syntaxes for converting to and from other transformations and
rotations.

The new methods are:

• axang
• eul
• so3
• quat
• quaternion
• xyzquat

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
axang2tform | eul2tform | quat2tform | rotm2tform | trvec2tform | plotTransforms

Objects
se2 | so2 | so3 | quaternion
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se2
SE(2) homogeneous transformation

Description
The se2 object represents an SE(2) transformation as a 2-D homogeneous transformation matrix
consisting of a translation and rotation.

For more information, see the “2-D Homogeneous Transformation Matrix” on page 2-1501 section.

This object acts like a numerical matrix, enabling you to compose poses using multiplication and
division.

Creation
Syntax
transformation = se2
transformation = se2(rotation)
transformation = se2(rotation,translation)
transformation = se2(transformation)

transformation = se2(angle,"theta")
transformation = se2(angle,"theta",translation)
transformation = se2(translation,"trvec")
transformation = se2(pose,"xytheta")

Description
Rotation Matrices, Translation Vectors, and Transformation Matrices

transformation = se2 creates an SE(2) transformation representing an identity rotation with no
translation.

transformation =
1 0 0
0 1 0
0 0 1

transformation = se2(rotation) creates an SE(2) transformation representing a pure rotation
defined by the orthonormal rotation rotation with no translation. The rotation matrix is represented
by the elements in the top left of the transformation matrix.

rotation =
r11 r12
r21 r22

transformation =
r11 r12 0
r21 r22 0
0 0 1
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transformation = se2(rotation,translation) creates an SE(2) transformation representing
a rotation defined by the orthonormal rotation rotation and the translation translation. The
function applies the rotation matrix first, then the translation vector, to create the transformation.

rotation =
r11 r12
r21 r22

, translation =
t1
t2

transformation =
r11 r12 t1
r21 r22 t2
0 0 1

=
1 0 t1
0 1 t2
0 0 1

·
r11 r12 0
r21 r22 0
0 0 1

transformation = se2(transformation) creates an SE(2) transformation representing a
translation and rotation as defined by the homogeneous transformation transformation.
Other 2-D Rotations and Transformation Representations

transformation = se2(angle,"theta") creates SE(2) transformations transformation from
rotations around the z-axis, in radians. The transformation contains zero translation.

transformation = se2(angle,"theta",translation) creates SE(2) transformations from
rotations around the z-axis, in radians, with translations translation.

transformation = se2(translation,"trvec") creates an SE(2) transformation from the
translation vector translation.

transformation = se2(pose,"xytheta") creates an SE(2) transformation from the 2-D
compact pose pose.

Input Arguments

rotation — Orthonormal rotation
2-by-2 matrix | 2-by-2-by-N matrix | so2 object | N-element array of so2 objects

Orthonormal rotation, specified as a 2-by-2 matrix, a 2-by-2-by-N array, a scalar so2 object, or an N-
element array of so2 objects. N is the total number of rotations.

If rotation contains more than one rotation and you also specify translation at construction, the
number of translations in translation must be one or equal to the number of rotations in
rotation. The resulting number of transformation objects is equal to the value of the translation
or rotation argument, whichever is larger.

If rotation contains one rotation and you also specify translation as an N-by-2 matrix, then the
resulting transformations contain the same rotation specified by rotation and the corresponding
translation vector in translation. The resulting number of transformation objects is equal to the
number of translations in translation.
Example: eye(2)
Data Types: single | double

translation — Translation
two-element row vector | N-by-2 matrix

Translation, specified as an N-by-2 matrix. N is the total number of translations and each translation
is of the form [x y].
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If translation contains more than one translation, the number of rotations in rotation must be
one or equal to the number of translations in translation. The resulting number of created
transformation objects is equal to the value of the translation or rotation argument, whichever
is larger.

If you specify more than one translation but only one rotation, the resulting transformations contain
the same rotation specified in rotation and the corresponding translation in translation. The
resulting number of created se2 objects is equal to the value of the translation.
Example: [1 4]
Data Types: single | double

transformation — Homogeneous transformation
3-by-3 matrix | 3-by-3-N array | se2 object | N-element array of se2 objects

Homogeneous transformation, specified as a 3-by-3 matrix, a 3-by-3-N array, a scalar se3 object, or
an N-element array of se2 objects. N is the total number of transformations specified.

If transformation is an array, the resulting number of created se2 objects is equal to N.
Example: eye(3)
Data Types: single | double

angle — z-axis rotation angle
N-by-M matrix

z-axis rotation angle, specified as an N-by-M matrix. Each element of the matrix is an angle, in
radians, about the z-axis. The se2 object creates an se2 object for each angle.

If angle is an N-by-M matrix, the resulting number of created se2 objects is equal to N.

The rotation angle is counterclockwise positive when you look along the specified axis toward the
origin.
Data Types: single | double

pose — 2-D compact pose
N-by-3 matrix

3-D compact pose, specified as an N-by-3 matrix, where N is the total number of compact poses. Each
row is a pose, comprised of an xy position and a rotation about the z-axis, in the form [x y theta]. x, y
are the xy-positions and theta is the rotation about the z-axis.

If pose is an N-by-3 matrix, the resulting number of created se2 objects is equal to N.
Data Types: single | double

Object Functions

Mathematical Operations
mtimes, * Transformation or rotation multiplication
mrdivide, / Transformation or rotation right division
rdivide, ./ Element-wise transformation or rotation right division
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times, .* Element-wise transformation or rotation multiplication

Utilities
interp Interpolate between transformations
dist Calculate distance between transformations
normalize Normalize transformation or rotation matrix
transform Apply rigid body transformation to points

Numerical Conversions
rotm Extract rotation matrix
trvec Extract translation vector
tform Extract homogeneous transformation
theta Convert transformation or rotation to 2-D rotation angle
xytheta Convert transformation or rotation to compact 2-D pose representation

Object Conversions
so2 SO(2) rotation

Examples

Create SE(2) Transformation Using Angle and Translation

Define an angle rotation of pi/4 and a xyz translation of [6 4].

angle = pi/6;
trvec = [2 1];

Create an SE(2) transformation using the angle and translation.

TF = se2(angle,"theta",trvec)

TF = se2
    0.8660   -0.5000    2.0000
    0.5000    0.8660    1.0000
         0         0    1.0000

Plot the transformation.

plotTransforms(TF,AxisLabels="on",FrameAxisLabels="on");
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Algorithms
2-D Homogeneous Transformation Matrix

2-D homogeneous transformation matrices consist of both an SO(2) rotation and an xy-translation.

To read more about SO(2) rotations, see the “2-D Orthonormal Rotation Matrix” on page 2-1512
section of the so2 object.

The translation is along the x-, y-, and z-axes as a three-element column vector:

t =
x
y

The SO(2) rotation matrix R is applied to the translation vector t to create the homogeneous
translation matrix T. The rotation matrix is present in the upper-left of the transformation matrix as
2-by-2 submatrix, and the translation vector is present as a two-element vector in the last column.

T =
R t

01 × 2 1 =
I2 t

01 × 2 1
·

R 0
01 × 2 1

Version History
Introduced in R2022b

 se2

2-1501



R2023a: New methods and syntaxes

se2 supports new methods and syntaxes for converting to and from other transformations and
rotations.

The new methods are:

• se3
• so2
• theta
• xytheta

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
axang2tform | eul2tform | quat2tform | rotm2tform | trvec2tform | plotTransforms

Objects
se3 | so2 | so3 | quaternion

2 Classes

2-1502



so3
SO(3) rotation

Description
The so3 object represents an SO(3) rotation in 3-D in a right-handed Cartesian coordinate system.

The SO(3) rotation is a 3-by-3 orthonormal rotation matrix. For example, these are orthonormal
rotation matrices for rotations of ϕ, ψ, and θ about the x-, y-, and z-axis, respectively:

Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

, Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

, Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

For more information, see the 3-D Orthonormal Rotation Matrix section.

This object acts like a numerical matrix, enabling you to compose rotations using multiplication and
division.

Creation

Syntax
rotation = so3
rotation = so3(rotation)
rotation = so3(quaternion)
rotation = so3(transformation)

rotation = so3(euler,"eul")
rotation = so3(euler,"eul",sequence)
rotation = so3(quat,"quat")
rotation = so3(axang,"axang")
rotation = so3(angle,axis)

Description
3-D Rotation Representations

rotation = so3 creates an SO(3) rotation representing an identity rotation with no translation.

rotation =
1 0 0
0 1 0
0 0 1

rotation = so3(rotation) creates an SO(3) rotation representing a pure rotation defined by the
orthonormal rotation rotation.
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rotation =
r11 r12 r13
r11 r22 r23
r31 r32 r33

rotation = so3(quaternion) creates an SO(3) rotation from the rotations defined by the
quaternion quaternion.

rotation = so3(transformation) creates an SO(3) rotation from the SE(3) transformation
transformation.

Other Numeric 3-D Rotation Representations

rotation = so3(euler,"eul") creates an SO(3) rotation from the rotations defined by the Euler
angles euler.

rotation = so3(euler,"eul",sequence) specifies the sequence of the Euler angle rotations
sequence. For example, the sequence "ZYX" rotates the z-axis, then the y-axis and x-axis.

rotation = so3(quat,"quat") creates an SO(3) rotation from the rotations defined by the
numeric quaternions quat.

rotation = so3(axang,"axang") creates an SO(3) rotation from the rotations defined by the
axis-angle rotation axang.

rotation = so3(angle,axis) creates an SO(3) rotation from the rotations angles about the
rotation axis axis.

Note If any inputs contain more than one rotation, then the output rotation is an N-element array
of so3 objects corresponding to each of the N input rotations.

Input Arguments

rotation — Orthonormal rotation
3-by-3 matrix | 3-by-3-by-N matrix | so3 object | N-element array of so3 objects

Orthonormal rotation, specified as a 3-by-3 matrix, a 3-by-3-byN array, a scalar so3 object, or an N-
element array of so3 objects. N is the total number of rotations.

If rotation is an array, the resulting number of created so3 objects in the output array is equal to
N.
Example: eye(3)

transformation — Homogeneous transformation
se3 object | N-element array of se3 objects

Homogeneous transformation, specified as an se3 object or a N-element array of se3 objects. N is
the total number of transformations specified.

The output so3 object contains only the rotational submatrix of the se3 object.

If transformation is an array, the resulting number of created so3 objects in the output array is
equal to N.
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Example: se3(pi/4,"rotx")

quaternion — Quaternion
quaternion object | N-element array of quaternion objects

Quaternion, specified as a scalar quaternion object or as an N-element array of quaternion
objects. N is the total number of specified quaternions.

If quaternion is an N-element array, the resulting number of created so3 objects is equal to N.
Example: quaternion(1,0.2,0.4,0.2)

euler — Euler angles
N-by-3 matrix

Euler angles, specified as an N-by-3 matrix, in radians. Each row represents one set of Euler angles
with the axis-rotation sequence defined by the sequence argument. The default axis-rotation
sequence is ZYX.

If euler is an N-by-3 matrix, the resulting number of created so3 objects is equal to N.
Example: [pi/2 pi pi/4]
Data Types: single | double

sequence — Axis-rotation sequence
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Axis-rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

These are orthonormal rotation matrices for rotations of ϕ, ψ, and θ about the x-, y-, and z-axis,
respectively:

Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

, Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

, Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

When constructing the rotation matrix from this sequence, each character indicates the
corresponding axis. For example, if the sequence is "XYZ", then the so3 object constructs the
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rotation matrix R by multiplying the rotation about x-axis with the rotation about the y-axis, and then
multiplying that product with the rotation about the z-axis:

R = Rx(ϕ) · Ry(ψ) · Rz(θ)

Example: so3([pi/2 pi/3 pi/4],"eul","ZYZ") rotates a point by pi/4 radians about the z-
axis, then rotates the point by pi/3 radians about the y-axis, and then rotates the point by pi/2
radians about the z-axis. This is equivalent to so3(pi/2,"rotz") * so3(pi/3,"roty") *
so3(pi/4,"rotz")

Data Types: string | char

quat — Quaternion
N-by-4

Quaternion, specified as an N-by-4 matrix. N is the number of specified quaternions. Each row
represents one quaternion of the form [qw qx qy qz], where qw is a scalar number.

If quat is an N-by-4 matrix, the resulting number of created so3 objects is equal to N.

Note The so3 object normalizes the input quaternions before converting the quaternions to a
rotation matrix.

Example: [0.7071 0.7071 0 0]
Data Types: single | double

axang — Axis-angle rotation
N-by-4 matrix

Axis-angle rotation, specified as an N-by-4 matrix in the form [x y z theta]. N is the total number of
axis-angle rotations. x, y, and z are vector components from the x-, y-, and z-axis, respectively. The
vector defines the axis to rotate by the angle theta, in radians.

If axang is an N-by-4 matrix, the resulting number of created so3 objects is equal to N.
Example: [.2 .15 .25 pi/4] rotates the axis, defined as 0.2 in the x-axis, 0.15 along the y-axis,
and 0.25 along the z-axis, by pi/4 radians.
Data Types: single | double

angle — Single-axis-angle rotation
N-by-M matrix

Single-axis-angle rotation, specified as an N-by-M matrix. Each element of the matrix is an angle, in
radians, about the axis specified using the axis argument, and the so3 object creates an so3 object
for each angle.

If angle is an N-by-M matrix, the resulting number of created so3 objects is equal to N.

The rotation angle is counterclockwise positive when you look along the specified axis toward the
origin.
Data Types: single | double
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axis — Axis to rotate
"rotx" | "roty" | "rotz"

Axis to rotate, specified as one of these options:

• "rotx" — Rotate about the x-axis:

Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

• "roty" — Rotate about the y-axis:

Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

• "rotz" — Rotate about the z-axis:

Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

Use the angle argument to specify how much to rotate about the specified axis.
Example: Rx = so3(phi,"rotx");
Example: Ry = so3(psi,"roty");
Example: Rz = so3(theta,"rotz");
Data Types: string | char

Object Functions

Mathematical Operations
mtimes, * Transformation or rotation multiplication
mrdivide, / Transformation or rotation right division
rdivide, ./ Element-wise transformation or rotation right division
times, .* Element-wise transformation or rotation multiplication

Utilities
interp Interpolate between transformations
dist Calculate distance between transformations
normalize Normalize transformation or rotation matrix
transform Apply rigid body transformation to points

Numerical Conversions
axang Convert transformation or rotation into axis-angle rotations
eul Convert transformation or rotation into Euler angles
rotm Extract rotation matrix
quat Convert transformation or rotation to numeric quaternion
trvec Extract translation vector
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tform Extract homogeneous transformation
xyzquat Convert transformation or rotation to compact 3-D pose representation

Object Conversions
se3 SE(3) homogeneous transformation
quaternion Create a quaternion array

Examples

Convert SO(3) Rotation to Euler Angles

Create SO(3) rotation defined by a Euler angles.

eul1 = [pi/4 pi/3 pi/8]

eul1 = 1×3

    0.7854    1.0472    0.3927

R = so3(eul1,"eul")

R = so3
    0.3536   -0.4189    0.8364
    0.3536    0.8876    0.2952
   -0.8660    0.1913    0.4619

Get the Euler angles from the transformation.

eul2 = eul(R)

eul2 = 1×3

    0.7854    1.0472    0.3927

Algorithms
3-D Orthonormal Rotation Matrix

SO(3) rotation matrices are 3-by-3 orthonormal matrices that represent any rotation in 3-D Euclidean
space. SO(3) rotations have many special properties. For example, SO(3) rotation matrices are in the
3-D special orthogonal group, so the product of two SO(3) rotation matrices is an SO(3) rotation
matrix. This enables you to compose rotations from multiple rotations. For example, these are
orthonormal rotation matrices for rotations of ϕ, ψ, and θ about the x-, y-, and z-axis, respectively:

Rx(ϕ) =
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

, Ry(ψ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

, Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

Depending on the order in which you multiply these x-, y-, and z-axis rotations, you can construct
compound matrices that represent any rotation in 3-D Euclidean space.
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These are other properties of SO(3) rotations:

• Each column is both orthogonal and a unit vector, meaning that none of the columns are multiples
of each other.

• The determinant of the matrix is positive 1.
• The inverse of the matrix is the same as the transpose of the matrix: R-1 = RT.

Version History
Introduced in R2022b

R2023a: New methods and syntaxes

so3 supports new methods and syntaxes for converting to and from other transformations and
rotations.

The new methods are:

• axang
• eul
• quat
• quaternion
• tform
• trvec
• xyzquat

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
axang2rotm | eul2rotm | quat2rotm | tform2rotm

Objects
se2 | se3 | so2 | quaternion
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so2
SO(2) rotation

Description
The so2 object represents an SO(2) rotation in 2-D.

For more information, see the “2-D Orthonormal Rotation Matrix” on page 2-1512 section.

This object acts like a numerical matrix, enabling you to compose rotations using multiplication and
division.

Creation

Syntax
rotation = so2
rotation = so2(rotation)
rotation = so2(transformation)
rotation = so2(angle,"theta")

Description

rotation = so2 creates an SO(2) rotation representing an identity rotation with no translation.

rotation =
1 0
0 1

rotation = so2(rotation) creates an SO(2) rotation rotation representing a pure rotation
defined by the orthonormal rotation rotation.

rotation =
r11 r12
r21 r22

rotation = so2(transformation) creates an SO(2) rotation from the SE(2) transformation
transformation.

rotation = so2(angle,"theta") creates an SO(2) rotation rotation from a rotation angle
about the z-axis angle.

Note If any inputs contain more than one rotation, the output rotation is an N-element array of
so2 objects corresponding to each of the N input rotations.
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Input Arguments

rotation — Orthonormal rotation
2-by-2 matrix | 2-by-2-by-N matrix | so2 object | N-element array of so2 objects

Orthonormal rotation, specified as a 2-by-2 matrix, a 3-by-3-by-N array, a scalar so2 object, or an N-
element array of so2 objects. N is the total number of rotations.

If rotation is an array, the resulting number of created so2 objects in the output array is equal to
N.
Example: eye(3)
Data Types: single | double

transformation — Homogeneous transformation
se2 object | N-element array of se2 objects

Homogeneous transformation, specified as an se2 object or an N-element array of se2 objects. N is
the total number of transformations specified.

The output so2 object contains only the rotational submatrix of the se2 object.

If transformation is an array, the resulting number of created so2 objects in the output array is
equal to N.
Example: se2([1 2],"trvec")

angle — z-axis rotation angle
N-by-M matrix

z-axis rotation angle, specified as an N-by-M matrix. Each element of the matrix is an angle, in
radians, about the z-axis. The so2 object creates an so2 object for each angle.

If angle is an N-by-M matrix, the resulting number of created so2 objects is equal to N.

The rotation angle is counterclockwise positive when you look along the specified axis toward the
origin.
Data Types: single | double

Object Functions

Mathematical Operations
mtimes, * Transformation or rotation multiplication
mrdivide, / Transformation or rotation right division
rdivide, ./ Element-wise transformation or rotation right division
times, .* Element-wise transformation or rotation multiplication

Utilities
interp Interpolate between transformations
dist Calculate distance between transformations
normalize Normalize transformation or rotation matrix
transform Apply rigid body transformation to points
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Numerical Conversions
rotm Extract rotation matrix
trvec Extract translation vector
tform Extract homogeneous transformation
theta Convert transformation or rotation to 2-D rotation angle
xytheta Convert transformation or rotation to compact 2-D pose representation

Object Conversions
so3 SO(3) rotation

Examples

Create SO(2) Rotation Using Angle

Define an angle rotation of pi/4 and a xy translation of [6 4].

angle = pi/4;

Create an SO(2) rotation using the angle.

R = so2(angle,"theta")

R = so2
    0.7071   -0.7071
    0.7071    0.7071

Algorithms
2-D Orthonormal Rotation Matrix

SO(2) rotation matrices are 2-by-2 orthonormal matrices that represent a rotation about a single axis
2-D Euclidean space. SO(2) rotations have many special properties. For example, SO(2) rotation
matrices are in the 2-D special orthogonal group, so the product of two SO(2) rotation matrices is an
SO(2) rotation matrix. This enables you to compose rotations from multiple rotations.

This is a 2-D orthonormal rotation matrix that describes describe a rotation θ about the z-axis:

Rz(θ) =
cosθ −sinθ
sinθ cosθ

These are other properties of SO(2) rotations:

• Each column is both orthogonal and a unit vector, meaning that none of the columns are multiples
of each other.

• The determinant of the matrix is positive 1.
• The inverse of the matrix is the same as the transpose of the matrix: R-1 = RT.
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Version History
Introduced in R2022b

R2023a: New methods and syntaxes

so2 supports new methods and syntaxes for converting to and from other transformations and
rotations.

The new methods are:

• so3
• theta
• tform
• trvec
• xytheta

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
axang2rotm | eul2rotm | quat2rotm | tform2rotm

Objects
se2 | se3 | so3 | quaternion
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SkyPlotChart Properties
Sky plot chart appearance and behavior

Description
The SkyPlotChart properties control the appearance of a sky plot chart generated using the
skyplot function. To modify the chart appearance, use dot notation on the SkyPlotChart object:

h = skyplot;
h.AzimuthData = [45 120 295];
h.ElevationData = [10 45 60];
h.Labels = ["G1" "G4" "G11"];

Properties
Sky Plot Properties

AzimuthData — Azimuth angles for visible satellite positions
n-element vector of angles | t-by-n matrix of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles or t-by-n
matrix of angles. n is the number of visible satellite positions in the plot, and t is the number of time
steps of the satellites. Azimuth angles are measured in degrees, clockwise-positive from the north
direction.

If you specify AzimuthData as a matrix, the last row indicates the current azimuth angles of the
satellites.
Example: [25 45 182 356] specifies azimuth angles for four satellites at one time step
Data Types: double

ElevationData — Elevation angles for visible satellite positions
n-element vector of angles | t-by-n matrix of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles or t-by-n
matrix of angles. n is the number of visible satellite positions in the plot, and t is the number of time
steps of the satellites. Elevation angles are measured from the horizon line with 90 degrees being
directly up.

If you specify ElevationData as a matrix, the last row indicates the current elevation angles of the
satellites.
Example: [45 90 27 74] specifies elevation angles for four satellites at one time step
Data Types: double

LabelData — Labels for visible satellite positions
n-element string array

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.
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Example: ["G1" "G11" "G7" "G3"]
Data Types: string

GroupData — Group for each satellite position
categorical array

Group for each satellite position, specified as a categorical array. Each group has a different color
label defined by the ColorOrder property.
Example: [GPS GPS Galileo Galileo]
Data Types: double

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. This property defines the palette of
colors MATLAB uses to create plot objects such as Line, Scatter, and Bar objects. Each row of the
array is an RGB triplet. An RGB triplet is a three-element vector whose elements specify the
intensities of the red, green, and blue components of a color. The intensities must be in the range [0,
1]. This table lists the default colors.

Colors ColorOrder Matrix

    [    0    0.4470    0.7410
    0.8500    0.3250    0.0980
    0.9290    0.6940    0.1250
    0.4940    0.1840    0.5560
    0.4660    0.6740    0.1880
    0.3010    0.7450    0.9330
    0.6350    0.0780    0.1840]

MATLAB assigns colors to objects according to their order of creation. For example, when plotting
lines, the first line uses the first color, the second line uses the second color, and so on. If there are
more lines than colors, then the cycle repeats.

You can also set the color order using the colororder function.

Label Properties

LabelFontSize — Font size of labels
scalar numeric value

Font size of labels, specified as a scalar numeric value. The default font depends on the specific
operating system and locale.
Example: h = skyplot(__,'LabelFontSize',12)
Example: h.LabelFontSize = 12

LabelFontSizeMode — Selection mode for font size of labels
'auto' (default) | 'manual'

Selection mode for the font size of labels, specified as one of these values:
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• 'auto' — Font size specified by MATLAB. If you resize the axes to be smaller than the default
size, the font size can scale down to improve readability and layout.

• 'manual' — Font size specified manually. MATLAB does not scale the font size as the axes size
changes. To specify the font size, set the LabelFontSize property.

Mask Properties

MaskElevation — Mask elevation angle
0 (default) | nonnegative scalar | N-element vector

Elevation angle of mask, specified as a nonnegative scalar or N-element vector of nonnegative values,
in degrees. N is m + 1, where m is the number of elements in MaskAzimuthEdges..
Example: h = skyplot(__,MaskElevation=25)
Data Types: double

MaskAlpha — Mask transparency
0.3 (default) | scalar in range [0, 1]

Mask transparency, specified as a scalar in the range [0, 1]. A transparency value of 1 is opaque, 0 is
completely transparent, and values between 0 and 1 are semitransparent.
Example: h = skyplot(__,MaskAlpha=0.1)
Data Types: double

MaskColor — Mask color
[0.4902 0.4902 0.4902] (default) | RGB triplet | hexadecimal color code | color name | short
color name

Mask color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short color
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]. For example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and the hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

2 Classes

2-1516



Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

This table shows the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in
many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: h = skyplot(__,MaskColor="r")
Data Types: double | string | char

MaskAzimuthEdges — Mask angle azimuth edges
[0 360] (default) | m-element row vector

Mask angle azimuth edges, specified as an m-element row vector, where m is the total number of
azimuth edges.
Example: h = skyplot(__,MaskAzimuthEdges=0:45:360)
Data Types: double

MaskAzimuthEdgesMode — Mask angle azimuth edges mode
"auto" (default) | "manual"

Mask angle azimuth edges mode, specified as "auto" or "manual".

• "auto" — Automatically divide mask angle azimuth edges evenly between 0 and 360 degrees.
• "manual" — Specify mask angle azimuth edges manually using the MaskAzimuthEdges

property.

Example: h = skyplot(__,MaskAzimuthEdgesMode="manual")
Data Types: string | char

Chart Properties

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'
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Visibility of the SkyPlotChart object handle in the Children property of the parent, specified as
one of these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended

changes to the UI by another function. To temporarily hide the handle during the execution of that
function, set the HandleVisibility to 'off'.

• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles, regardless of their HandleVisibility property setting.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. This
property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the Tile and TileSpan properties on
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

This code places the chart c in the third tile of the grid.

c.Layout.Tile = 3;
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To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as "north", "south",
"east", or "west". For example, setting the value to "east" places the chart in the tile to the right
of the grid.

c.Layout.Tile = "east";

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object.
For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a
figure or panel) then this property is empty and has no effect.

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Marker Properties

MarkerEdgeAlpha — Marker edge transparency
1 (default) | scalar in range [0,1] | 'flat'

Marker edge transparency, specified as a scalar in the range [0,1] or 'flat'. A value of 1 is
opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

To set the edge transparency to a different value for each point in the plot, set the AlphaData
property to a vector the same size as the XData property, and set the MarkerEdgeAlpha property to
'flat'.

MarkerEdgeColor — Marker outline color
'flat' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color name, or
a short name. The value of 'auto' uses the same color as the Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]. For example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and the hexadecimal color codes.
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

This table shows the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in
many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceAlpha — Marker face transparency
0.6 (default) | scalar in range [0,1] | 'flat'

Marker face transparency, specified as a scalar in the range [0,1] or 'flat'. A value of 1 is opaque
and 0 is completely transparent. Values between 0 and 1 are partially transparent.

To set the marker face transparency to a different value for each point, set the AlphaData property
to a vector the same size as the XData property, and set the MarkerFaceAlpha property to 'flat'.

MarkerFaceColor — Marker fill color
'flat' (default) | 'auto' | 'none' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'flat' option uses the CData values. The 'auto' option uses the same
color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].
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• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSizeData — Marker size
100 (default) | positive scalar | vector of positive values

Marker size, specified as a positive scalar or vector of positive values in points, where one point =
1/72 of an inch. If specified as a vector, the vector must be of the same length as AzimuthData.

Position

PositionConstraint — Position to hold constant
"outerposition" | "innerposition"
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Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

• "outerposition" — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

• "innerposition" — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and location
[0 0 1 1] (default) | four-element vector

Outer size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The outer position
includes the colorbar, title, and axis labels.

• The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

• The width and height elements are the skyplot dimensions, which include the skyplot cells, plus
a margin for the surrounding text and colorbar.

The default value of [0 0 1 1] covers the whole interior of the container. The units are normalized
relative to the size of the container. To change the units, set the Units property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

InnerPosition — Inner size and location
[0.1300 0.1100 0.7750 0.8114] (default) | four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The inner position
does not include the colorbar, title, or axis labels.

• The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

• The width and height elements are the skyplot dimensions, which include only the skyplot cells.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Position — Inner size and location
four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. This property is
equivalent to the InnerPosition property.
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Note Setting this property has no effect when the parent container is a TiledChartLayout.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container, which

is typically the figure or a panel. The lower left
corner of the container maps to (0,0), and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between the

baselines of two lines of text.
'points' Typography points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows® and Macintosh systems:

• On Windows systems, a pixel is 1/96th of an
inch.

• On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value argument during object creation, you must set the Units
property before specifying the properties that you want to use these units, such as OuterPosition.

Visible — State of visibility
'on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display the skyplot.
• 'off' — Hide the skyplot without deleting it. You can still access the properties of an invisible

SkyPlotChart object.
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Version History
Introduced in R2021a

R2022b: SkyPlotChart supports azimuth and elevation trajectories and elevation masks

• The AzimuthData and ElevationData properties now accept matrices, enabling you to
represent trajectories by adding azimuth and elevation data for satellites at multiple time steps.

• Elevation angle masks are now supported using these new properties:

• MaskElevation
• MaskAlpha
• MaskColor
• MaskAzimuthEdges
• MaskAzimuthEdgesMode

See Also
Functions
skyplot | polarscatter

Objects
gnssSensor | nmeaParser
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stateEstimatorPF
Create particle filter state estimator

Description
The stateEstimatorPF object is a recursive, Bayesian state estimator that uses discrete particles
to approximate the posterior distribution of the estimated state.

The particle filter algorithm computes the state estimate recursively and involves two steps:
prediction and correction. The prediction step uses the previous state to predict the current state
based on a given system model. The correction step uses the current sensor measurement to correct
the state estimate. The algorithm periodically redistributes, or resamples, the particles in the state
space to match the posterior distribution of the estimated state.

The estimated state consists of state variables. Each particle represents a discrete state hypothesis of
these state variables. The set of all particles is used to help determine the final state estimate.

You can apply the particle filter to arbitrary nonlinear system models. Process and measurement
noise can follow arbitrary non-Gaussian distributions.

For more information on the particle filter workflow and setting specific parameters, see:

• “Particle Filter Workflow”
• “Particle Filter Parameters”

Creation

Syntax
pf = stateEstimatorPF

Description

pf = stateEstimatorPF creates an object that enables the state estimation for a simple system
with three state variables. Use the initialize method to initialize the particles with a known mean
and covariance or uniformly distributed particles within defined bounds. To customize the particle
filter’s system and measurement models, modify the StateTransitionFcn and
MeasurementLikelihoodFcn properties.

After you create the object, use initialize to initialize the NumStateVariables and
NumParticles properties. The initialize function sets these two properties based on your
inputs.

Properties
NumStateVariables — Number of state variables
3 (default) | scalar
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This property is read-only.

Number of state variables, specified as a scalar. This property is set based on the inputs to the
initialize method. The number of states is implicit based on the specified matrices for initial state
and covariance.

NumParticles — Number of particles used in the filter
1000 (default) | scalar

This property is read-only.

Number of particles using in the filter, specified as a scalar. You can specify this property only by
calling the initialize method.

StateTransitionFcn — Callback function for determining the state transition between
particle filter steps
function handle

Callback function for determining the state transition between particle filter steps, specified as a
function handle. The state transition function evolves the system state for each particle. The function
signature is:

function predictParticles = stateTransitionFcn(pf,prevParticles,varargin)

The callback function accepts at least two input arguments: the stateEstimatorPF object, pf, and
the particles at the previous time step, prevParticles. These specified particles are the
predictParticles returned from the previous call of the object. predictParticles and
prevParticles are the same size: NumParticles-by-NumStateVariables.

You can also use varargin to pass in a variable number of arguments from the predict function.
When you call:

predict(pf,arg1,arg2)

MATLAB essentially calls stateTranstionFcn as:

stateTransitionFcn(pf,prevParticles,arg1,arg2)

MeasurementLikelihoodFcn — Callback function calculating the likelihood of sensor
measurements
function handle

Callback function calculating the likelihood of sensor measurements, specified as a function handle.
Once a sensor measurement is available, this callback function calculates the likelihood that the
measurement is consistent with the state hypothesis of each particle. You must implement this
function based on your measurement model. The function signature is:

function likelihood = measurementLikelihoodFcn(PF,predictParticles,measurement,varargin)

The callback function accepts at least three input arguments:

1 pf – The associated stateEstimatorPF object
2 predictParticles – The particles that represent the predicted system state at the current

time step as an array of size NumParticles-by-NumStateVariables
3 measurement – The state measurement at the current time step
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You can also use varargin to pass in a variable number of arguments. These arguments are passed
by the correct function. When you call:

correct(pf,measurement,arg1,arg2)

MATLAB essentially calls measurementLikelihoodFcn as:

measurementLikelihoodFcn(pf,predictParticles,measurement,arg1,arg2)

The callback needs to return exactly one output, likelihood, which is the likelihood of the given
measurement for each particle state hypothesis.

IsStateVariableCircular — Indicator if state variables have a circular distribution
[0 0 0] (default) | logical array

Indicator if state variables have a circular distribution, specified as a logical array. Circular (or
angular) distributions use a probability density function with a range of [-pi,pi]. If the object has
multiple state variables, then IsStateVariableCircular is a row vector. Each vector element
indicates if the associated state variable is circular. If the object has only one state variable, then
IsStateVariableCircular is a scalar.

ResamplingPolicy — Policy settings that determine when to trigger resampling
object

Policy settings that determine when to trigger resampling, specified as an object. You can trigger
resampling either at fixed intervals, or you can trigger it dynamically, based on the number of
effective particles. See resamplingPolicyPF for more information.

ResamplingMethod — Method used for particle resampling
'multinomial' (default) | 'residual' | 'stratified' | 'systematic'

Method used for particle resampling, specified as 'multinomial', 'residual', 'stratified',
and 'systematic'.

StateEstimationMethod — Method used for state estimation
'mean' (default) | 'maxweight'

Method used for state estimation, specified as 'mean' and 'maxweight'.

Particles — Array of particle values
NumParticles-by-NumStateVariables matrix

Array of particle values, specified as a NumParticles-by-NumStateVariables matrix. Each row
corresponds to the state hypothesis of a single particle.

Weights — Particle weights
NumParticles-by-1 vector

Particle weights, specified as a NumParticles-by-1 vector. Each weight is associated with the
particle in the same row in the Particles property.

State — Best state estimate
vector

This property is read-only.
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Best state estimate, returned as a vector with length NumStateVariables. The estimate is extracted
based on the StateEstimationMethod property.

State Covariance — Corrected system covariance
N-by-N matrix | []

This property is read-only.

Corrected system variance, returned as an N-by-N matrix, where N is equal to the
NumStateVariables property. The corrected state is calculated based on the
StateEstimationMethod property and the MeasurementLikelihoodFcn. If you specify a state
estimate method that does not support covariance, then the property is set to [].

Object Functions
initialize Initialize the state of the particle filter
getStateEstimate Extract best state estimate and covariance from particles
predict Predict state of robot in next time step
correct Adjust state estimate based on sensor measurement

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';
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Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Estimate Robot Position in a Loop Using Particle Filter

Use the stateEstimatorPF object to track a robot as it moves in a 2-D space. The measured
position has random noise added. Using predict and correct, track the robot based on the
measurement and on an assumed motion model.

Initialize the particle filter and specify the default state transition function, the measurement
likelihood function, and the resampling policy.

pf = stateEstimatorPF;
pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Sample 1000 particles with an initial position of [0 0] and unit covariance.

initialize(pf,1000,[0 0],eye(2));

Prior to estimation, define a sine wave path for the dot to follow. Create an array to store the
predicted and estimated position. Define the amplitude of noise.

t = 0:0.1:4*pi;
dot = [t; sin(t)]';
robotPred = zeros(length(t),2);
robotCorrected = zeros(length(t),2);
noise = 0.1;

Begin the loop for predicting and correcting the estimated position based on measurements. The
resampling of particles occurs based on theResamplingPolicy property. The robot moves based on
a sine wave function with random noise added to the measurement.

for i = 1:length(t)
    % Predict next position. Resample particles if necessary.
    [robotPred(i,:),robotCov] = predict(pf);
    % Generate dot measurement with random noise. This is
    % equivalent to the observation step.
    measurement(i,:) = dot(i,:) + noise*(rand([1 2])-noise/2);
    % Correct position based on the given measurement to get best estimation.
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    % Actual dot position is not used. Store corrected position in data array.
    [robotCorrected(i,:),robotCov] = correct(pf,measurement(i,:));
end

Plot the actual path versus the estimated position. Actual results may vary due to the randomness of
particle distributions.

plot(dot(:,1),dot(:,2),robotCorrected(:,1),robotCorrected(:,2),'or')
xlim([0 t(end)])
ylim([-1 1])
legend('Actual position','Estimated position')
grid on

The figure shows how close the estimate state matches the actual position of the robot. Try tuning the
number of particles or specifying a different initial position and covariance to see how it affects
tracking over time.

Version History
Introduced in R2016a

R2019b: stateEstimatorPF was renamed
Behavior change in future release

The stateEstimatorPF object was renamed from robotics.ParticleFilter. Use
stateEstimatorPF for all object creation.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
resamplingPolicyPF | initialize | getStateEstimate | predict | correct

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”
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copy
Create copy of particle filter

Syntax
b = copy(a)

Description
b = copy(a) copies each element in the array of handles, a, to the new array of handles, b.

The copy method does not copy dependent properties. MATLAB does not call copy recursively on
any handles contained in property values. MATLAB also does not call the class constructor or
property-set methods during the copy operation.

Input Arguments
a — Object array
handle

Object array, specified as a handle.

Output Arguments
b — Object array containing copies of the objects in a
handle

Object array containing copies of the object in a, specified as a handle.

b has the same number of elements and is the same size and class of a. b is the same class as a. If a
is empty, b is also empty. If a is heterogeneous, b is also heterogeneous. If a contains deleted handles,
then copy creates deleted handles of the same class in b. Dynamic properties and listeners
associated with objects in a are not copied to objects in b.

Version History
Introduced in R2016a

See Also
stateEstimatorPF | resamplingPolicyPF | initialize | getStateEstimate | predict |
correct

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”
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correct
Adjust state estimate based on sensor measurement

Syntax
[stateCorr,stateCov] = correct(pf,measurement)
[stateCorr,stateCov] = correct(pf,measurement,varargin)

Description
[stateCorr,stateCov] = correct(pf,measurement) calculates the corrected system state
and its associated uncertainty covariance based on a sensor measurement at the current time step.
correct uses the MeasurementLikelihoodFcn property from the particle filter object, pf, as a
function to calculate the likelihood of the sensor measurement for each particle. The two inputs to the
MeasurementLikelihoodFcn function are:

1 pf – The stateEstimatorPF object, which contains the particles of the current iteration
2 measurement – The sensor measurements used to correct the state estimate

The MeasurementLikelihoodFcn function then extracts the best state estimate and covariance
based on the setting in the StateEstimationMethod property.

[stateCorr,stateCov] = correct(pf,measurement,varargin) passes all additional
arguments in varargin to the underlying MeasurementLikelihoodFcn after the first three
required inputs.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'

 correct

2-1533



            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more information.

measurement — Sensor measurements
array

Sensor measurements, specified as an array. This input is passed directly into the
MeasurementLikelihoodFcn property of pf. It is used to calculate the likelihood of the sensor
measurement for each particle.

varargin — Variable-length input argument list
comma-separated list

Variable-length input argument list, specified as a comma-separated list. This input is passed directly
into the MeasurementLikelihoodFcn property of pf. It is used to calculate the likelihood of the
sensor measurement for each particle. When you call:

correct(pf,measurement,arg1,arg2)

MATLAB essentially calls measurementLikelihoodFcn as:

measurementLikelihoodFcn(pf,measurement,arg1,arg2)
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Output Arguments
stateCorr — Corrected system state
vector with length NumStateVariables

Corrected system state, returned as a row vector with length NumStateVariables. The corrected
state is calculated based on the StateEstimationMethod algorithm and the
MeasurementLikelihoodFcn.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you specify a state
estimate method that does not support covariance, then the function returns stateCov as [].

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateEstimatorPF | resamplingPolicyPF | initialize | getStateEstimate | predict

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”
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getStateEstimate
Extract best state estimate and covariance from particles

Syntax
stateEst = getStateEstimate(pf)
[stateEst,stateCov] = getStateEstimate(pf)

Description
stateEst = getStateEstimate(pf) returns the best state estimate based on the current set of
particles. The estimate is extracted based on the StateEstimationMethod property from the
stateEstimatorPF object, pf.

[stateEst,stateCov] = getStateEstimate(pf) also returns the covariance around the state
estimate. The covariance is a measure of the uncertainty of the state estimate. Not all state estimate
methods support covariance output. In this case, getStateEstimate returns stateCov as [].

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.
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pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more information.

Output Arguments
stateEst — Best state estimate
vector

Best state estimate, returned as a row vector with length NumStateVariables. The estimate is
extracted based on the StateEstimationMethod algorithm specified in pf.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you specify a state
estimate method that does not support covariance, then the function returns stateCov as [].

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
stateEstimatorPF | resamplingPolicyPF | initialize | predict | correct

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”
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initialize
Initialize the state of the particle filter

Syntax
initialize(pf,numParticles,mean,covariance)
initialize(pf,numParticles,stateBounds)
initialize( ___ ,Name,Value)

Description
initialize(pf,numParticles,mean,covariance) initializes the particle filter object, pf, with
a specified number of particles, numParticles. The initial states of the particles in the state space
are determined by sampling from the multivariate normal distribution with the specified mean and
covariance.

initialize(pf,numParticles,stateBounds) determines the initial location of the particles by
sample from the multivariate uniform distribution within the specified stateBounds.

initialize( ___ ,Name,Value) initializes the particles with additional options specified by one or
more Name,Value pair arguments.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
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             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more information.

numParticles — Number of particles used in the filter
scalar

Number of particles used in the filter, specified as a scalar.

mean — Mean of particle distribution
vector

Mean of particle distribution, specified as a vector. The NumStateVariables property of pf is set
based on the length of this vector.

covariance — Covariance of particle distribution
N-by-N matrix

Covariance of particle distribution, specified as an N-by-N matrix, where N is the value of
NumStateVariables property from pf.

stateBounds — Bounds of state variables
n-by-2 matrix

Bounds of state variables, specified as an n-by-2 matrix. The NumStateVariables property of pf is
set based on the value of n. Each row corresponds to the lower and upper limit of the corresponding
state variable.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "CircularVariables",[0 0 1]

CircularVariables — Circular variables
logical vector

Circular variables, specified as a logical vector. Each state variable that uses circular or angular
coordinates is indicated with a 1. The length of the vector is equal to the NumStateVariables
property of pf.

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateEstimatorPF | resamplingPolicyPF | getStateEstimate | predict | correct

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”
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predict
Predict state of robot in next time step

Syntax
[statePred,stateCov] = predict(pf)
[statePred,stateCov] = predict(pf,varargin)

Description
[statePred,stateCov] = predict(pf) calculates the predicted system state and its associated
uncertainty covariance. predict uses the StateTransitionFcn property of stateEstimatorPF
object, pf, to evolve the state of all particles. It then extracts the best state estimate and covariance
based on the setting in the StateEstimationMethod property.

[statePred,stateCov] = predict(pf,varargin) passes all additional arguments specified in
varargin to the underlying StateTransitionFcn property of pf. The first input to
StateTransitionFcn is the set of particles from the previous time step, followed by all arguments
in varargin.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'
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Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more information.

varargin — Variable-length input argument list
comma-separated list

Variable-length input argument list, specified as a comma-separated list. This input is passed directly
into the StateTransitionFcn property of pf to evolve the system state for each particle. When you
call:

predict(pf,arg1,arg2)

MATLAB essentially calls the stateTranstionFcn as:

stateTransitionFcn(pf,prevParticles,arg1,arg2)

Output Arguments
statePred — Predicted system state
vector

Predicted system state, returned as a vector with length NumStateVariables. The predicted state is
calculated based on the StateEstimationMethod algorithm.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
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StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you specify a state
estimate method that does not support covariance, then the function returns stateCov as [].

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateEstimatorPF | resamplingPolicyPF | initialize | getStateEstimate | correct

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”
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stateSpaceSE2
SE(2) state space

Description
The stateSpaceSE2 object stores parameters and states in the SE(2) state space, which is
composed of state vectors represented by [x, y, θ]. x and y are Cartesian coordinates, and θ is the
orientation angle. The object uses Euclidean distance to calculate distance and uses linear
interpolation to calculate translation and rotation of the state.

Creation

Syntax
space = stateSpaceSE2
space = stateSpaceSE2(bounds)

Description

space = stateSpaceSE2 creates an SE(2) state space object with default state bounds for x, y, and
θ.

space = stateSpaceSE2(bounds) specifies the bounds for x, y, and θ. The state values beyond
the bounds are truncated to the bounds. The input, bounds, allows you to set the value of the
StateBounds property.

Properties
Name — Name of state space
'SE2' (default) | string

Name of state space, specified as a string.

NumStateVariables — Dimension of the state space
3 (default) | positive integer

This property is read-only.

Dimension of the state space, specified as a positive integer.

StateBounds — Bounds of state variables
[-100 100; -100 100; -3.1416 3.1416] (default) | 3-by-2 real-valued matrix

Bounds of state variables, specified as a 3-by-2 real-valued matrix.

• The first row specifies the lower and upper bounds of the x state in meters.
• The second row specifies the lower and upper bounds of the y state in meters.
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• The third row specifies the lower and upper bounds of the θ state in radians.

Data Types: double

WeightXY — Weight applied to x and y distance calculation
1 (default) | nonnegative real scalar

Weight applied to x and y distance calculation, specified as a nonnegative real scalar.

In the object, the distance calculated as:

d = wxy(dx
2 + dy

2) + wθdθ
2

wxy is weight applied to x and y coordinates, and wθ is the weight applied to the θ coordinate. dx, dy,
and dθ are the distances in the x, y, and θ direction, respectively.
Data Types: double

WeightTheta — Weight applied to theta distance calculation
0.1 (default) | nonnegative real scalar

Weight applied to θ distance calculation, specified as a nonnegative real scalar.

In the object, the distance calculated as:

d = wxy(dx
2 + dy

2) + wθdθ
2

wxy is weight applied to x and y coordinates, and wθ is the weight applied to the θ coordinate. dx, dy,
and dθ are the distances in the x, y, and θ direction, respectively.
Data Types: double

Object Functions
copy Create deep copy of state space object
distance Distance between two states
enforceStateBounds Reduce state to state bounds
interpolate Interpolate between states
sampleGaussian Sample state using Gaussian distribution
sampleUniform Sample state using uniform distribution

Examples

Plan Path Between Two SE(2) States

Create an SE(2) state space.

ss = stateSpaceSE2;

Create an occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupancy map from an example map and set map resolution as 10 cells/meter.
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load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits; [-pi pi]];

Create the path planner and increase maximum connection distance.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;

Set the start and goal states.

start = [0.5,0.5,0];
goal = [2.5,0.2,0];

Plan a path with default settings.

rng(100,'twister'); % for repeatable result
[pthObj,solnInfo] = planner.plan(start,goal);

Visualize the results.

map.show; hold on;
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-'); % tree expansion
plot(pthObj.States(:,1), pthObj.States(:,2),'r-','LineWidth',2) % draw path
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateSpaceDubins | stateSpaceReedsShepp
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stateSpaceSE3
SE(3) state space

Description
The stateSpaceSE3 object stores parameters and states in the SE(3) state space, which is
composed of state vectors represented by [x, y, z, qw, qx, qy, qz]. x, y, and z are Cartesian
coordinates. qw, qx, qy, and qz represent the orientation in a quaternion. The object uses Euclidean
distance calculation and linear interpolation for the translation component of the state. The object
uses quaternion distance calculation and spherical linear interpolation for the rotation component of
the state.

Creation

Syntax
space = stateSpaceSE3
space = stateSpaceSE3(bounds)

Description

space = stateSpaceSE3 creates an SE(3) state space object with default state bounds for x, y, and
z. The state variables qw, qx, qy, and qz corresponding to orientation are not bounded.

space = stateSpaceSE3(bounds) creates an SE(3) state space object with state bounds specified
as a 7-by-2 matrix. Each row specifies the minimum and maximum value for a dimension of the state
in the order x, y, z, qw, qx, qy, and qz. The input bounds sets the StateBounds property.

Properties
Name — Name of state space
'SE3' (default) | character vector

This property is read-only.

Name of state space, specified as a character vector.
Data Types: char

NumStateVariables — Number of state space dimensions
7 (default) | positive integer

This property is read-only.

Number of state space dimensions, specified dimensions, returned as a positive integer.
Data Types: double
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StateBounds — Bounds of state variables
[-100 100; -100 100; -100 100; Inf Inf; Inf Inf; Inf Inf; Inf Inf] (default) | 7-
by-2 matrix of real values

Bounds of state variables, specified as a 7-by-2 matrix of real values.

• The first row specifies the lower and upper bounds of the x state in meters.
• The second row specifies the lower and upper bounds of the y state in meters.
• The third row specifies the lower and upper bounds of the z state in meters.
• The fourth through the seventh rows specify the lower and upper bounds of the state variables

qw, qx, qy, and qz respectively, corresponding to orientation as a quaternion.

Note The StateBounds property only affect the Cartesian components of the state. The state
variables corresponding to orientation are not bounded.

Example: stateSpaceSE3([-10 10; -10 10; -10 10; Inf Inf; Inf Inf; Inf Inf; Inf
Inf])

Example: space.StateBounds = [-10 10; -10 10; -10 10; Inf Inf; Inf Inf; Inf
Inf; Inf Inf]

Data Types: double

WeightXYZ — Weight applied to x, y, and z distance calculation
1 (default) | positive real scalar

Weight applied to the x, y, and z distance calculation, specified as a positive real scalar. By default,
the weight for translation is chosen to be greater than the weight for rotation.

The object calculates distance as:

d = wxyz(dx
2 + dy

2 + dz
2) + wqdq

2

,

where wxyz is the weight applied to x, y, and z coordinates, and wq is the weight applied to the
orientation in quaternion. dx, dy, and dz are the distances in the x, y, and z directions, respectively. dq
is the quaternion distance.
Example: space.WeightXYZ = 2
Data Types: double

WeightQuaternion — Weight applied to quaternion distance calculation
0.1 (default) | positive real scalar

Weight applied to quaternion distance calculation, specified as a positive real scalar. By default, the
weight for rotation is chosen to be less than the weight for translation.

The object calculates distance as:

d = wxyz(dx
2 + dy

2 + dz
2) + wqdq

2
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,

where wxyz is weight applied to x, y, and z coordinates, and wq is the weight applied to the orientation
in quaternion. dx, dy, and dz are the distances in the x, y, and z direction, respectively. dq is the
quaternion distance.
Example: space.WeightQuaternion = 0.5
Data Types: double

Object Functions
copy Create deep copy of state space object
distance Distance between two states
enforceStateBounds Reduce state to state bounds
interpolate Interpolate between states
sampleUniform Sample state using uniform distribution

Examples

Validate Path Through 3-D Occupancy Map Environment

Create a 3-D occupancy map and associated state validator. Plan, validate, and visualize a path
through the occupancy map.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify a threshold for which cells to
consider as obstacle-free.

mapData = load('dMapCityBlock.mat');
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([-20 220;
    -20 220;
    -10 100;
    inf inf;
    inf inf;
    inf inf;
    inf inf]);

Create a 3-D occupancy map state validator using the created state space.

sv = validatorOccupancyMap3D(ss);

Assign the occupancy map to the state validator object. Specify the sampling distance interval.

sv.Map = omap;
sv.ValidationDistance = 0.1;
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Plan and Visualize Path

Create a path planner with increased maximum connection distance. Reduce the maximum number of
iterations.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 50;
planner.MaxIterations = 1000;

Create a user-defined evaluation function for determining whether the path reaches the goal. Specify
the probability of choosing the goal state during sampling.

planner.GoalReachedFcn = @(~,x,y)(norm(x(1:3)-y(1:3))<5);
planner.GoalBias = 0.1;

Set the start and goal states.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Plan a path using the specified start, goal, and planner.

[pthObj,solnInfo] = plan(planner,start,goal);

Check that the points of the path are valid states.

isValid = isStateValid(sv,pthObj.States)

isValid = 7x1 logical array

   1
   1
   1
   1
   1
   1
   1

Check that the motion between each sequential path state is valid.

isPathValid = zeros(size(pthObj.States,1)-1,1,'logical');
for i = 1:size(pthObj.States,1)-1
    [isPathValid(i),~] = isMotionValid(sv,pthObj.States(i,:),...
        pthObj.States(i+1,:));
end
isPathValid

isPathValid = 6x1 logical array

   1
   1
   1
   1
   1
   1

Visualize the results.
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show(omap)
hold on
scatter3(start(1,1),start(1,2),start(1,3),'g','filled') % draw start state
scatter3(goal(1,1),goal(1,2),goal(1,3),'r','filled')    % draw goal state
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3),...
    'r-','LineWidth',2) % draw path

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateSpaceSE2 | validatorOccupancyMap3D
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stateSpaceDubins
State space for Dubins vehicles

Description
The stateSpaceDubins object stores parameters and states in the Dubins state space, which is
composed of state vectors represented by [x, y, θ]. x and y are Cartesian coordinates, and θ is the
orientation angle. The Dubins state space has a lower limit on the turning radius (specified by the
MinTurningRadius property in the object) for navigating between states and uses the shortest
feasible curve to connect states.

Creation

Syntax
space = stateSpaceDubins
space = stateSpaceDubins(bounds)

Description

space = stateSpaceDubins creates a Dubins state space object with default state bounds for x, y,
and θ.

space = stateSpaceDubins(bounds) specifies the bounds for x, y, and θ. The state values
beyond the bounds are truncated to the bounds. The input, bounds, allows you to set the value of the
StateBounds property.

Properties
Name — Name of state space
'SE2 Dubins' (default) | string

Name of state space, specified as a string.

NumStateVariables — Dimension of the state space
3 (default) | positive integer

This property is read-only.

Dimension of the state space, specified as a positive integer.

StateBounds — Bounds of state variables
[-100 100; -100 100; -3.1416 3.1416] (default) | 3-by-2 real-valued matrix

Bounds of state variables, specified as a 3-by-2 real-valued matrix.

• The first row specifies the lower and upper bounds for the x state in meters.
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• The second row specifies the lower and upper bounds for the y state in meters.
• The third row specifies the lower and upper bounds for the θ state in radians.

Data Types: double

MinTurningRadius — Minimum turning radius
1 (default) | positive scalar

Minimum turning radius in meters, specified as a positive scalar. The minimum turning radius is for
the smallest circle the vehicle can make with maximum steer in a single direction.

Object Functions
copy Create deep copy of state space object
distance Distance between two states
enforceStateBounds Reduce state to state bounds
interpolate Interpolate between states
sampleGaussian Sample state using Gaussian distribution
sampleUniform Sample state using uniform distribution

Examples

Plan Path Between Two States in Dubins State Space

Create a Dubins state space and set the minimum turing radius to 0.2.

ss = stateSpaceDubins;
ss.MinTurningRadius = 0.2;

Create an occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupancy map from an example map and set map resolution as 10 cells/meter.

load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits; [-pi pi]];

Create the path planner and increase max connection distance.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;

Set the start and goal states.

start = [0.5,0.5,0];
goal = [2.5,0.2,0];
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Plan a path with default settings.

rng(100,'twister'); % repeatable result
[pthObj,solnInfo] = planner.plan(start,goal);

Visualize the results.

show(map);
hold on;
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-'); % tree expansion
plot(pthObj.States(:,1), pthObj.States(:,2),'r-','LineWidth',2) % draw path

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateSpaceSE2 | stateSpaceReedsShepp | dubinsConnection
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stateSpaceReedsShepp
State space for Reeds-Shepp vehicles

Description
The stateSpaceReedsShepp object stores parameters and states in the Reeds-Shepp state space,
which is composed of state vectors represented by [x, y, θ]. x and y are Cartesian coordinates, and θ
is the orientation angle. The Reeds-Shepp state space has a lower limit on the turning radius
(specified by the MinTurningRadius property in the object) and forward and reverse costs
(specified by the ForwardCost and ReverseCost properties in the object) for navigating between
states.

Creation

Syntax
space = stateSpaceReedsShepp
sapce = stateSpaceReedsShepp(bounds)

Description

space = stateSpaceReedsShepp creates a Reeds-Shepp state space object with default state
bounds for x, y, and θ.

sapce = stateSpaceReedsShepp(bounds) specifies the bounds for x, y, and θ. The state values
beyond the bounds are truncated to the bounds. The input, bounds, sets the value of the StateBounds
property.

Properties
Name — Name of state space
'SE2 Reeds-Shepp' (default) | string

Name of state space, specified as a string.

NumStateVariables — Dimension of the state space
3 (default) | positive integer

This property is read-only.

Dimension of the state space, specified as a positive integer.

StateBounds — Bounds of state variables
[-100 100; -100 100; -3.1416 3.1416] (default) | 3-by-2 real-valued matrix

Bounds of state variables, specified as a 3-by-2 real-valued matrix.
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• The first row specifies the lower and upper bounds for the x state in meters.
• The second row specifies the lower and upper bounds for the y state in meters.
• The third row specifies the lower and upper bounds for the θ state in radians.

Data Types: double

MinTurningRadius — Minimum turning radius
1 (default) | positive scalar

Minimum turning radius in meters, specified as a positive scalar. The minimum turning radius is for
the smallest circle the vehicle can make with maximum steer in a single direction.

ForwardCost — Cost multiplier for forward motion
1 (default) | positive scalar

Cost multiplier for forward motion, specified as a positive scalar. Increase the cost to penalize
forward motion.

ReverseCost — Cost multiplier for reverse motion
1 (default) | positive scalar

Cost multiplier for reverse motion, specified as a positive scalar. Increase the cost to penalize reverse
motion.

Object Functions
copy Create deep copy of state space object
distance Distance between two states
enforceStateBounds Reduce state to state bounds
interpolate Interpolate between states
sampleGaussian Sample state using Gaussian distribution
sampleUniform Sample state using uniform distribution

Examples

Plan Path Between Two States in ReedsShepp State Space

Create a ReedsShepp state space.

ss = stateSpaceReedsShepp;

Create an occupanyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupany map from an example map and set map resolution as 10 cells/meter.

load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;
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Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits; [-pi pi]];

Create the path planner and increase max connection distance.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;

Set the start and goal states.

start = [0.5,0.5,0];
goal = [2.5,0.2,0];

Plan a path with default settings.

rng(100,'twister'); % repeatable result
[pthObj,solnInfo] = planner.plan(start,goal);

Visualize the results.

show(map); 
hold on;
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-'); % tree expansion
plot(pthObj.States(:,1), pthObj.States(:,2),'r-','LineWidth',2) % draw path
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateSpaceDubins | stateSpaceSE2 | reedsSheppConnection
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distance
Distance between two states

Syntax
dist = distance(space,states1,states2)

Description
dist = distance(space,states1,states2) returns the distance between states1 and
states2 in the specified state space space.

Examples

Calculate Distance Between Two States in SE3

Create an SE(3) state space.

space = stateSpaceSE3

space = 
  stateSpaceSE3 with properties:

                 Name: 'SE3'
          StateBounds: [7x2 double]
    NumStateVariables: 7
            WeightXYZ: 1
     WeightQuaternion: 0.1000

Calculate distance between two states.

dist = distance(space,[2 10 3 0.2 0 0 0.8],[0 -2.5 4 0.7 0.3 0 0])

dist = 12.7269

Calculate Euclidean distance between two states.

space.WeightQuaternion = 0;
distEuc = distance(space,[2 10 3 0.2 0 0 0.8; 4 5 2 1 2 4 2],[62 5 33 0.2 0 0 0.8; 9 9 3 3 1 3.1 7])

distEuc = 2×1

   67.2681
    6.4807

 distance
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Input Arguments
space — State space object
stateSpaceSE2 object | stateSpaceSE3 object | stateSpaceDubins object |
stateSpaceReedsShepp object

State space object, specified as a stateSpaceSE2, stateSpaceSE3, stateSpaceDubins, or
stateSpaceReedsShepp object.

states1 — Initial states for distance calculation
n-by-3 matrix of real values | n-by-7 matrix of real values

Initial states for distance calculation, specified as an n-by-3 or n-by-7 matrix of real values. n is the
number of specified states.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, each row is of form [x y theta], which defines the xy-position and
orientation angle theta of a state in the state space.

For the 3-D state space object stateSpaceSE3, each row is of form [x y z qw qx qy qz], which
defines the xyz-position and quaternion orientation [qw qx qy qz] of a state in the state space.

The function supports following combinations for distance calculation:

• n-to-n — n number of states in states1 and n number of states in states2.

For example, distance(space,rand(10,7),rand(10,7))
• 1-to-n — 1 state in states1 and n number of states in states2.

For example, distance(space,rand(1,7),rand(10,7))
• n-to-1 — n number of states in states1 and 1 state in states2.

For example, distance(space,rand(10,7),rand(1,7))

Data Types: single | double

states2 — Final states for distance calculation
n-by-3 matrix of real values | n-by-7 matrix of real values

Final states for distance calculation, specified as an n-by-3 or n-by-7 matrix of real values. n is the
number of specified states.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, each row is of form [x y theta], which defines the xy-position and
orientation angle theta of a state in the state space.

For the 3-D state space object stateSpaceSE3, each row is of form [x y z qw qx qy qz], which
defines the xyz-position and quaternion orientation [qw qx qy qz] of a state in the state space.

The function supports following combinations for distance calculation:

• n-to-n — n number of states in states1 and n number of states in states2.

For example, distance(space,rand(10,7),rand(10,7))
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• 1-to-n — 1 state in states1 and n number of states in states2.

For example, distance(space,rand(1,7),rand(10,7))
• n-to-1 — n number of states in states1 and 1 state in states2.

For example, distance(space,rand(10,7),rand(1,7))

Data Types: single | double

Output Arguments
dist — Distance between states
n-element column vector

Distance between states, returned as an n-element column vector. n is the number of specified states.

The function supports following combinations for distance calculation:

• n-to-n — n number of states in states1 and n number of states in states2.
• 1-to-n — 1 state in states1 and n number of states in states2.
• n-to-1 — n number of states in states1 and 1 state in states2.

Data Types: single | double

Version History
Introduced in R2019b

See Also
stateSpaceSE2 | stateSpaceSE3 | stateSpaceDubins | stateSpaceReedsShepp
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interpolate
Interpolate between states

Syntax
interpStates = interpolate(space,state1,state2,ratio)

Description
interpStates = interpolate(space,state1,state2,ratio) interpolates states between the
specified start state state1 and end state state2 based on the specified interpolation ratio ratio.

Examples

Interpolate Between States in SE(2)

Create an SE(2) state space with default properties.

space = stateSpaceSE2

space = 
  stateSpaceSE2 with properties:

                 Name: 'SE2'
          StateBounds: [3x2 double]
    NumStateVariables: 3
             WeightXY: 1
          WeightTheta: 0.1000

Create a pair of states in 2-D space.

state1 = [2 10 -pi];
state2 = [0 -2.5 -pi/4];

Interpolate halfway between two states.

state = interpolate(space,state1,state2,0.5)

state = 1×3

    1.0000    3.7500   -1.9635

Interpolate multiple points with a fixed interval.

states = interpolate(space,state1,state2,0:0.02:1)

states = 51×3

    2.0000   10.0000   -3.1416
    1.9600    9.7500   -3.0945
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    1.9200    9.5000   -3.0473
    1.8800    9.2500   -3.0002
    1.8400    9.0000   -2.9531
    1.8000    8.7500   -2.9060
    1.7600    8.5000   -2.8588
    1.7200    8.2500   -2.8117
    1.6800    8.0000   -2.7646
    1.6400    7.7500   -2.7175
      ⋮

Interpolate Between States in SE(3)

Create an SE(3) state space with default properties.

space = stateSpaceSE3

space = 
  stateSpaceSE3 with properties:

                 Name: 'SE3'
          StateBounds: [7x2 double]
    NumStateVariables: 7
            WeightXYZ: 1
     WeightQuaternion: 0.1000

Create a pair of states in 3-D space.

state1 = [2 10 3 0.2 0 0 0.8];
state2 = [0 -2.5 4 0.7 0.3 0 0];

Interpolate halfway between two states.

state = interpolate(space,state1,state2,0.5)

state = 1×7

    1.0000    3.7500    3.5000    0.7428    0.2519         0    0.6203

Interpolate multiple points with a fixed interval.

states = interpolate(space,state1,state2,0:0.02:1)

states = 51×7

    2.0000   10.0000    3.0000    0.2425         0         0    0.9701
    1.9600    9.7500    3.0200    0.2663    0.0109         0    0.9638
    1.9200    9.5000    3.0400    0.2899    0.0217         0    0.9568
    1.8800    9.2500    3.0600    0.3133    0.0326         0    0.9491
    1.8400    9.0000    3.0800    0.3365    0.0434         0    0.9407
    1.8000    8.7500    3.1000    0.3594    0.0542         0    0.9316
    1.7600    8.5000    3.1200    0.3821    0.0650         0    0.9218
    1.7200    8.2500    3.1400    0.4045    0.0757         0    0.9114
    1.6800    8.0000    3.1600    0.4266    0.0864         0    0.9003
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    1.6400    7.7500    3.1800    0.4484    0.0969         0    0.8886
      ⋮

Input Arguments
space — State space object
stateSpaceSE2 object | stateSpaceSE3 object | stateSpaceDubins object |
stateSpaceReedsShepp object

State space object, specified as a stateSpaceSE2, stateSpaceSE3, stateSpaceDubins, or
stateSpaceReedsShepp object.

state1 — Start state for interpolation
three-element vector of real values | seven-element vector of real values

Start state for interpolation, specified as a three-element or seven-element vector of real values.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, the state is a vector of form [x y theta], which defines the xy-position
and orientation angle theta of a state in the state space.

For the 3-D state space object stateSpaceSE3, the state is a vector of form [x y z qw qx qy
qz], which defines the xyz-position and quaternion orientation [qw qx qy qz] of a state in the
state space.
Data Types: single | double

state2 — End state for interpolation
three-element vector of real values | seven-element vector of real values

End state for interpolation, specified as a three-element or seven-element vector of real values.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, the state is a vector of form [x y theta], which defines the xy-position
and orientation angle theta of a state in the state space.

For the 3-D state space object stateSpaceSE3, the state is a vector of form [x y z qw qx qy
qz], which defines the xyz-position and quaternion orientation [qw qx qy qz] of a state in the
state space.
Data Types: single | double

ratio — Interpolation ratio
scalar in range [0, 1] | n-element column vector of values in the range [0, 1]

Interpolation ratio, specified as a scalar in the range of [0, 1], or an n-element column vector of
values in the range [0, 1] . n is the number of desired interpolation points.
Data Types: single | double

Output Arguments
interpStates — Interpolated states
n-by-3 matrix of real values | n-by-7 matrix of real values
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Interpolated states, returned as an n-by-3 or n-by-7 matrix of real values. n is the number of
interpolation points specified by the ratio input argument.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, each row is of form [x y theta], which defines the xy-position and
orientation angle theta of the interpolated states.

For the 3-D state space object stateSpaceSE3, each row is of form [x y z qw qx qy qz], which
defines the xyz-position and quaternion orientation [qw qx qy qz] of the interpolated states.
Data Types: single | double

Version History
Introduced in R2019b

See Also
stateSpaceSE2 | stateSpaceSE3 | stateSpaceDubins | stateSpaceReedsShepp
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enforceStateBounds
Reduce state to state bounds

Syntax
boundedStates = enforceStateBounds(space,states)

Description
boundedStates = enforceStateBounds(space,states) reduces the specified states states
to the state bounds in the StateBounds property of the specified state space object space.

Examples

Enforce State Bounds for SE(3) States

Create an SE(3) state space object.

space = stateSpaceSE3([-1 1; ...
    -2 2; ...
    -10 10; ...
    -inf inf; ...
    -inf inf; ...
    -inf inf; ...
    -inf inf])

space = 
  stateSpaceSE3 with properties:

                 Name: 'SE3'
          StateBounds: [7x2 double]
    NumStateVariables: 7
            WeightXYZ: 1
     WeightQuaternion: 0.1000

Create a pair of states in 3-D space.

state1 = [2 10 3 2 0 0 0.8];
state2 = [223 100 3 2 2 12 5];

Enforce state bounds for a single state.

boundedState = enforceStateBounds(space,state1)

boundedState = 1×7

    1.0000    2.0000    3.0000    2.0000         0         0    0.8000

Enforce state bounds for multiple states.
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boundedStates = enforceStateBounds(space,[state1; state2])

boundedStates = 2×7

    1.0000    2.0000    3.0000    2.0000         0         0    0.8000
    1.0000    2.0000    3.0000    2.0000    2.0000   12.0000    5.0000

Input Arguments
space — State space object
stateSpaceSE2 object | stateSpaceSE3 object | stateSpaceDubins object |
stateSpaceReedsShepp object

State space object, specified as a stateSpaceSE2, stateSpaceSE3, stateSpaceDubins, or
stateSpaceReedsShepp object.

states — Unbounded states
n-by-3 matrix of real values | n-by-7 matrix of real values

Unbounded states, specified as an n-by-3 or n-by-7 matrix of real values.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, each row is of form [x y theta], which defines the xy-position and
orientation angle theta of a state in the state space.

For the 3-D state space object stateSpaceSE3, each row is of form [x y z qw qx qy qz], which
defines the xyz-position and quaternion orientation [qw qx qy qz] of a state in the state space.
Data Types: single | double

Output Arguments
boundedStates — Bounded states
n-by-3 matrix of real values | n-by-7 matrix of real values

Bounded states, returned as an n-by-3 or n-by-7 matrix of real values. The value of n is same as for
states input argument.

The function truncates each of the specified unbounded states to the bounds specified in the
StateBounds property of the state space object space.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, each row is of form [x y theta], which defines the xy-position and
orientation angle theta of the bounded states.

For the 3-D state space object stateSpaceSE3, each row is of form [x y z qw qx qy qz], which
defines the xyz-position and quaternion orientation [qw qx qy qz] of the bounded states.
Data Types: single | double

Version History
Introduced in R2019b

 enforceStateBounds

2-1569



See Also
stateSpaceSE2 | stateSpaceSE3 | stateSpaceDubins | stateSpaceReedsShepp
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copy
Create deep copy of state space object

Syntax
space2 = copy(space1)

Description
space2 = copy(space1) creates a deep copy of the specified state space object.

Examples

Create Deep Copy of SE(3) State Space Object

Create a default SE(3) state space object.

space = stateSpaceSE3;

Specify weight for the quaternion distance in state space calculation.

space.WeightQuaternion = 2/3

space = 
  stateSpaceSE3 with properties:

                 Name: 'SE3'
          StateBounds: [7x2 double]
    NumStateVariables: 7
            WeightXYZ: 1
     WeightQuaternion: 0.6667

Create a deep copy of the state space object.

space2 = copy(space)

space2 = 
  stateSpaceSE3 with properties:

                 Name: 'SE3'
          StateBounds: [7x2 double]
    NumStateVariables: 7
            WeightXYZ: 1
     WeightQuaternion: 0.6667

Verify that the WeightQuaternion property values of the two state space objects are equal.

isequal(space.WeightQuaternion,space2.WeightQuaternion)
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ans = logical
   1

Input Arguments
space1 — State space object
stateSpaceSE2 object | stateSpaceSE3 object | stateSpaceDubins object |
stateSpaceReedsShepp object

State space object, specified as a stateSpaceSE2, stateSpaceSE3, stateSpaceDubins, or
stateSpaceReedsShepp object.

Output Arguments
space2 — State space object
stateSpaceSE2 object | stateSpaceSE3 object | stateSpaceDubins object |
stateSpaceReedsShepp object

State space object, returned as a stateSpaceSE2, stateSpaceSE3, stateSpaceDubins, or
stateSpaceReedsShepp object.

Version History
Introduced in R2019b

See Also
stateSpaceSE2 | stateSpaceSE3 | stateSpaceDubins | stateSpaceReedsShepp
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sampleGaussian
Sample state using Gaussian distribution

Syntax
state = sampleGaussian(space,meanState,stdDev)
state = sampleGaussian(space,meanState,stdDev,numSamples)

Description
state = sampleGaussian(space,meanState,stdDev) returns a sample state of the state space
based on a Gaussian (normal) distribution with specified mean, meanState, and standard deviation,
stdDev.

state = sampleGaussian(space,meanState,stdDev,numSamples) returns a number of state
samples. The number is equal to numSamples.

Examples

Sample States of State Space Using Gaussian Distribution

Create an SE(2) state space.

space = stateSpaceSE2;

Specify the mean state, standard deviation, and the number of state samples to return.

meanState = [5 5 pi/3];
stdDev = [0.1 0.1 pi/18];
numSamples = 2;

Sample states of the state space based on a Gaussian distribution.

state = sampleGaussian(space,meanState,stdDev,numSamples)

state = 2×3

    5.0538    5.1834    0.6530
    5.0862    5.0319    0.8190

Input Arguments
space — State space object
spaceSE2 object | spaceDubins object | spaceReedsShepp object

State space object, specified as a stateSpaceSE2, a stateSpaceDubins, or a
stateSpaceReedsShepp object.
Data Types: object
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meanState — Mean state
3-element vector of real values

Mean state of the Gaussian distribution for sampling, specified as a 3-element vector of real values.
Example: [5 5 pi/3]
Data Types: single | double

stdDev — Standard deviation
3-element vector of nonnegative values

Standard deviation of the Gaussian distribution for sampling, specified as a 3-element vector of
nonnegative values.
Example: [0.1 0.1 pi/18]
Data Types: single | double

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer.
Data Types: single | double

Output Arguments
state — State samples
N-by-3 real-valued matrix

State samples, returned as an N-by-3 real-valued matrix. N is the number of samples. Each row of the
matrix corresponds to one incidence of state in the state space.
Data Types: single | double

Version History
Introduced in R2019b

See Also
stateSpaceSE2 | stateSpaceDubins | stateSpaceReedsShepp
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sampleUniform
Sample state using uniform distribution

Syntax
state = sampleUniform(space)
state = sampleUniform(space,numSamples)
state = sampleUniform(space,nearState,distVector,numSamples)

Description
state = sampleUniform(space) samples a state within the bounds in the StateBounds property
of the specified state space object space using a uniform probability distribution. For a
stateSpaceSE3 object, the state variables corresponding to orientation are bound to a unit
quaternion using a uniform distribution of random rotations.

state = sampleUniform(space,numSamples) returns a specified number of state samples
numSamples within the bounds of the state space object.

state = sampleUniform(space,nearState,distVector,numSamples) samples states in a
specified subregion of the bounds of the state space object. Specify the center of the sampling region
nearState and the distance from the center of the sampling region to its boundaries distVector.

Note The stateSpaceSE3 object does not support this syntax.

Examples

Sample State Using Uniform Distribution in SE(3)

Create an SE(3) state space.

space = stateSpaceSE3([-10 10; -10 10; -10 10; inf inf; inf inf; inf inf; inf inf])

space = 
  stateSpaceSE3 with properties:

                 Name: 'SE3'
          StateBounds: [7x2 double]
    NumStateVariables: 7
            WeightXYZ: 1
     WeightQuaternion: 0.1000

Sample 3 states within full state bounds.

state = sampleUniform(space,3)

state = 3×7
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    6.2945    8.1158   -7.4603    0.6316    0.3078   -0.6921   -0.1654
    8.2675    2.6472   -8.0492   -0.0834   -0.9448    0.2709    0.1641
   -4.4300    0.9376    9.1501    0.5771   -0.5458   -0.5490   -0.2601

Input Arguments
space — State space object
stateSpaceSE2 object | stateSpaceSE3 object | stateSpaceDubins object |
stateSpaceReedsShepp object

State space object, specified as a stateSpaceSE2, stateSpaceSE3, stateSpaceDubins, or
stateSpaceReedsShepp object.

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer.
Data Types: single | double

nearState — Center of sampling region
three-element vector of real values

Center of the sampling region, specified as a three-element vector of real values.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, the state is a vector of form [x y theta], which defines the xy-position
and orientation angle theta of a state in the state space.

Note The stateSpaceSE3 object does not support this argument.

Data Types: single | double

distVector — Distance of sampling region boundary from center
three-element vector of positive numbers

Distance of sampling region boundary from the center, specified as a three-element vector of positive
numbers.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, the state is a vector of form [x y theta], which defines the xy-position
and orientation angle theta of a state in the state space.

Note The stateSpaceSE3 object does not support this argument.

Data Types: single | double
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Output Arguments
state — State samples
n-by-3 matrix of real values | n-by-7 matrix of real values

State samples, returned as an n-by-3 or n-by-7 matrix of real values. n is the number of samples.

For the 2-D state space objects stateSpaceSE2, stateSpaceDubins, and
stateSpaceReedsShepp, each row is of form [x y theta], which defines the xy-position and
orientation angle theta of the sampled states.

For the 3-D state space object stateSpaceSE3, each row is of form [x y z qw qx qy qz], which
defines the xyz-position and quaternion orientation [qw qx qy qz] of the sampled states.
Data Types: single | double

Version History
Introduced in R2019b

See Also
stateSpaceSE2 | stateSpaceSE3 | stateSpaceDubins | stateSpaceReedsShepp
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trajectoryGeneratorFrenet
Find optimal trajectory along reference path

Description
The trajectoryGeneratorFrenet object generates alternate trajectories using fourth or fifth-
order polynomials relative to a given reference path. Each trajectory defines a motion between Frenet
states over a specified time span.

Frenet states describe their position, velocity and acceleration relative to a static reference path,
specified as a referencePathFrenet object.

The object expresses Frenet states as a vector of form [S dS ddS L dL ddL], where S is the arc
length and L is the perpendicular deviation from the direction of the reference path. Derivatives of S
are relative to time. Derivatives of L are relative to the arc length, S.

To generate alternative trajectories, specify the initial and terminal frenet states with a given time
span to the connect object function.

Creation

Syntax
connectorFrenet = trajectoryGeneratorFrenet(refPath)
connectorFrenet = trajectoryGeneratorFrenet(
refPath,'TimeResolution',timeValue)

Description

connectorFrenet = trajectoryGeneratorFrenet(refPath) generates trajectories between
initial and terminal states relative to a reference path refPath specified as a
referencePathFrenet object. The refPath input argument sets the ReferencePath property.
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connectorFrenet = trajectoryGeneratorFrenet(
refPath,'TimeResolution',timeValue) specifies the time interval for discretization. The
timeValue argument sets the TimeResolution property.

Properties
TimeResolution — Discretization time interval between sampled Frenet states
0.1 (default) | positive scalar in seconds

Discretization time interval between sampled Frenet states, specified as a positive scalar in seconds.
When using the connect object function, this property determines the resolution of the Times field
of the generated trajectory structures, frenetTrajectory and globalTrajectory.
Data Types: double

ReferencePath — Reference path in Frenet coordinates
referencePathFrenet

Reference path in Frenet coordinates, specified as a referencePathFrenet object.

Object Functions
connect Connect initial and terminal Frenet states
createParallelState Create states using Frenet and global parameters

Examples

Generate Alternative Trajectories for Reference Path

Generate alternative trajectories for a reference path using Frenet coordinates. Specify different
initial and terminal states for your trajectories. Tune your states based on the generated trajectories.

Generate a reference path from a set of waypoints. Create a trajectoryGeneratorFrenet object
from the reference path.

waypoints = [0 0; ...
    50 20; ...
    100 0; ...
    150 10];
refPath = referencePathFrenet(waypoints);
connector = trajectoryGeneratorFrenet(refPath);

Generate a five-second trajectory between the path origin and a point 30 m down the path as Frenet
states.

initState = [0 0 0 0 0 0];  % [S ds ddS L dL ddL]
termState = [30 0 0 0 0 0]; % [S ds ddS L dL ddL]
[~,trajGlobal] = connect(connector,initState,termState,5);

Display the trajectory in global coordinates.

show(refPath);
hold on
axis equal
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plot(trajGlobal.Trajectory(:,1),trajGlobal.Trajectory(:,2),'b')
legend(["Waypoints","Reference Path","Trajectory to 30m"])

Create a matrix of terminal states with lateral deviations between –3 m and 3 m. Generate
trajectories that cover the same arc length in 10 seconds, but deviate laterally from the reference
path. Display the new alternative paths.

termStateDeviated = termState + ([-3:3]' * [0 0 0 1 0 0]);
[~,trajGlobal] = connect(connector,initState,termStateDeviated,10);

clf
show(refPath);
hold on
axis equal
for i = 1:length(trajGlobal)
    plot(trajGlobal(i).Trajectory(:,1),trajGlobal(i).Trajectory(:,2),'g')
end
legend(["Waypoints","Reference Path","Alternative Trajectories"])
hold off
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Specify a new terminal state to generate a new trajectory. This trajectory is not desirable because it
requires reverse motion to achieve a lateral velocity of 10 m/s.

newTermState = [5 10 0 5 0 0];
[~,newTrajGlobal] = connect(connector,initState,newTermState,3);

clf
show(refPath);
hold on
axis equal
plot(newTrajGlobal.Trajectory(:,1),newTrajGlobal.Trajectory(:,2),'b');
legend(["Waypoint","Reference Path","New Trajectory"])
hold off
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Relax the restriction on the longitudinal state by specifying an arc length of NaN. Generate and
display the trajectory again. The new position shows a good alternative trajectory that deviates off
the reference path.

relaxedTermState = [NaN 10 0 5 0 0];
[~,trajGlobalRelaxed] = connect(connector,initState,relaxedTermState,3);

clf
show(refPath);
hold on
axis equal
plot(trajGlobalRelaxed.Trajectory(:,1),trajGlobalRelaxed.Trajectory(:,2),'g');
hold off
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Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

trajectoryGeneratorFrenet now supports code generation with
DynamicMemoryAllocation='off'.

See Also
Objects
referencePathFrenet

Functions
connect | closestPoint | closestPointsToSequence | closestProjections | curvature |
changeInCurvature | tangentAngle | frenet2global | global2frenet | interpolate | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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connect
Connect initial and terminal Frenet states

Syntax
frenetTrajectory = connect(connectorFrenet,initialState,terminalState,
timeSpan)
[ ___ ,globalTrajectory] = connect( ___ )

Description
frenetTrajectory = connect(connectorFrenet,initialState,terminalState,
timeSpan) connects the specified initial Frenet states to the specified terminal states over a span of
time in seconds. This object function supports 1-to-n, n-to-1, or n-to-n pairwise trajectory connections.

[ ___ ,globalTrajectory] = connect( ___ ) returns the trajectories in global coordinates in
addition to all arguments in the previous syntax.

Examples

Generate Alternative Trajectories for Reference Path

Generate alternative trajectories for a reference path using Frenet coordinates. Specify different
initial and terminal states for your trajectories. Tune your states based on the generated trajectories.

Generate a reference path from a set of waypoints. Create a trajectoryGeneratorFrenet object
from the reference path.

waypoints = [0 0; ...
    50 20; ...
    100 0; ...
    150 10];
refPath = referencePathFrenet(waypoints);
connector = trajectoryGeneratorFrenet(refPath);

Generate a five-second trajectory between the path origin and a point 30 m down the path as Frenet
states.

initState = [0 0 0 0 0 0];  % [S ds ddS L dL ddL]
termState = [30 0 0 0 0 0]; % [S ds ddS L dL ddL]
[~,trajGlobal] = connect(connector,initState,termState,5);

Display the trajectory in global coordinates.

show(refPath);
hold on
axis equal
plot(trajGlobal.Trajectory(:,1),trajGlobal.Trajectory(:,2),'b')
legend(["Waypoints","Reference Path","Trajectory to 30m"])
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Create a matrix of terminal states with lateral deviations between –3 m and 3 m. Generate
trajectories that cover the same arc length in 10 seconds, but deviate laterally from the reference
path. Display the new alternative paths.

termStateDeviated = termState + ([-3:3]' * [0 0 0 1 0 0]);
[~,trajGlobal] = connect(connector,initState,termStateDeviated,10);

clf
show(refPath);
hold on
axis equal
for i = 1:length(trajGlobal)
    plot(trajGlobal(i).Trajectory(:,1),trajGlobal(i).Trajectory(:,2),'g')
end
legend(["Waypoints","Reference Path","Alternative Trajectories"])
hold off
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Specify a new terminal state to generate a new trajectory. This trajectory is not desirable because it
requires reverse motion to achieve a lateral velocity of 10 m/s.

newTermState = [5 10 0 5 0 0];
[~,newTrajGlobal] = connect(connector,initState,newTermState,3);

clf
show(refPath);
hold on
axis equal
plot(newTrajGlobal.Trajectory(:,1),newTrajGlobal.Trajectory(:,2),'b');
legend(["Waypoint","Reference Path","New Trajectory"])
hold off
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Relax the restriction on the longitudinal state by specifying an arc length of NaN. Generate and
display the trajectory again. The new position shows a good alternative trajectory that deviates off
the reference path.

relaxedTermState = [NaN 10 0 5 0 0];
[~,trajGlobalRelaxed] = connect(connector,initState,relaxedTermState,3);

clf
show(refPath);
hold on
axis equal
plot(trajGlobalRelaxed.Trajectory(:,1),trajGlobalRelaxed.Trajectory(:,2),'g');
hold off
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Input Arguments
connectorFrenet — Frenet trajectory generator
trajectoryGeneratorFrenet object

Frenet trajectory generator, specified as a trajectoryGeneratorFrenet object.

initialState — Initial Frenet states
n-by-6 numeric matrix

Initial Frenet states, specified as an n-by-6 numeric matrix. Each row of the matrix is a set of Frenet
coordinates for the initial state of a trajectory in the form [S dS ddS L dL ddL]. The value of n
must be equal to the number of rows in the terminalState argument or 1.

terminalState — Final Frenet states
n-by-6 numeric matrix

Final Frenet states, specified as an n-by-6 numeric matrix. Each row of the matrix is a set of Frenet
coordinates for the initial state of a trajectory in the form [S dS ddS L dL ddL]. The value of n
must be equal to the number of rows in the initialState argument or 1.

timeSpan — Time horizon for all trajectories
positive scalar in seconds
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Time horizon for all trajectories, specified as a positive scalar in seconds. The generated trajectories
are sampled evenly across this time span based on the TimeResolution property of the
trajectoryGeneratorFrenet object specified in the connectorFrenet argument.

Output Arguments
frenetTrajectory — Frenet trajectories
structure | structure array

Frenet trajectories between all initial and final states, returned as a structure array with these fields:

• Trajectory — n-by-6 numeric matrix. Each row of the matrix is a set of Frenet coordinates for
the initial state of a trajectory in the form [S dS ddS L dL ddL].

• Time — Vector of positive scalars from 0 to timeSpan in seconds.

This function supports 1-to-n, n-to-1, or n-to-n pairwise trajectory connections based on the number of
rows of initialState and terminalState.

globalTrajectory — Global trajectories
structure | structure array

Global trajectories between all initial and final states, returned as structure or structure array with
fields:

• Trajectory — n-by-6 numeric matrix. Each row of the matrix is a set of global sates of the form
[x y theta kappa v a].

• Time — Vector of positive scalars from 0 to timeSpan in seconds.
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This function supports 1-to-n, n-to-1, or n-to-n pairwise trajectory connections based on the number of
rows of initialState and terminalState.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet

Functions
closestPoint | closestPointsToSequence | closestProjections | curvature |
changeInCurvature | tangentAngle | frenet2global | global2frenet | interpolate | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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createParallelState
Create states using Frenet and global parameters

Syntax
[globalState,frenetState,latTimeDerivatives] = createParallelState(refPath,S,
L,V,A)
[_] = createParallelState(refPath,S,L,V,A,invertHeading)

Description
[globalState,frenetState,latTimeDerivatives] = createParallelState(refPath,S,
L,V,A) takes an arclength S, lateral deviation L, body velocity V, and body acceleration A, and
returns the global states globalState, Frenet states frenetState which run parallel to the
reference path, and the lateral time derivatives of the Frenet states latTimeDerivatives.

[_] = createParallelState(refPath,S,L,V,A,invertHeading) optionally accepts a vector
invertHeading, indicating whether the state heading of each waypoint should be inverted or not.

Input Arguments
refPath — Reference path
referencePathFrenet object

Reference path, specified as a referencePathFrenet object.

S — Path arclengths
N-element column vector

Path arclengths, specified as an N-element column vector in meters, where N is the total number of
desired arclengths to calculate.

L — Lateral deviations
N-element column vector

Lateral deviation, specified as an N-element vector in meters. The lateral deviation is measured as
the distance along the normal vector of the current path to the original path.
Data Types: single | double

V — Body velocity
N-element column vector

Body velocity, specified as an N-element vector in meters per second. The velocity is derived by
transforming the global velocity to the Frenet frame located at S along the path.
Data Types: single | double

A — Body acceleration
N-element column vector
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Body velocity, specified as an N-element vector in meters per second squared. The acceleration is
derived by transforming the global acceleration to the Frenet frame located at S along the path.
Data Types: single | double

invertHeading — Invert heading flag
N-element column vector

Invert heading flag, specified as an N-element column vector of binary values, indicating whether the
state heading of each waypoint should be inverted or not. 0 indicates to not invert the heading, and 1
indicates to invert the heading.
Data Types: single | double

Output Arguments
globalState — States in global coordinate frame
P-by-6 numeric matrix

States in the global coordinate frame, specified as a P-by-6 numeric matrix with rows of form [x y
theta kappa speed accel], where:

• x y and theta –– SE(2) state expressed in global coordinates, with x and y in meters and theta in
radians.

• kappa –– Curvature, or inverse of the radius, in m-1.
• speed –– Speed in the theta direction in m/s.
• accel –– Acceleration in the theta direction in m/s2.

P is the total number of Global states.

frenetState — States in Frenet coordinate frame
P-by-6 numeric matrix

States in the Frenet coordinate frame, returned as a P-by-6 numeric matrix with rows of form [S dS
ddS L dL ddL], where S is the arc length and L is the perpendicular deviation from the direction of
the reference path. Derivatives of S are relative to time. Derivatives of L are relative to the arc
length, S. P is the total number of Frenet states.

latTimeDerivatives — Lateral time derivatives
N-by-3 matrix

Lateral time derivatives, specified as an N-by-3 matrix where each row is of the form [dL/dt ddL/dt^2
invertHeading] and N is the total number of points in points. createParallelState derives the
first and second derivatives by transforming the global velocity and acceleration to the Frenet frame
at the arclength along the path. Each row contains the 1st and 2nd order time derivatives of lateral
deviation and a flag, invertHeading, which indicates whether the heading should be flipped when
converting to global coordinates (true) or not (false).

Note If defining latTimeDerivatives without the use of global2frenet, the following rules
should be followed:

1 The invertHeading flag should be true when:
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a The vehicle is moving in reverse (speed is less than 0)
b The vehicle is stationary (speed is equal to 0), and the vehicle is facing away from the path's

tangent vector. i.e. cos(|tangentAngle(obj,S)-thetaExpected|) < 0
2 If 1b is true, then dL/dS must be negated.

Version History
Introduced in R2022a

See Also
Objects
referencePathFrenet | trajectoryGeneratorFrenet

Functions
closestPoint | closestPointsToSequence | closestProjections | curvature |
changeInCurvature | tangentAngle | frenet2global | global2frenet | interpolate | show

Topics
“Highway Trajectory Planning Using Frenet Reference Path”
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trajectoryOptimalFrenet
Find optimal trajectory along reference path

Description
The trajectoryOptimalFrenet object is a path planner which samples and evaluates local
trajectories based on a reference path. The planner generates a set of terminal states based on the
reference path and other parameters in the object. The planner then connects the state to each
terminal state using 4th or 5th order polynomials. To choose an optimal path, sampled trajectories are
evaluated for kinematic feasibility, collision, and cost.

Creation

Syntax
trajectoryOptimalFrenet(refPath,validator)
planner = trajectoryOptimalFrenet( ___ ,Name,Value)

Description

trajectoryOptimalFrenet(refPath,validator) creates a trajectoryOptimalFrenet
object with reference path, refPath, in the form of an n-by-2 array of [x y] waypoints and a state
validator, validator, specified as a validatorOccupancyMap object.

planner = trajectoryOptimalFrenet( ___ ,Name,Value) sets additional properties using one
or more name-value pairs in any order.

Input Arguments

refPath — Reference path
n-by-2 matrix

Reference path, specified as an n-by-2 matrix of [x y] pairs, where n is the number of waypoints.
Example: [100,100;400,400]
Data Types: double

validator — State validator object
validatorOccupancyMap object

State validator object, specified as a validatorOccupancyMap object.

Properties

Note For the 'Weights' and 'FeasibilityParameters' properties, you cannot specify the
entire structures at once. Instead, set their fields individually as name-value pairs. For example,
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trajectoryOptimalFrenet(refPath,validator,'Deviation',0) sets the 'Deviation' field
of the structure 'Weights'.

Weights — Weights for all trajectory costs
structure

The weights for all trajectory costs, specified as a structure containing scalars for the cost multipliers
of the corresponding trajectory attributes. The total trajectory cost is a sum of all attributes
multiplied by their weights. The structure has the these fields.

Time — Weight for time cost
0 (default) | positive scalar

The cost function multiplies the weight by the total time taken to reach the terminal state. Specify
this value as the comma-separated pair of 'Time' and a positive scalar in seconds.
Data Types: double

ArcLength — Weight for arc length cost
0 (default) | positive scalar

The cost function multiplies the weight by the total length of the generated trajectories. Specify this
value as the comma-separated pair of 'ArcLength' and a positive scalar in meters.
Data Types: double

LateralSmoothness — Weight for lateral jerk cost
0 (default) | positive scalar

The cost function multiplies the weight by the integral of lateral jerk squared. This value determines
the aggressiveness of the trajectory in the lateral direction (perpendicular to the reference path).
Specify this value as the comma-separated pair of 'LateralSmoothness' and a positive scalar. To
penalize lateral jerk in the planned trajectory increase this cost value.
Data Types: double

LongitudinalSmoothness — Weight for longitudinal jerk cost
0 (default) | positive scalar

The cost function multiplies the weight by the integral of longitudinal jerk squared. This value
determines the aggressiveness of the trajectories in the longitudinal direction (direction of the
reference path). Specify this value as the comma-separated pair of 'LongitudinalSmoothness'
and a positive scalar. To penalize large change in forward and backward acceleration increase this
cost value.
Data Types: double

Deviation — Weight for deviation from reference path
1 (default) | positive scalar

The cost function multiplies the weight by the perpendicular distance from the reference path at the
end of the trajectory in meters. Specify this value as the comma-separated pair of 'Deviation' and
a positive scalar in meters.
Data Types: double
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Data Types: struct

FeasibilityParameters — Structure containing feasibility parameters
structure

Feasibility parameters, specified as a structure containing scalar values to check the validity of a
trajectory. The structure has the these fields.

MaxCurvature — Maximum curvature that vehicle can execute
0.1 (default) | positive real scalar

Maximum curvature that the vehicle can execute. Specify this value as the comma-separated pair of
'MaxCurvature' and a positive real scalar in m-1. This value determines the kinematic feasibility of
the trajectory.
Data Types: double

MaxAcceleration — Maximum acceleration in direction of motion of vehicle
2.5 (default) | positive real scalar

Maximum acceleration in the direction of motion of the vehicle. Specify this value as the comma-
separated pair of 'MaxAcceleration' and a positive real scalar in m/s2. To lower the limit on the
acceleration of the vehicle in the forward or reverse direction decrease this value.
Data Types: double

Data Types: struct

TimeResolution — Trajectory discretization interval
0.1 (default) | positive real scalar

Time interval between discretized states of the trajectory. Specify this value as the comma-separated
pair of 'TimeResolution' and a positive real scalar in seconds. These discretized states determine
state validity and cost function.
Data Types: double

CostFunction — User-defined cost function
nullCost (default) | function handle

The user-defined cost function, specified as a function handle. The function must accept a matrix of n-
by-7 states, TRAJSTATES, for each trajectory and return a cost value as a scalar. The plan function
returns the path with the lowest cost.

For example, leftLaneChangeCost = @(states)((states(end,2) < refPath(end,2))*10)
creates a cost function handle to prioritize left lane changes.
Data Types: function handle

TrajectoryList — List of all possible trajectories
structure array

This property is read-only.

The 'TrajectoryList' property, returned as a structure array of all the candidate trajectories and
their corresponding parameters. Each structure has the these fields:
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• Trajectory — An n-by-7 matrix of [x, y, theta, kappa, speed, acceleration, time],
where n is the number of trajectory waypoints.

• Cost — Cost of the trajectory.
• MaxAcceleration — Maximum acceleration of the trajectory.
• MaxCurvature — Maximum curvature of the trajectory.
• Feasible — A four-element vector [velocity, acceleration, curvature, collision]

indicating the validity of the trajectory.

The value of the elements can be either,

• 1 — The trajectory is valid.
• 0 — The trajectory is invalid.
• -1 — The trajectory is not checked.

Data Types: struct

TerminalStates — Structure of all goal states
structure

A structure that contains a list of goal states relative to the reference path. These parameters define
the sampling behavior for generating alternative trajectory segments between start and each goal
state. The structure has the these fields.

Longitudinal — Lengths of the trajectory segment
30:15:90 (default) | vector

Lengths of the trajectory segment, specified as a vector in meters.
Data Types: double

Lateral — Array of deviations from reference path in perpendicular direction at goal state
-2:1:2 (default) | vector

Array of deviations from reference path in perpendicular direction at goal state, specified as a vector
in meters.
Data Types: double

Speed — Velocity at goal state in direction of motion
10 (default) | positive scalar

Velocity at the goal state in the direction of motion, specified as a positive scalar in m/s.
Data Types: double

Acceleration — Acceleration at goal state in direction of motion
0 (default) | positive scalar

Acceleration at the goal state in the direction of motion, specified as a positive scalar in m/s2.
Data Types: double

Time — Array of end-times for executing trajectory segment
7 (default) | positive vector
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Array of end-times for executing the trajectory segment, specified as a positive vector in seconds.
Data Types: double

Data Types: struct

Waypoints — Waypoints of reference path
[ ] (default) | n-by-2 matrix

Waypoints of reference path, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
waypoints. Waypoints act as a reference for planning alternative trajectories optimized by this
planner.
Data Types: double

NumSegments — Number of longitudinal segments for each trajectory
1 (default) | positive scalar

Number of longitudinal segments for each trajectory. Specify this value as the comma-separated pair
of 'NumSegments' and a positive scalar. This property generates intermediate longitudinal terminal
states to which all lateral terminal states are combined with for generating more motion primitives to
each terminal state.

For example, 'NumSegments',2 creates two partitions between each longitudinal terminal state.
Trajectories are generated to reach the intermediate longitudinal states with all the available lateral
terminal states.
Data Types: double

DeviationOffset — Deviation offset from reference path in lateral direction
0 (default) | scalar

Deviation offset from the reference path in the lateral direction. Specify this value as the comma-
separated pair of 'DeviationOffset' and a scalar. A negative value offset the deviation to the
right, and a positive value offset the deviation to the left of the reference path in the lateral direction.
Set this property to bias your solution to a certain turn direction when avoiding obstacles in the
reference path.
Data Types: double

Object Functions
cart2frenet Convert Cartesian states to Frenet states
copy Create deep copy of object
frenet2cart Convert Frenet states to Cartesian states
plan Plan optimal trajectory
show Visualize trajectories

Examples

Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a trajectoryOptimalFrenet object.
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Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(50,100);
grid(24:26,48:53) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -10:5:10;
planner.FeasibilityParameters.MaxAcceleration = 10;

Specify the deviation offset value close to the left lateral terminal state to prioritize left lane changes.

planner.DeviationOffset = 5;

Trajectory Planning

Initial cartesian state of vehicle.

initCartState = [0 25 pi/9 0 0 0];

Convert cartesian state of vehicle to Frenet state.

initFrenetState = cart2frenet(planner,initCartState);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.
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show(map)
hold on
show(planner,'Trajectory','all')

Partitioning Longitudinal Terminal States in Trajectory Generation

This example shows how to partition the longitudinal terminal states in optimal trajectory planning
using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap; 

Create an obstacle grid map.

grid = zeros(50,100);
grid(25:27,28:33) = 1;
grid(16:18,37:42) = 1;
grid(29:31,72:77) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);
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Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;30,30;75,20;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -5:5:5;
planner.FeasibilityParameters.MaxAcceleration = 10;

Assign the number of partitions for the longitudinal terminal state.

planner.NumSegments = 3;

Trajectory Planning

Initial Frenet state of vehicle.

initFrenetState = zeros(1,6);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
hold on

Generate Lane Boundaries

Calculate end of reference path as Frenet state.

refPathEnd = cart2frenet(planner,[planner.Waypoints(end,:) 0 0 0 0]);

Calculate lane offsets on both sides of the lateral terminal states with half lane width value.

laneOffsets = unique([planner.TerminalStates.Lateral+2.5 planner.TerminalStates.Lateral-2.5]);

Calculate positions of lanes in Cartesian state.

numLaneOffsets = numel(laneOffsets);
xRefPathEnd = ceil(refPathEnd(1));
laneXY = zeros((numLaneOffsets*xRefPathEnd)+numLaneOffsets,2);
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xIndex = 0;

for laneID = 1:numLaneOffsets
    for x = 1:xRefPathEnd
        laneCart = frenet2cart(planner,[x 0 0 laneOffsets(laneID) 0 0]);
        xIndex = xIndex + 1;
        laneXY(xIndex,:) = laneCart(1:2);
    end
    xIndex = xIndex + 1;
    laneXY(xIndex,:) = NaN(1,2);
end

Plot lane boundaries.

plot(laneXY(:,1),laneXY(:,2),'LineWidth',0.5,'Color',[0.5 0.5 0.5],'DisplayName','Lane Boundaries','LineStyle','--')

Limitations
• Self-intersections in the reference path can lead to unexpected behavior.
• The planner does not support reverse driving.
• Initial orientation for planning should be within -pi/2 and pi/2 to the reference path.
• Limit the number of TerminalStates for real-time applications since computational complexity

grows with it.

2 Classes

2-1602



Version History
Introduced in R2019b

References
[1] Werling, Moritz, Julius Ziegler, Sören Kammel, and Sebastian Thrun. "Optimal Trajectory

Generation for Dynamic Street Scenarios in a Frenet Frame." 2010 IEEE International
Conference on Robotics and Automation. 2010, pp. 987–993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
validatorOccupancyMap | nav.StateValidator | plannerHybridAStar
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cart2frenet
Convert Cartesian states to Frenet states

Syntax
cart2frenet(planner,cartesianStates)

Description
cart2frenet(planner,cartesianStates) converts a six-element vector of cartesianStates
[x, y, theta, kappa, speed, acceleration] to a six-element vector of Frenet states [s,
ds/dt, d2s/dt2, l, dl/ds, d2l/ds2], where s is arc length from the first point in reference
path, and l is normal distance from the closest point at s on the reference path.

Examples

Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(50,100);
grid(24:26,48:53) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.
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planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -10:5:10;
planner.FeasibilityParameters.MaxAcceleration = 10;

Specify the deviation offset value close to the left lateral terminal state to prioritize left lane changes.

planner.DeviationOffset = 5;

Trajectory Planning

Initial cartesian state of vehicle.

initCartState = [0 25 pi/9 0 0 0];

Convert cartesian state of vehicle to Frenet state.

initFrenetState = cart2frenet(planner,initCartState);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
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Partitioning Longitudinal Terminal States in Trajectory Generation

This example shows how to partition the longitudinal terminal states in optimal trajectory planning
using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap; 

Create an obstacle grid map.

grid = zeros(50,100);
grid(25:27,28:33) = 1;
grid(16:18,37:42) = 1;
grid(29:31,72:77) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];
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Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;30,30;75,20;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -5:5:5;
planner.FeasibilityParameters.MaxAcceleration = 10;

Assign the number of partitions for the longitudinal terminal state.

planner.NumSegments = 3;

Trajectory Planning

Initial Frenet state of vehicle.

initFrenetState = zeros(1,6);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
hold on

Generate Lane Boundaries

Calculate end of reference path as Frenet state.

refPathEnd = cart2frenet(planner,[planner.Waypoints(end,:) 0 0 0 0]);

Calculate lane offsets on both sides of the lateral terminal states with half lane width value.

laneOffsets = unique([planner.TerminalStates.Lateral+2.5 planner.TerminalStates.Lateral-2.5]);

Calculate positions of lanes in Cartesian state.

numLaneOffsets = numel(laneOffsets);
xRefPathEnd = ceil(refPathEnd(1));
laneXY = zeros((numLaneOffsets*xRefPathEnd)+numLaneOffsets,2);
xIndex = 0;

for laneID = 1:numLaneOffsets
    for x = 1:xRefPathEnd
        laneCart = frenet2cart(planner,[x 0 0 laneOffsets(laneID) 0 0]);
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        xIndex = xIndex + 1;
        laneXY(xIndex,:) = laneCart(1:2);
    end
    xIndex = xIndex + 1;
    laneXY(xIndex,:) = NaN(1,2);
end

Plot lane boundaries.

plot(laneXY(:,1),laneXY(:,2),'LineWidth',0.5,'Color',[0.5 0.5 0.5],'DisplayName','Lane Boundaries','LineStyle','--')

Input Arguments
planner — Optimal trajectory planner in Frenet space
trajectoryOptimalFrenet object

Optimal trajectory planner in Frenet space, specified as a trajectoryOptimalFrenet object.

cartesianStates — Vector of Cartesian states
six-element vector

Vector of Cartesian states, specified as a 1-by-6 vector [x, y, theta, kappa, speed,
acceleration].

• x and y specify the position in meters.
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• theta specifies the orientation angle in radians.
• kappa specifies the curvature in m-1.
• speed specifies the velocity in m/s.
• acceleration specifies the acceleration in m/s2.

Example: [110 110 pi/4 0 0 0]
Data Types: double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trajectoryOptimalFrenet | frenet2cart
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copy
Create deep copy of object

Syntax
plannerCopy = copy(planner)

Description
plannerCopy = copy(planner) creates a deep copy of the trajectoryOptimalFrenet object
with the same properties.

Examples

Create Copy of trajectoryOptimalFrenet Object

Create a binaryOccupancyMap with a obstacle grid map.

grid = zeros(50,100);
grid(24:26,48:53) = 1;
map = binaryOccupancyMap(grid);

Create a state validator. Assign the map and the state bounds to the state validator.

validator = validatorOccupancyMap;
validator.Map = map;
validator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Create a reference path for the planner.

refPath = [0,25;100,25];

Create a trajectoryOptimalFrenet object.

planner = trajectoryOptimalFrenet(refPath,validator)

planner = 
  trajectoryOptimalFrenet with properties:

                  Weights: [1x1 struct]
    FeasibilityParameters: [1x1 struct]
           TimeResolution: 0.1000
              NumSegments: 1
          DeviationOffset: 0
             CostFunction: @trajectoryOptimalFrenet.nullCost
           TrajectoryList: [1x1 struct]
           TerminalStates: [1x1 struct]
                Waypoints: [2x2 double]

Create a copy of trajectoryOptimalFrenet object.
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plannerNew = copy(planner)

plannerNew = 
  trajectoryOptimalFrenet with properties:

                  Weights: [1x1 struct]
    FeasibilityParameters: [1x1 struct]
           TimeResolution: 0.1000
              NumSegments: 1
          DeviationOffset: 0
             CostFunction: @trajectoryOptimalFrenet.nullCost
           TrajectoryList: [1x1 struct]
           TerminalStates: [1x1 struct]
                Waypoints: [2x2 double]

Input Arguments
planner — Trajectory optimal Frenet object
trajectoryOptimalFrenet object

Trajectory optimal Frenet object, specified as a trajectoryOptimalFrenet object.

Output Arguments
plannerCopy — Copy of trajectory optimal Frenet object
trajectoryOptimalFrenet object

Copy of trajectory optimal Frenet object, returned as a trajectoryOptimalFrenet object with the
same properties.

Version History
Introduced in R2020b

See Also
trajectoryOptimalFrenet
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frenet2cart
Convert Frenet states to Cartesian states

Syntax
frenet2cart(planner,frenetStates)

Description
frenet2cart(planner,frenetStates) converts a six-element vector of frenetStates [s,
ds/dt, d2s/dt2, l, dl/ds, d2l/ds2] to a six-element vector of Cartesian states [x, y,
theta, kappa, speed, acceleration].

Examples

Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(50,100);
grid(24:26,48:53) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.
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planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -10:5:10;
planner.FeasibilityParameters.MaxAcceleration = 10;

Specify the deviation offset value close to the left lateral terminal state to prioritize left lane changes.

planner.DeviationOffset = 5;

Trajectory Planning

Initial cartesian state of vehicle.

initCartState = [0 25 pi/9 0 0 0];

Convert cartesian state of vehicle to Frenet state.

initFrenetState = cart2frenet(planner,initCartState);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
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Partitioning Longitudinal Terminal States in Trajectory Generation

This example shows how to partition the longitudinal terminal states in optimal trajectory planning
using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap; 

Create an obstacle grid map.

grid = zeros(50,100);
grid(25:27,28:33) = 1;
grid(16:18,37:42) = 1;
grid(29:31,72:77) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];
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Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;30,30;75,20;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -5:5:5;
planner.FeasibilityParameters.MaxAcceleration = 10;

Assign the number of partitions for the longitudinal terminal state.

planner.NumSegments = 3;

Trajectory Planning

Initial Frenet state of vehicle.

initFrenetState = zeros(1,6);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
hold on

Generate Lane Boundaries

Calculate end of reference path as Frenet state.

refPathEnd = cart2frenet(planner,[planner.Waypoints(end,:) 0 0 0 0]);

Calculate lane offsets on both sides of the lateral terminal states with half lane width value.

laneOffsets = unique([planner.TerminalStates.Lateral+2.5 planner.TerminalStates.Lateral-2.5]);

Calculate positions of lanes in Cartesian state.

numLaneOffsets = numel(laneOffsets);
xRefPathEnd = ceil(refPathEnd(1));
laneXY = zeros((numLaneOffsets*xRefPathEnd)+numLaneOffsets,2);
xIndex = 0;

for laneID = 1:numLaneOffsets
    for x = 1:xRefPathEnd
        laneCart = frenet2cart(planner,[x 0 0 laneOffsets(laneID) 0 0]);
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        xIndex = xIndex + 1;
        laneXY(xIndex,:) = laneCart(1:2);
    end
    xIndex = xIndex + 1;
    laneXY(xIndex,:) = NaN(1,2);
end

Plot lane boundaries.

plot(laneXY(:,1),laneXY(:,2),'LineWidth',0.5,'Color',[0.5 0.5 0.5],'DisplayName','Lane Boundaries','LineStyle','--')

Input Arguments
planner — Optimal trajectory planner in Frenet space
trajectoryOptimalFrenet object

Optimal trajectory planner in Frenet space, specified as a trajectoryOptimalFrenet object.

frenetStates — Vector of Frenet states
six-element vector

Vector of Frenet states, specified as a 1-by-6 vector, [s, ds/dt, d2s/dt2, l, dl/ds, d2l/ds2].

• s specifies the arc length from the first point in reference path in meters.
• ds/dt specifies the first derivative of arc length.
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• d2s/dt2 specifies the second derivative of arc length.
• l specifies the normal distance from the closest point in the reference path in meters.
• dl/ds specifies the first derivative of normal distance.
• d2l/ds2 specifies the second derivative of normal distance.

Example: [10 1 0 3 0 0]
Data Types: double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trajectoryOptimalFrenet | cart2frenet
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plan
Plan optimal trajectory

Syntax
[traj,index,cost,flag] = plan(planner,start)

Description
[traj,index,cost,flag] = plan(planner,start) computes a feasible trajectory, traj, from
a list of candidate trajectories generated from the trajectoryOptimalFrenet object, planner.
start is specified as a six-element vector [s, ds/dt, d2s/dt2, l, dl/ds, d2l/ds2], where s is
the arc length from the first point in the reference path, and l is normal distance from the closest
point at s on the reference path.

The output trajectory, traj, also has an associated cost and index for the TrajectoryList property of
the planner. flag is a numeric exit flag indicating status of the solution.

To improve the results of the planning output, modify the parameters on the planner object.

Examples

Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(50,100);
grid(24:26,48:53) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;100,25];
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Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -10:5:10;
planner.FeasibilityParameters.MaxAcceleration = 10;

Specify the deviation offset value close to the left lateral terminal state to prioritize left lane changes.

planner.DeviationOffset = 5;

Trajectory Planning

Initial cartesian state of vehicle.

initCartState = [0 25 pi/9 0 0 0];

Convert cartesian state of vehicle to Frenet state.

initFrenetState = cart2frenet(planner,initCartState);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
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Partitioning Longitudinal Terminal States in Trajectory Generation

This example shows how to partition the longitudinal terminal states in optimal trajectory planning
using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap; 

Create an obstacle grid map.

grid = zeros(50,100);
grid(25:27,28:33) = 1;
grid(16:18,37:42) = 1;
grid(29:31,72:77) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];
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Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;30,30;75,20;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -5:5:5;
planner.FeasibilityParameters.MaxAcceleration = 10;

Assign the number of partitions for the longitudinal terminal state.

planner.NumSegments = 3;

Trajectory Planning

Initial Frenet state of vehicle.

initFrenetState = zeros(1,6);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
hold on

Generate Lane Boundaries

Calculate end of reference path as Frenet state.

refPathEnd = cart2frenet(planner,[planner.Waypoints(end,:) 0 0 0 0]);

Calculate lane offsets on both sides of the lateral terminal states with half lane width value.

laneOffsets = unique([planner.TerminalStates.Lateral+2.5 planner.TerminalStates.Lateral-2.5]);

Calculate positions of lanes in Cartesian state.

numLaneOffsets = numel(laneOffsets);
xRefPathEnd = ceil(refPathEnd(1));
laneXY = zeros((numLaneOffsets*xRefPathEnd)+numLaneOffsets,2);
xIndex = 0;

for laneID = 1:numLaneOffsets
    for x = 1:xRefPathEnd
        laneCart = frenet2cart(planner,[x 0 0 laneOffsets(laneID) 0 0]);
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        xIndex = xIndex + 1;
        laneXY(xIndex,:) = laneCart(1:2);
    end
    xIndex = xIndex + 1;
    laneXY(xIndex,:) = NaN(1,2);
end

Plot lane boundaries.

plot(laneXY(:,1),laneXY(:,2),'LineWidth',0.5,'Color',[0.5 0.5 0.5],'DisplayName','Lane Boundaries','LineStyle','--')

Input Arguments
planner — Optimal trajectory planner in Frenet space
trajectoryOptimalFrenet object

Optimal trajectory planner in Frenet space, specified as a trajectoryOptimalFrenet object.

start — Initial Frenet state
six-element vector

Initial Frenet state, specified as a 1-by-6 vector [s, ds/dt, d2s/dt2, l, dl/ds, d2l/ds2].

• s specifies the arc length from the first point in reference path in meters.
• ds/dt specifies the first derivative of arc length.
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• d2s/dt2 specifies the second derivative of arc length.
• l specifies the normal distance from the closest point in the reference path in meters.
• dl/ds specifies the first derivative of normal distance.
• d2l/ds2 specifies the second derivative of normal distance.

Output Arguments
traj — Feasible trajectory with minimum cost
n-by-7 matrix

Feasible trajectory with minimum cost, returned as an n-by-7 matrix of [x, y, theta, kappa,
speed, acceleration, time], where n is the number of trajectory waypoints.

• x and y specify the position in meters.
• theta specifies the orientation angle in radians.
• kappa specifies the curvature in m-1.
• speed specifies the velocity in m/s.
• acceleration specifies the acceleration in m/s2.
• time specifies the time in s.

index — Index of feasible trajectory with minimum cost
positive integer scalar

Index of feasible trajectory with minimum cost, returned as a positive integer scalar.

cost — Least cost of feasible trajectory
positive scalar

Least cost of feasible trajectory, returned as a positive scalar.

flag — Exit flag indicating solution status
0 | 1

Exit flag indicating the solution status, returned either as 0 or 1.

• 0 — Optimal trajectory was found.
• 1 — No feasible trajectory exists.

When no feasible trajectory exists, the planner returns an empty trajectory.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
trajectoryOptimalFrenet | show
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show
Visualize trajectories

Syntax
show(planner)
show(planner,Name,Value)
axHandle = show(planner)

Description
show(planner) visualizes the reference path and trajectory from the candidates generated by the
plan function. The trajectory is shown as a line plot. The plot also includes datatip mode, which can
be used to visualize the feasibility vector and index of the trajectory from the TrajectoryList property.

show(planner,Name,Value) specifies additional options using one or more Name,Value pair
arguments.

axHandle = show(planner) returns the axes handle of the figure used to plot the trajectory.

Examples

Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(50,100);
grid(24:26,48:53) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;100,25];
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Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -10:5:10;
planner.FeasibilityParameters.MaxAcceleration = 10;

Specify the deviation offset value close to the left lateral terminal state to prioritize left lane changes.

planner.DeviationOffset = 5;

Trajectory Planning

Initial cartesian state of vehicle.

initCartState = [0 25 pi/9 0 0 0];

Convert cartesian state of vehicle to Frenet state.

initFrenetState = cart2frenet(planner,initCartState);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
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Partitioning Longitudinal Terminal States in Trajectory Generation

This example shows how to partition the longitudinal terminal states in optimal trajectory planning
using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap; 

Create an obstacle grid map.

grid = zeros(50,100);
grid(25:27,28:33) = 1;
grid(16:18,37:42) = 1;
grid(29:31,72:77) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];
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Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;30,30;75,20;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -5:5:5;
planner.FeasibilityParameters.MaxAcceleration = 10;

Assign the number of partitions for the longitudinal terminal state.

planner.NumSegments = 3;

Trajectory Planning

Initial Frenet state of vehicle.

initFrenetState = zeros(1,6);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
hold on

Generate Lane Boundaries

Calculate end of reference path as Frenet state.

refPathEnd = cart2frenet(planner,[planner.Waypoints(end,:) 0 0 0 0]);

Calculate lane offsets on both sides of the lateral terminal states with half lane width value.

laneOffsets = unique([planner.TerminalStates.Lateral+2.5 planner.TerminalStates.Lateral-2.5]);

Calculate positions of lanes in Cartesian state.

numLaneOffsets = numel(laneOffsets);
xRefPathEnd = ceil(refPathEnd(1));
laneXY = zeros((numLaneOffsets*xRefPathEnd)+numLaneOffsets,2);
xIndex = 0;

for laneID = 1:numLaneOffsets
    for x = 1:xRefPathEnd
        laneCart = frenet2cart(planner,[x 0 0 laneOffsets(laneID) 0 0]);
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        xIndex = xIndex + 1;
        laneXY(xIndex,:) = laneCart(1:2);
    end
    xIndex = xIndex + 1;
    laneXY(xIndex,:) = NaN(1,2);
end

Plot lane boundaries.

plot(laneXY(:,1),laneXY(:,2),'LineWidth',0.5,'Color',[0.5 0.5 0.5],'DisplayName','Lane Boundaries','LineStyle','--')

Input Arguments
planner — Optimal trajectory planner in Frenet space
trajectoryOptimalFrenet object

Optimal trajectory planner in Frenet space, specified as a trajectoryOptimalFrenet object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Trajectory','all'

 show

2-1629



Parent — Axes to plot trajectory
Axes object | UIAxes object

Axes to plot trajectory, specified as the comma-separated pair consisting of 'Parent' and either an
Axes or UIAxes object. See axes or uiaxes.

Trajectory — Trajectory display option
'optimal' (default) | 'all'

Trajectory display option, specified as the comma-separated pair consisting of 'Trajectory' and
either 'optimal' or 'all'.

ReferencePath — Reference path display option
'on' (default) | 'off'

Reference path display option, specified as the comma-separated pair consisting of
'ReferencePath' and either 'on' or 'off'.

TrajectoryColor — Trajectory color display option
'velocity' (default) | 'acceleration' | 'cost' | 'none'

Trajectory color display option, specified as the comma-separated pair consisting of
'TrajectoryColor' and one of the following:

• 'acceleration'
• 'cost'
• 'velocity'
• 'none'

Set this property to display the specified trajectory as a color-gradient along the specified path.

Output Arguments
axHandle — Axes handle used to plot trajectory
Axes object | UIAxes object

Axes handle used to plot trajectory, returned as either an axes, or uiaxes object.

Version History
Introduced in R2019b

See Also
trajectoryOptimalFrenet | plan
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timescope
Display time-domain signals

Description
The timescope object displays signals in the time domain.

Scope features:

• “Data Cursors” — Measure signal values using vertical and horizontal cursors.
• “Signal Statistics” — Display the maximum, minimum, peak-to-peak difference, mean, median, and

RMS values of a selected signal.
• “Peak Finder” — Find maxima, showing the x-axis values at which they occur.
• “Bilevel Measurements” — Measure transitions, overshoots, undershoots, and cycles.
• “Triggers” — Set triggers to sync repeating signals and pause the display when events occur.

Use “Object Functions” on page 2-1640 to show, hide, and determine visibility of the scope window.

You can enable these measurements either programmatically or on the scope UI. For more details,
see “Measurements” on page 2-1636.
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Creation

Syntax
scope = timescope
scope = timescope(Name=Value)

Description

scope = timescope returns a timescope object, scope. This object displays real- and complex-
valued floating and fixed-point signals in the time domain.

scope = timescope(Name=Value) returns a timescope sets properties using Name=Value
arguments. You can specify the name-value arguments in any order.

Properties
Most properties can be changed from the timescope UI.

Frequently Used

SampleRate — Sample rate of inputs
1 (default) | finite numeric scalar | vector

Sampling rate of the input signal, in hertz, specified as a finite numeric scalar or vector of scalars.

The inverse of the sample rate determines the x-axis (time axis) spacing between points in the
displayed signal. When the value of NumInputPorts is greater than 1 and the sample rate is scalar,
the object uses the same sample rate for all inputs. To specify different sample rates for each input,
use a vector.

You can only set this property when creating the object or after calling release.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
specify the sample rate in the Sample Rate box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeSpanSource — Source of time span
"auto" (default) | "property"

Source of the time span for frame-based input signals, specified as one of the following:

• "property" – The object derives the x-axis limits from the TimeDisplayOffset and TimeSpan
properties.

• "auto" – The x-axis limits are derived from the TimeDisplayOffset property, SampleRate
property, and the number of rows in each input signal (FrameSize in the equations below). The
limits are calculated as:

• Minimum time-axis limit = TimeDisplayOffset
• Maximum time-axis limit = TimeDisplayOffset + max(1/SampleRate.*FrameSize)
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Dependency

When you set the TimeSpan property, TimeSpanSource is automatically set to "property".

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
select Auto or specify the time span in the Time Span box.
Data Types: char | string

TimeSpan — Time span
10 (default) | positive scalar

Time span, in seconds, specified as a positive, numeric scalar value. The time-axis limits are
calculated as:

• Minimum time-axis limit = TimeDisplayOffset
• Maximum time-axis limit = TimeDisplayOffset + TimeSpan

Dependencies

To enable this property, set TimeSpanSource to "property".

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
specify the time span in the Time Span box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeSpanOverrunAction — Data overrun behavior
"scroll" (default) | "wrap"

Specify how the scope displays new data beyond the visible time span as either:

• "scroll" — In this mode, the scope scrolls old data to the left to make room for new data on the
right of the scope display. This mode is beneficial for debugging and monitoring time-varying
signals.

• "wrap" — In this mode, the scope adds data to the left of the plot after overrunning the right of
the plot.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
select the overrun behavior in Overrun Action.
Data Types: char | string

PlotType — Type of plot
"line" (default) | "stairs"

Type of plot, specified as either:

• "line" — Line graph, similar to the line or plot function.
• "stairs" — Stair-step graph, similar to the stairs function. Stair-step graphs are useful for

drawing time history graphs of digitally sampled data.
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Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
select the plot type in Plot Type.
Data Types: char | string

AxesScaling — Axes scaling mode
"onceatstop" (default) | "auto" | "manual" | "updates"

When this property is set to:

• "onceatstop" –– The limits are updated once at the end of the simulation (when release is
called).

• "auto" –– The scope attempts to always keep the data in the display while minimizing the number
of updates to the axes limits.

• "manual" –– The scope takes no action unless specified by the user.
• "updates" –– The scope scales the axes once after a set number of visual updates. The number of

updates is determined by the value of the AxesScalingNumUpdates property.

You can set this property only when creating the object.
Data Types: char | string

AxesScalingNumUpdates — Number of updates before scaling
100 (default) | real positive integer

Specify the number of updates before scaling as a real, positive scalar integer.
Dependency

To enable this property, set AxesScaling to "updates".
Data Types: double

Advanced

LayoutDimensions — Display layout grid dimensions
[1,1] (default) | [numberOfRows, numberOfColumns]

Specify the layout grid dimensions as a two-element vector: [numberOfRows,numberOfColumns].
The grid can have a maximum of 4 rows and 4 columns.

If you create a grid of multiple axes, to modify the settings of individual axes, use the
ActiveDisplay.
Example: scope.LayoutDimensions = [2,4]
Scope Window Use

On the Scope tab, click Display Grid ( ) and select a specific number of rows and columns in the
grid.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeUnits — Units of x-axis
"seconds" (default) | "none" | "metric"
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Specify the units used to describe the x-axis (time axis). You can select one of the following options:

• "seconds" —The scope always displays the units on the x-axis as seconds. The scope shows the
word Time(s) on the x-axis.

• "none" — The scope does not display any units on the x-axis. The scope only shows the word
Time on the x-axis.

• "metric" — The scope displays the units on the x-axis as Time (s) changing the units to day,
weeks, months, or years as you plot more data points.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
specify the x-axis units in Time Units.
Data Types: char | string

TimeDisplayOffset — Offset x-axis limits
0 (default) | scalar | vector

Specify, in seconds, how far to move the data on the x-axis. The signal value does not change, only the
limits displayed on the x-axis change.

If you specify this property as a scalar, then that value is the time display offset for all channels. If you
specify this property as a vector, each input channel can be a different time display offset

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
specify the x-axis offset in Time Offset.

TimeAxisLabels — Time-axis labels
"all" (default) | "bottom" | "none"

Time-axis labels, specified as:

• "all" — Time-axis labels appear in all displays.
• "bottom" — Time-axis labels appear in the bottom display of each column.
• "none" — No labels appear in any display.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
select which x-axis label to display in Time Labels.
Data Types: char | string

MaximizeAxes — Maximize axes control
"auto" (default) | "on" | "off"

Specify whether to display the scope in the maximized-axes mode. In this mode, the axes are
expanded to fit into the entire display. To conserve space, labels do not appear in each display.
Instead, the tick-marks and their values appear on top of the plotted data. You can select one of the
following options:
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• "auto" — The axes appear maximized in all displays only if the Title and YLabel properties are
empty for every display. If you enter any value in any display for either of these properties, the
axes are not maximized.

• "on" — The axes appear maximized in all displays. Any values entered into the Title and
YLabel properties are hidden.

• "off" — None of the axes appear maximized.

Scope Window Use

On the scope window, click  to maximize axes, hide all labels and inset the axes values.
Data Types: char | string

BufferLength — Buffer length
50000 (default) | positive integer

Specify the length of the buffer used for each input signal as a positive integer.

You can set this property only when creating the object.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Data and Axes,
specify the buffer length in the Buffer Length box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Measurements

MeasurementChannel — Channel for which to obtain measurements
1 (default) | positive integer

Channel for which to obtain measurements, specified as a positive integer in the range [1 N], where
N is the number of input channels.

Scope Window Use

On the Measurements tab, select a Channel.
Data Types: double

BilevelMeasurements — Bilevel measurements
BilevelMeasurementsConfiguration object

Bilevel measurements to measure transitions, aberrations, and cycles of bilevel signals, specified as a
BilevelMeasurementsConfiguration object.

All BilevelMeasurementsConfiguration properties are tunable.

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings to modify the
bilevel measurements.

CursorMeasurements — Cursor measurements
CursorMeasurementsConfiguration object
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Cursor measurements to display screen or waveform cursors, specified as a
CursorMeasurementsConfiguration object.

All CursorMeasurementsConfiguration properties are tunable.
Scope Window Use

On the Measurements tab, in the Measurements section, select Data Cursors to enable the
cursors on the display. Click Data Cursors to modify the cursor settings.

PeakFinder — Peak finder measurements
PeakFinderConfiguration object

Peak finder measurements to compute and display the largest calculated peak values, specified as a
PeakFinderConfiguration object.

All PeakFinderConfiguration properties are tunable.
Scope Window Use

On the Measurements tab, in the Measurements section, select Peak Finder to enable the peak
finder. Click Peak Finder to modify the peak finder settings.

SignalStatistics — Signal statistics measurements
SignalStatisticsConfiguration object

Signal statistics measurements to compute and display signal statistics, specified as a
SignalStatisticsConfiguration object.

All SignalStatisticsConfiguration properties are tunable.
Scope Window Use

On the Measurements tab, in the Measurements section, select Signal Statistics. Click Signal
Statistics to choose the statistics to compute.

Trigger — Trigger measurements
TriggerConfiguration object

Trigger measurements, specified as a TriggerConfiguration object. Define a trigger event to
identify the simulation time of specified input signal characteristics. You can use trigger events to
stabilize periodic signals such as a sine wave or capture non-periodic signals such as a pulse that
occurs intermittently.

All TriggerConfiguration properties are tunable.
Scope Window Use

On the Measurements tab, in the Trigger section, select Enable Trigger and click Settings to
modify the trigger settings.

Visualization

Name — Window name
"Time Scope" (default) | character vector | string scalar

Specify the name of the scope as a character vector or string scalar. This name appears as the title of
the scope's figure window. To specify a title of a scope plot, use the Title property.
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Data Types: char | string

Position — Window position
screen center (default) | [left bottom width height]

Scope window position in pixels, specified by the size and location of the scope window as a four-
element vector of the form [left bottom width height]. You can place the scope window in a
specific position on your screen by modifying the values of this property.

By default, the window appears in the center of your screen with a width of 800 pixels and height of
500 pixels. The exact values of the position depend on your screen resolution.

ChannelNames — Channel names
{''} (default) | cell array of character vectors | array of strings

Specify the input channel names as a cell array of character vectors or an array of strings. The
channel names appear in the legend, and on the Measurements tab under Select Channel. If you
do not specify names, the channels are labeled as Channel 1, Channel 2, etc.
Dependency

To enable this property, set ShowLegend to true.
Data Types: char

ActiveDisplay — Active display for setting properties
1 (default) | integer

Active display used to set properties, specified by the integer display number. The number of a
display corresponds to the display's row-wise placement index. Setting this property controls which
display is used for the following properties: YLimits, YLabel, ShowLegend, ShowGrid, Title, and
PlotAsMagnitudePhase.
Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Display and Labels,
specify the active display using Active Display.

Title — Display title
'' (default) | character vector | string scalar

Specify the display title as a character vector or a string scalar.
Dependency

When you set this property, ActiveDisplay controls the display that is updated.
Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Display and Labels,
specify the display title in the Title box.
Data Types: char | string

YLabel — y-axis label
"Amplitude" (default) | character vector | string scalar

Specify the text for the scope to display to the left of the y-axis.
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Dependencies

This property applies only when PlotAsMagnitudePhase is false. When
PlotAsMagnitudePhase is true, the two y-axis labels are read-only values "Magnitude" and
"Phase", for the magnitude plot and the phase plot, respectively.

When you set this property, ActiveDisplay controls the display that is updated.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Display and Labels,
specify a label for the y-axis in the Y-Label box.
Data Types: char | string

YLimits — y-axis limits
[-10,10] (default) | [ymin, ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin, ymax].

• If PlotAsMagnitudePhase is false, the default is [-10,10].
• If PlotAsMagnitudePhase is true, the default is [0,10]. This property specifies the y-axis

limits of only the magnitude plot. The y-axis limits of the phase plot are always [-180,180]

Dependency

When you set this property, ActiveDisplay controls the display that is updated.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Display and Labels,
specify the limits for the y-axis in the Y-Axis Limits box.

ShowLegend — Show legend
false (default) | true

To show a legend with the input names, set this property to true.

From the legend, you can control which signals are visible. In the scope legend, click a signal name to
hide the signal in the scope. To show the signal, click the signal name again.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Display and Labels,
select Show Legend.
Data Types: logical

ShowGrid — Grid visibility
true (default) | false

Set this property to true to show grid lines on the plot.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Display and Labels,
select Show Grid.
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PlotAsMagnitudePhase — Plot signal as magnitude and phase
false (default) | true

Plot signal as magnitude and phased, specified as either:

• true – The scope plots the magnitude and phase of the input signal on two separate axes within
the same active display.

• false – The scope plots the real and imaginary parts of the input signal on two separate axes
within the same active display.

This property is useful for complex-valued input signals. Turning on this property affects the phase
for real-valued input signals. When the amplitude of the input signal is nonnegative, the phase is 0
degrees. When the amplitude of the input signal is negative, the phase is 180 degrees.

Scope Window Use

On the Scope tab, click Settings. In the Time Scope Settings dialog box, under Display and Labels,
select Magnitude Phase Plot.

Object Functions
To use an object function, specify the object as the first input argument.
hide Hide scope window
show Display scope window
isVisible Determine visibility of scope
generateScript Generate MATLAB script to create scope with current settings
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

If you want to restart the simulation from the beginning, call reset to clear the scope window
displays. Do not call reset after calling release.

Examples

View Sine Wave on Time Scope

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

scope = timescope(SampleRate=8e3,...
    TimeSpanSource="property",...
    TimeSpan=0.1);
scope(xin)
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Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);
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Hide the scope window.

if(isVisible(scope))
    hide(scope)
end

Show the scope window.

if(~isVisible(scope))
    show(scope)
end
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Use Bilevel Measurements Panel with Clock Input Signal

Create and Display Clock Input Signal

Load the clock data, x and t. Find the sample time ts.

load clockex
ts = t(2)-t(1);

Create a timescope object and call the object to display the signal. To autoscale the axes and enable
changes to property values and input characteristics, call release.

scope = timescope(SampleRate=1/ts,TimeSpanSource="auto");
scope(x);
release(scope);
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Use Bilevel Measurements Panel to Find Settling Time

On the Measurements tab, under Bilevel Settings, select Aberrations.

Initially, the Time Scope does not display the Settling Time(s) measurement. This absence occurs
because the default value of the Settle Seek parameter is longer than the entire simulation duration.
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To change the value of the Settle Seek (s) parameter, click Bilevel Settings, and under Reference
Level, set the settle seek value to 2e-6 and press Enter.

Time Scope now displays a rising edge Settling Time value of 118.392 ns.

This settling time value is actually the statistical average of the settling times for all five rising edges.
To show the settling time for only one rising edge, you can zoom in on that transition.
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Hover over the upper right corner of the scope axes and click the zoom button.

Click and drag to zoom in on one of the transitions. Set Settle Seek (s) to 2e-7 and press Enter.

The Time Scope updates the rising edge Settling Time value to reflect the new time window.
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Configure Bilevel Measurements Programmatically in Time Scope MATLAB Object

Create a sine wave and view it in the Time Scope. Programmatically compute the bilevel
measurements related to signal transitions, aberrations, and cycles.

Initialization

Create the input sine wave using the sin function. Create a timescope MATLAB® object to display
the signal. Set the TimeSpan property to 1 second.

f = 100;
fs = 1000;
swv = sin(2.*pi.*f.*(0:1/fs:1-1/fs)).';
scope = timescope(SampleRate=fs,...
    TimeSpanSource="property",...
    TimeSpan=1);

Transition Measurements

Enable the scope to show transition measurements programmatically by setting the
ShowTransitions property to true. Display the sine wave in the scope.

Transition measurements such as rise time, fall time, and slew rate appear in the Transitions pane at
the bottom of the scope.
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scope.BilevelMeasurements.ShowTransitions = true;
scope(swv);
release(scope);

Aberration Measurements

Enable the scope to show aberration measurements programmatically by setting the
ShowAberrations property to true. Display the sine wave in the scope.

Aberration measurements such as preshoot, overshoot, undershoot, and settling time appear in the
Aberrations pane at the bottom of the scope.

scope.BilevelMeasurements.ShowAberrations = true;
scope(swv);
release(scope);
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Cycle Measurements

Enable the scope to show cycles measurements programmatically by setting the ShowCycles
property to true. Display the sine wave in the scope.

Cycle measurements such as period, frequency, pulse width, and duty cycle appear in the Cycles
pane at the bottom of the scope.

scope.BilevelMeasurements.ShowCycles = true;
scope(swv);
release(scope);
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Configure Signal Statistics Programmatically in Time Scope MATLAB Object

Create a sine wave and view it in the Time Scope. Enable the scope programmatically to compute the
signal statistics.

The object supports these signal statistics:

• Maximum
• Minimum
• Mean
• Median
• RMS
• Peak to peak
• Variance
• Standard deviation
• Mean square

Initialization

Create the input sine wave using the sin function. Create a timescope MATLAB® object to display
the signal. Set the TimeSpan property to 1 second.
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f = 100;
fs = 1000;
swv = sin(2.*pi.*f.*(0:1/fs:1-1/fs)).';
scope = timescope(SampleRate=fs,...
    TimeSpanSource="property",...
    TimeSpan=1);

Signal Statistics

Enable the scope to show signal statistics programmatically by setting the SignalStatistics >
Enabled property to true.

scope.SignalStatistics.Enabled = true;

By default, the scope enables the following measurements.

scope.SignalStatistics

ans = 
  SignalStatisticsConfiguration with properties:

                  ShowMax: 1
                  ShowMin: 1
           ShowPeakToPeak: 1
                 ShowMean: 1
             ShowVariance: 0
    ShowStandardDeviation: 1
               ShowMedian: 1
                  ShowRMS: 1
           ShowMeanSquare: 0
                  Enabled: 1

Display the sine wave in the scope. A Statistics pane appears at the bottom of the scope window
displaying the statistics for the portion of the signal that you can see in the scope.

If you use the zoom options on the scope, the statistics automatically adjust to the time range in the
display.

scope(swv);
release(scope);
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Visualize Multiple Inputs with Different Sample Rates

This example shows how to visualize multiple inputs with different sample rates and plot the signals
on multiple axes.

Generate three different sine waves and plot them in the Time Scope.

freq = 1/500;
t    = (0:100)'/freq;
t2   = (0:0.5:100)'/freq;
xin1 = sin(1/2*t);
xin2 = sin(1/4*t2);
xin  = sin(1/2*t2)+sin(1/4*t2);

scope = timescope(SampleRate=[freq freq/2 freq],...
    TimeSpanSource="property", ...
    TimeSpan=0.1,...
    LayoutDimensions=[2,1]);
scope(xin,xin1,xin2)

release(scope)
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Use Multiple Axes on Scope

This example show how to add titles, set y-axis limits, and modify properties when you have multiple
axes on your timescope object.

Use the timescope object to visualize three sine waves with two different sample rates.

freq = 1;
t    = (0:100)'/freq;
t2   = (0:0.5:100)'/freq;
xin1 = sin(1/2*t);
xin2 = sin(1/4*t2);
xin  = sin(1/2*t2)+sin(1/4*t2);
    
scope = timescope(SampleRate=[freq freq/2 freq],...
     TimeSpanSource="property",...
     TimeSpan=100);
scope(xin, xin1, xin2)
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Change the layout to add a second axis. The second and third inputs automatically move to the new
second axis.

scope.LayoutDimensions = [2,1];
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Modify the properties of the first axis.

scope.ActiveDisplay = 1;
scope.ShowGrid = false;
scope.Title = "Sine Wave 1";
scope.YLimits = [-2,2];

Repeat this process to modify the second axis.

scope.ActiveDisplay = 2;
scope.Title = "Sine Waves 2 & 3";
scope.YLimits = [-1,1];
release(scope)
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View Sine Wave Input Signals at Different Sample Rates and Offsets

Create a dsp.SineWave object. Create a dsp.FIRDecimator object to decimate the sine wave by 2.
Create a timescope object with two input ports.

Fs = 1000;  % Sample rate
sine = dsp.SineWave(Frequency=50,...
   SampleRate=Fs,...
   SamplesPerFrame=100);
decimate = dsp.FIRDecimator; % To decimate sine by 2
scope = timescope(SampleRate=[Fs Fs/2],...
   TimeDisplayOffset=[0 38/Fs],...
   TimeSpanSource="Property",...
   TimeSpan=0.25,...
   YLimits=[-1 1],...
   ShowLegend=true);

Call the dsp.SineWave object to create a sine wave signal. Use the dsp.FIRDecimator object to
create a second signal that equals the original signal and decimate it by a factor of 2. Display the
signals by calling the timescope object.

for ii = 1:2
     xsine = sine();
     xdec = decimate(xsine);
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     scope(xsine,xdec)
end
release(scope)

Close the Time Scope window and clear the variables.

clear scope Fs sine decimate ii xsine xdec

Display Complex-Valued Input Signal

Create a vector representing a complex-valued sinusoidal signal and a timescope object. Call the
scope to display the signal.

fs = 1000; 
t = (0:1/fs:10)';
CxSine = cos(2*pi*0.2*t) + 1i*sin(2*pi*0.2*t);
CxSineSum = cumsum(CxSine);
scope = timescope(SampleRate=fs,...
    TimeSpanSource="auto",ShowLegend=1);
scope(CxSineSum);
release(scope)
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By default, when the input is a complex-valued signal, the Time Scope plots the real and imaginary
portions on the same axes. These portions appear as different-colored lines on the same axes within
the same active display.

Change the PlotAsMagnitudePhase property to true and call release.

The Time Scope now plots the magnitude and phase of the input signal on two separate axes within
the same active display. The top axes display magnitude and the bottom axes display the phase in
degrees.

scope.PlotAsMagnitudePhase = true;
scope(CxSineSum);
release(scope)
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Display Input Signal of Changing Size

This example shows how the timescope object visualizes inputs that change dimensions halfway
through.

Create a vector that represents a two-channel constant signal. Create another vector that represents
a three-channel constant signal. Create a timescope object and call the scope with two inputs to
display the signal.

fs = 10;
sigdim2 = [ones(5*fs,1) 1+ones(5*fs,1)];                   % 2-dim 0-5 s
sigdim3 = [2+ones(5*fs,1) 3+ones(5*fs,1) 4+ones(5*fs,1)];  % 3-dim 5-10 s
scope = timescope(SampleRate=fs,TimeSpanSource="property");
scope.PlotType = "stairs";
scope.TimeSpanOverrunAction = "scroll";
scope.TimeDisplayOffset = [0 5];
scope([sigdim2; sigdim3(:,1:2)], sigdim3(:,3));
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The size of the input signal to the Time Scope changes as the simulation progresses. When the
simulation time is less than 5 seconds, the Time Scope plots only the two-channel signal sigdim2.
After 5 seconds, the Time Scope also plots the three-channel signal sigdim3.

Run the release method to enable changes to property values and input characteristics. The scope
automatically scales the axes.

release(scope)
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Find Heart Rate Using Peak Finder Panel with ECG Input Signal

Use Peak Finder pane in the Time Scope to measure heart rate.

Create and Display ECG Signal

Use the custom ecg function to generate an electrocardiogram (ECG) signal.

type ecg.m

function x = ecg(L)
a0 = [0,  1, 40,  1,   0, -34, 118, -99,   0,   2,  21,   2,   0,   0,   0];
d0 = [0, 27, 59, 91, 131, 141, 163, 185, 195, 275, 307, 339, 357, 390, 440];
a = a0 / max(a0);
d = round(d0 * L / d0(15));
d(15) = L;
for i = 1:14
    m = d(i) : d(i+1) - 1;
    slope = (a(i+1) - a(i)) / (d(i+1) - d(i));
    x(m+1) = a(i) + slope * (m - d(i));
end

x1 = 3.5*ecg(2700).';
y1 = sgolayfilt(kron(ones(1,13),x1),0,21);
n = (1:30000)';
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del = round(2700*rand(1));
mhb = y1(n + del);
ts = 0.00025;

Create a timescope object and call the object to display the signal. To autoscale the axes and enable
changes to property values and input characteristics, call release.

scope = timescope(SampleRate=1/ts);
scope(mhb);
release(scope)

Find Heart Rate

Use the Peak Finder measurements to measure the time between heartbeats.

In the Measurements tab, select Peak Finder to enable the peak finder measurements.

Click the Peak Finder arrow and set the Num Peaks property to 10 and hit enter.

In the Peaks pane at the bottom of the window, the Time Scope displays a list of ten peak amplitude
values and the times at which they occur.
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The list of peak values shows a constant time difference of 0.675 seconds between each heartbeat.
Based on this equation, the heart rate of this ECG signal is about 89 beats per minute.

60 s/min
0 . 675 s/beat = 88 . 89 bpm

Close the Time Scope window and remove the variables you created from the workspace.

clear scope x1 y1 n del mhb ts

Tips
• To close the scope window and clear its associated data, use the MATLAB clear function.
• To hide or show the scope window, use the hide and show functions.
• Use the MATLAB mcc function to compile code containing a scope. You cannot open scope
configuration dialogs if you have more than one compiled component in your application.

Version History
Introduced in R2020a

R2022b: Channel names support array of strings
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Starting in R2022b, you can specify the ChannelNames property of the timescope object as an
array of strings.

ts = timescope(SampleRate=Fs, ChannelNames=["Input", "Lowpass Output"]);

See Also
Topics
“Configure Time Scope MATLAB Object”
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generateScript
Generate MATLAB script to create scope with current settings

Syntax
generateScript(scope)

Description
generateScript(scope) generates a MATLAB script that can re-create a timescope object with
the current settings in the scope.

Examples

Generate Script from timescope

Generate MATLAB script after making changes to the timescope object in the scope window.

Note The script only generates commands for settings that are available from the command line,
applicable to the current visualization, and changed from the default value.

1 Create a timescope object.

scope = timescope;
show(scope)

2 Set options in the Time Scope. For this example, on the Scope tab, click Settings. Under
Display and Labels, select Show Legend and Magnitude Phase Plot. Set the Title as well.
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3 Generate a script to recreate the timescope with the same modified settings. Either select
Generate Script from the Scope tab, or enter:

generateScript(scope);

A new editor window opens with code to regenerate the same scope.
% Creation Code for 'timescope'.
% Generated by Time Scope on 8-Nov-2019 13:51:54 -0500.

timeScope = timescope('Position',[2286 355 800 500], ...
    'Title','My Time Scope', ...
    'ShowLegend',true, ...
    'PlotAsMagnitudePhase',true);

Input Arguments
scope — object
timescope object

Object whose settings you want to recreate with a script.

Version History
Introduced in R2020a
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See Also
Functions
hide | show | isVisible

Objects
timescope
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hide
Hide scope window

Syntax
hide(scope)

Description
hide(scope) hides the scope window.

Examples

View Sine Wave on Time Scope

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

scope = timescope(SampleRate=8e3,...
    TimeSpanSource="property",...
    TimeSpan=0.1);
scope(xin)

2 Classes

2-1668



Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);
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Hide the scope window.

if(isVisible(scope))
    hide(scope)
end

Show the scope window.

if(~isVisible(scope))
    show(scope)
end
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Input Arguments
scope — Scope object
timescope object

Scope object whose window you want to hide, specified as a timescope object.
Example: myScope = timescope; hide(myScope)

Version History
Introduced in R2020a

See Also
Functions
show | isVisible | generateScript

Objects
timescope
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isVisible
Determine visibility of scope

Syntax
visibility = isVisible(scope)

Description
visibility = isVisible(scope) returns the visibility of the scope as logical, with 1 (true) for
visible.

Examples

View Sine Wave on Time Scope

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

scope = timescope(SampleRate=8e3,...
    TimeSpanSource="property",...
    TimeSpan=0.1);
scope(xin)
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Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);
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Hide the scope window.

if(isVisible(scope))
    hide(scope)
end

Show the scope window.

if(~isVisible(scope))
    show(scope)
end
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Input Arguments
scope — Scope object
timescope object

Scope object whose visibility you want to query.
Example: myScope = timescope; visibility = isVisible(myScope)

Output Arguments
visibility — Scope visibility
1 | 0

If the scope window is open, the isVisible function returns 1 (true). Otherwise, the function
returns 0 (false).

Version History
Introduced in R2020a
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See Also
Functions
hide | show | generateScript

Objects
timescope
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show
Display scope window

Syntax
show(scope)

Description
show(scope) shows the scope window.

Examples

View Sine Wave on Time Scope

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

scope = timescope(SampleRate=8e3,...
    TimeSpanSource="property",...
    TimeSpan=0.1);
scope(xin)
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Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);
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Hide the scope window.

if(isVisible(scope))
    hide(scope)
end

Show the scope window.

if(~isVisible(scope))
    show(scope)
end
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Input Arguments
scope — Scope object
timescope object

Scope object whose window you want to show, specified as a timescope object.
Example: myScope = timescope; show(myScope)

Version History
Introduced in R2020a

See Also
Functions
hide | isVisible | generateScript

Objects
timescope
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BilevelMeasurementsConfiguration
Measure transitions, aberrations, and cycles of bilevel signals

Description
Use the BilevelMeasurementsConfiguration object to measure transitions, aberrations, and
cycles of bilevel signals. You can also specify the bilevel settings such as high-state level, low-state
level, state-level tolerance, upper-reference level, mid-reference level, and lower-reference level.

You can control bilevel measurements from the toolstrip or from the command line. To modify bilevel
measurements from the toolstrip, in the Measurements tab, click Bilevel Settings and select the
measurements you want to display. A panel appears at the bottom of the Time Scope window showing
all the measurements you enabled.
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Creation

Syntax
bilevelMeas = BilevelMeasurementsConfiguration()

Description

bilevelMeas = BilevelMeasurementsConfiguration() creates a bilevel measurements
configuration object.

Properties
All properties are tunable.

AutoStateLevel — Automatic detection of high- and low-state levels
true (default) | false

Automatic detection of high- and low-state levels, specified as true or false. Set this property to
true so that the scope automatically detects high- and low-state levels in the bilevel waveform. When
you set this property to false, you can specify values for the high- and low- state levels manually
using the HighStateLevel and LowStateLevel properties.

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings. Under State
Level, and select Auto State Level.
Data Types: logical

HighStateLevel — High-state level
2.3 (default) | nonnegative scalar

High-state level, specified as a nonnegative scalar. The high-state level denotes a positive polarity.

If the initial transition of a pulse is positive-going, the pulse has positive polarity. The terminating
state of a positive-polarity (positive-going) pulse is more positive than the originating state.

This figure shows a positive-polarity pulse.
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Dependency

To enable this property, set AutoStateLevel to false.

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings. Under State
Level, clear Auto State Level and specify a nonnegative scalar in the High box.
Data Types: double

LowStateLevel — Low-state level
0 (default) | nonnegative scalar

High-state level, specified as a nonnegative scalar. The low-state level denotes a negative polarity.

If the initial transition of a pulse is negative-going, the pulse has negative polarity. The terminating
state of a negative-polarity (negative-going) pulse is more negative than the originating state.

This figure shows a negative-polarity pulse.

Dependency

To enable this property, set AutoStateLevel to false.

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings. Under State
Level, clear Auto State Level and specify a nonnegative scalar in the Low box.
Data Types: double

StateLevelTolerance — Tolerance level of state
2 (default) | positive scalar in the range (0 100)

Tolerance level of the state, specified as a positive scalar in the range (0 100).
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This value determines how much a signal can deviate from the low- or high-state level before it is
considered to be outside that state. Specify this value as a percentage of the difference between the
high- and low-state levels. For more details, see “State-Level Tolerances” on page 2-1689.

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings. Under State
Level, specify a positive scalar less than 100 in the State Level Tol. (%) box.
Data Types: double

UpperReferenceLevel — Upper-reference level
90 (default) | positive scalar in the range (0 100)

Upper-reference level, specified as a positive scalar in the range (0 100). The scope uses the upper-
reference level to compute the start of a fall time or the end of a rise time. Specify this value as a
percentage of the difference between the high- and low-state levels.

If S1 is the low-state level, S2 is the high-state level, and U is the upper-reference level, the waveform
value corresponding to the upper-reference level is

S1 + U
100(S2− S1) .

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings. Under
Reference Level, specify a positive scalar less than 100 in the Upper Ref. Level (%) box.
Data Types: double

MidReferenceLevel — Mid-reference level
50 (default) | positive scalar in the range (0 100)

Mid-reference level, specified as a positive scalar in the range (0 100). The scope uses the mid-
reference level to determine when a transition occurs. Specify this value as a percentage of the
difference between the high- and low-state levels.

The mid-reference level in a bilevel waveform with low-state level S1 and high-state level S2 is

S1 + 1
2(S2− S1)

This figure shows the mid-reference level as a horizontal line, and shows its corresponding mid-
reference level instant as a vertical line.
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Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings. Under
Reference Level, specify a positive scalar less than 100 in the Mid Ref. Level (%) box.
Data Types: double

LowerReferenceLevel — Lower-reference level
10 (default) | positive scalar in the range (0 100)

Lower-reference level, specified as a positive scalar in the range (0 100). The scope uses the lower-
reference level to compute the end of a fall time or the start of a rise time. Specify this value as a
percentage of the difference between the high- and low-state levels.

If S1 is the low-state level, S2 is the high-state level, and L is the lower-reference level, the waveform
value corresponding to the lower-reference level is

S1 + L
100(S2− S1) .

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings. Under
Reference Level, specify a positive scalar less than 100 in the Lower Ref. Level (%) box.
Data Types: double

SettleSeek — Time duration over which to search for a settling time
0.02 (default) | positive scalar

Time duration over which the scope searches for a settling time, specified as a positive scalar in
seconds.
Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings. Under
Reference Level, specify a positive scalar in the Settle Seek (s) box.
Data Types: double
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ShowTransitions — Enable transition measurements
false (default) | true

Enable transition measurements, specified as true or false. For more information on the transition
measurements that the scope displays, see “Transitions Pane”.

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings and select
Transitions. A Transitions pane opens at the bottom of the Time Scope window to show the
transition measurements.
Data Types: logical

ShowAberrations — Enable aberration measurements
false (default) | true

Enable aberration measurements, specified as true or false. Aberration measurements include
distortion and damping measurements such as preshoot, overshoot, and undershoot. For more
information on the aberration measurements that the scope displays, see “Overshoots / Undershoots
Pane”.

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings and select
Aberrations. An Aberrations pane opens at the bottom of the Time Scope window to show the
aberration measurements.
Data Types: logical

ShowCycles — Enable cycle measurements
false (default) | true

Enable cycle measurements, specified as true or false. These measurements are related to
repetitions or trends in the displayed portion of the input signal. For more information on the cycle
measurements, see “Cycles Pane”.

Scope Window Use

On the Measurements tab, in the Measurements section, click Bilevel Settings and select Cycles.
A Cycles pane opens at the bottom of the Time Scope window to show the cycle measurements.
Data Types: logical

Examples

Configure Bilevel Measurements Programmatically in Time Scope MATLAB Object

Create a sine wave and view it in the Time Scope. Programmatically compute the bilevel
measurements related to signal transitions, aberrations, and cycles.

Initialization

Create the input sine wave using the sin function. Create a timescope MATLAB® object to display
the signal. Set the TimeSpan property to 1 second.
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f = 100;
fs = 1000;
swv = sin(2.*pi.*f.*(0:1/fs:1-1/fs)).';
scope = timescope(SampleRate=fs,...
    TimeSpanSource="property",...
    TimeSpan=1);

Transition Measurements

Enable the scope to show transition measurements programmatically by setting the
ShowTransitions property to true. Display the sine wave in the scope.

Transition measurements such as rise time, fall time, and slew rate appear in the Transitions pane at
the bottom of the scope.

scope.BilevelMeasurements.ShowTransitions = true;
scope(swv);
release(scope);

Aberration Measurements

Enable the scope to show aberration measurements programmatically by setting the
ShowAberrations property to true. Display the sine wave in the scope.

Aberration measurements such as preshoot, overshoot, undershoot, and settling time appear in the
Aberrations pane at the bottom of the scope.
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scope.BilevelMeasurements.ShowAberrations = true;
scope(swv);
release(scope);

Cycle Measurements

Enable the scope to show cycles measurements programmatically by setting the ShowCycles
property to true. Display the sine wave in the scope.

Cycle measurements such as period, frequency, pulse width, and duty cycle appear in the Cycles
pane at the bottom of the scope.

scope.BilevelMeasurements.ShowCycles = true;
scope(swv);
release(scope);
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More About
State-Level Tolerances

You can specify lower- and upper-state boundaries for each state level. Define the boundaries as the
state level plus or minus a scalar multiple of the difference between the high state and the low state.
To provide a useful tolerance region, specify the scalar as a small number such as 2/100 or 3/100. In
general, the  region for the low state is defined as

where  is the low-state level and  is the high-state level. Replace the first term in the equation
with  to obtain the  tolerance region for the high state.

This figure shows lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.
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Version History
Introduced in R2022a

See Also
timescope

Topics
“Configure Time Scope MATLAB Object”
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SignalStatisticsConfiguration
Compute and display signal statistics

Description
Use the SignalStatisticsConfiguration object to measure signal statistics such as maximum,
minimum, peak-to-peak value, mean, variance, standard deviation, median, RMS, and mean square.

You can enable the scope to compute and display signal statistics from the toolstrip or from the
command line. To enable from the scope interface, click the Measurements tab, and then click
Signal Statistics. A statistics panel appears at the bottom of the scope window. To enable specific
statistics, click the Signal Statistics drop-down list and select a statistic from the options. The
Statistics panel shows those statistics.

Time Scope
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Creation

Syntax
signalStats = SignalStatisticsConfiguration()

Description

signalStats = SignalStatisticsConfiguration() creates a signal statistics configuration
object signalStats.

Properties
All properties are tunable.

ShowMax — Compute and display maximum
true (default) | false

Compute and display the maximum value, specified as true or false. The scope computes and
displays the maximum value of the portion of the input signal that is currently on display in the scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select Max.
Data Types: logical

ShowMin — Compute and display minimum
true (default) | false

Compute and display the minimum value, specified as true or false. The scope computes and
displays the minimum value of the portion of the input signal that is currently on display in the scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select Min.
Data Types: logical

ShowPeakToPeak — Compute and display peak-to-peak values
true (default) | false

Compute and display the peak-to-peak values, specified as true or false. The scope computes and
displays the peak-to-peak values from the portion of the input signal that is currently on display in the
scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select Peak
to Peak.
Data Types: logical

ShowMean — Compute and display mean
true (default) | false
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Compute and display the mean value, specified as true or false. The scope computes and displays
the mean value of the portion of the input signal that is currently on display in the scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select
Mean.
Data Types: logical

ShowVariance — Compute and display variance
false (default) | true

Compute and display the variance, specified as true or false. The scope computes and displays the
variance of the portion of the input signal that is currently on display in the scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select
Variance.
Data Types: logical

ShowStandardDeviation — Compute and display standard deviation
true (default) | false

Compute and display the standard deviation, specified as true or false. The scope computes and
displays the standard deviation of the portion of the input signal that is currently on display in the
scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select
Standard Deviation.
Data Types: logical

ShowMedian — Compute and display median
true (default) | false

Compute and display the median, specified as true or false. The scope computes and displays the
median of the portion of the input signal that is currently on display in the scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select
Median.
Data Types: logical

ShowRMS — Compute and display RMS
true (default) | false

Compute and display the RMS, specified as true or false. The scope computes and displays the
RMS of the portion of the input signal that is currently on display in the scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select RMS.
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Data Types: logical

ShowMeanSquare — Compute and display mean square
false (default) | true

Compute and display the mean square, specified as true or false. The scope computes and displays
the mean square of the portion of the input signal that is currently on display in the scope.

Scope Window Use

On the Measurements tab, select Signal Statistics and then click Signal Statistics to select
Mean Square.
Data Types: logical

Enabled — Enable signal statistics measurements
false (default) | true

Enable signal statistics measurements, specified as true or false. Set this property to true to
enable signal statistics measurements.

Scope Window Use

On the Measurements tab, select Signal Statistics( ).
Data Types: logical

Examples

Configure Signal Statistics Programmatically in Time Scope MATLAB Object

Create a sine wave and view it in the Time Scope. Enable the scope programmatically to compute the
signal statistics.

The object supports these signal statistics:

• Maximum
• Minimum
• Mean
• Median
• RMS
• Peak to peak
• Variance
• Standard deviation
• Mean square

Initialization

Create the input sine wave using the sin function. Create a timescope MATLAB® object to display
the signal. Set the TimeSpan property to 1 second.
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f = 100;
fs = 1000;
swv = sin(2.*pi.*f.*(0:1/fs:1-1/fs)).';
scope = timescope(SampleRate=fs,...
    TimeSpanSource="property",...
    TimeSpan=1);

Signal Statistics

Enable the scope to show signal statistics programmatically by setting the SignalStatistics >
Enabled property to true.

scope.SignalStatistics.Enabled = true;

By default, the scope enables the following measurements.

scope.SignalStatistics

ans = 
  SignalStatisticsConfiguration with properties:

                  ShowMax: 1
                  ShowMin: 1
           ShowPeakToPeak: 1
                 ShowMean: 1
             ShowVariance: 0
    ShowStandardDeviation: 1
               ShowMedian: 1
                  ShowRMS: 1
           ShowMeanSquare: 0
                  Enabled: 1

Display the sine wave in the scope. A Statistics pane appears at the bottom of the scope window
displaying the statistics for the portion of the signal that you can see in the scope.

If you use the zoom options on the scope, the statistics automatically adjust to the time range in the
display.

scope(swv);
release(scope);
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Version History
Introduced in R2022a

See Also
timescope

Topics
“Configure Time Scope MATLAB Object”
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TriggerConfiguration
Trigger measurements properties for scope

Description
Use the TriggerConfiguration object to define a trigger event to identify the simulation time of
specified input signal characteristics. You can use trigger events to stabilize periodic signals such as
a sine wave or capture nonperiodic signals such as a pulse that occurs intermittently.

You can enable the trigger events either from the Time Scope toolstrip or from the command line. To
enable a trigger event from the toolstrip, open the Measurements tab and click Enable Trigger.

Creation

Syntax
trigger = TriggerConfiguration()
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Description

trigger = TriggerConfiguration() creates a trigger configuration object trigger.

Properties
All properties are tunable.

For more information on these triggers and the associated parameters, see “Source/Type and Levels/
Timing Panes”.

Mode — Display update mode
"auto" (default) | "normal" | "once"

Display update mode, specified as one of these:

• "auto" –– Display data from the last trigger event. If no event occurs after one time span, display
the last available data.

• "normal" –– Display data from the last trigger event. If no event occurs, the display remains
blank.

• "once" –– Display data from the last trigger event and freeze the display. If no event occurs, the

display remains blank. Click the Rearm button ( ) to look for the next trigger event.

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings and set Mode to one of the
available options.
Data Types: char | string

Type — Type of trigger
"edge" (default) | "pulse-width" | "transition" | "runt" | "window" | "timeout"

Type of trigger, specified as one of the following:

• "edge" –– Trigger when the signal crosses a threshold.
• "pulse-width" –– Trigger when the signal crosses a low threshold and a high threshold twice

within a specified time.
• "transition" –– Trigger on the rising or falling edge of a signal that crosses the high and low

levels within a specified time range.
• "runt" –– Trigger when a signal crosses a low threshold or a high threshold twice within a
specified time.

• "window" –– Trigger when a signal stays within or outside a region defined by the high and low
thresholds for a specified time.

• "timeout" –– Trigger when a signal stays above or below a threshold longer than a specified
time.

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings and set Type to one of the
available options.
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Data Types: char | string

Polarity — Trigger polarity
"rising" (default) | "falling" | "either" | "positive" | "negative" | "rise-time" | "fall-
time" | "inside" | "outside"

Trigger polarity, specified as one of the following:

• "rising", "falling", or "either" –– When Type is set to "edge" or "timeout".
• "positive", "negative", or "either" –– When Type is set to "pulse-width" or "runt".
• "rise-time", "fall-time", or "either" –– When Type is set to "transition".
• "inside", "outside", or "either" –– When Type is set to "window".

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings and set Polarity to one of the
available options.
Data Types: char | string

AutoLevel — Automatic thresholding
true (default) | false

Automatic thresholding of edge-triggered signal, specified as true or false. When you set this
property to false, specify the threshold manually using the Level property.
Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, select
Auto Level.
Data Types: logical

Position — Horizontal position of trigger
50 (default) | positive scalar in the range (0 100]

Horizontal position of the trigger on the screen, specified as a positive scalar in the range (0 100].
Scope Window Use

On the Measurements tab, in the Trigger section, click Settings and specify a positive scalar less
than or equal to 100 in the Position (%) box.
Data Types: double

Level — Threshold of edge-triggered signal
0 (default) | real scalar

Threshold of an edge-triggered signal, specified as a finite real scalar.
Dependency

To enable this property, set AutoLevel to false and Type to "edge" or "timeout".
Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, clear
Auto Level and specify a real scalar in the Level box.
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To enable this property, set Type to Edge or Timeout.
Data Types: double

Hysteresis — Noise reject value
0 (default) | real scalar

Noise reject value, specified as a finite real scalar. For more information on hysteresis, see
“Hysteresis of Trigger Signals”.
Dependency

To enable this property, set AutoLevel to false and Type to "edge" or "timeout".
Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, clear
Auto Level and specify a real scalar in the Hysteresis box.

To enable this property, set Type to Edge or Timeout.
Data Types: double

LowLevel — Lower trigger level of window-triggered signal
0.2 (default) | real scalar

Lower trigger level of window-triggered signal, specified as a finite real scalar.
Dependency

To enable this property, set AutoLevel to false and Type to "pulse-width", "transition",
"runt", or "window".
Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, clear
Auto Level and specify a real scalar in the Low box.

To enable this property, set Type to Pulse Width, Transition, Runt, or Window.
Data Types: double

HighLevel — Higher trigger level of window-triggered signal
2.3 (default) | real scalar

Higher trigger level of window-triggered signal, specified as a finite real scalar.
Dependency

To enable this property, set AutoLevel to false and Type to "pulse-width", "transition",
"runt", or "window".
Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, clear
Auto Level and specify a real scalar in the High box.

To enable this property, set Type to Pulse Width, Transition, Runt, or Window.
Data Types: double
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MinPulseWidth — Minimum pulse width for pulse or runt-triggered signal
0 (default) | nonnegative scalar

Minimum pulse width for a pulse or runt-triggered signal, specified as a nonnegative scalar.

Dependency

To enable this property, set Type to "pulse-width" or "runt".

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, specify a
nonnegative scalar in the Min Width (s) box.

To enable this property, set Type to Pulse Width or Runt.
Data Types: double

MaxPulseWidth — Maximum pulse width for pulse or runt-triggered signal
Inf (default) | nonnegative scalar

Maximum pulse width for a pulse or runt-triggered signal, specified as a nonnegative scalar.

Dependency

To enable this property, set Type to "pulse-width" or "runt".

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, specify a
nonnegative scalar in the Max Width (s) box.

To enable this property, set Type to Pulse Width or Runt.
Data Types: double

MinDuration — Minimum duration for transition or window-triggered signal
0 (default) | nonnegative scalar

Minimum duration for a transition or window-triggered signal, specified as a nonnegative scalar.

Dependency

To enable this property, set Type to "transition" or "window".

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, specify a
nonnegative scalar in the Min Time (s) box.

To enable this property, set Type to Transition or Window.
Data Types: double

MaxDuration — Maximum duration for transition or window-triggered signal
Inf (default) | nonnegative scalar

Maximum time duration for a transition or window-triggered signal, specified as a nonnegative scalar.
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Dependency

To enable this property, set Type to "transition" or "window".

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, specify a
nonnegative scalar in the Max Time (s) box.

To enable this property, set Type to Transition or Window.
Data Types: double

Timeout — Timeout duration
0 (default) | nonnegative scalar

Timeout duration for a timeout-triggered signal, specified as a nonnegative scalar.

Dependency

To enable this property, set Type to "timeout".

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Level Settings, specify a
nonnegative scalar in the Timeout (s) box.

To enable this property, set Type to Timeout.
Data Types: double

Delay — Trigger offset
0 (default) | real scalar

Trigger offset in seconds, specified as a finite real scalar.

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Delay/Holdoff, specify a
real scalar in the Delay (s) box.
Data Types: double

Holdoff — Minimum time between triggers
0 (default) | nonnegative scalar

Minimum time between trigger events, specified as a finite nonnegative scalar.

Scope Window Use

On the Measurements tab, in the Trigger section, click Settings. Under Delay/Holdoff, specify a
nonnegative scalar in the Holdoff (s) box.
Data Types: double

Channel — Trigger channel
1 (default) | positive integer

Trigger channel, specified as a positive integer.
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Scope Window Use

On the Measurements tab, in the Measurements section, select a channel.
Data Types: double

Enabled — Enable trigger
false (default) | true

Enable trigger, specified as true or false. Set this property to true to enable trigger.

Scope Window Use

On the Measurements tab, in the Trigger section, click Enable Trigger.
Data Types: logical

Examples

Enable Trigger Programmatically in Time Scope MATLAB Object

View a sine wave in the Time Scope window. This sine wave is streaming constantly in the display and
cannot be captured without stabilization. To stabilize the sine wave, enable a trigger event
programmatically on the scope display using the Enabled property of the TriggerConfiguration
object. Alternatively, you can enable the trigger by clicking the Enable Trigger button on the
Measurements tab of the toolstrip.

Create Sine Wave

Create the input sine wave using the sin function. Create a timescope MATLAB object to display
the signal. Set the TimeSpan property to 1 second.

f = 100;
fs = 1000;
swv = sin(2.*pi.*f.*(0:1/fs:1-1/fs)).';
scopeNoTrigger = timescope(SampleRate=fs,...
    TimeSpanSource="property", ...
    TimeSpan=1);

Display the sine wave in the scope. You can see that the signal in the scope is constantly moving.

while(1) 
    scopeNoTrigger(swv)
end
release(scopeNoTrigger)
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Enable Trigger

Now enable a trigger event to stabilize the signal.

You can enable the trigger event in the scope during simulation or enable the trigger event
programmatically when creating the object.

To use the programmatic approach, create another timescope object and enable the trigger event
programmatically while creating the object.

scope = timescope(SampleRate=fs,...
    TimeSpanSource="property",...
    TimeSpan=1);
scope.Trigger.Enabled = true;
scope.Trigger.Type = "transition";
scope.Trigger

 TriggerConfiguration with properties:

           Mode: 'auto'
           Type: 'transition'
       Polarity: 'rise-time'
      AutoLevel: 1
       Position: 50
       LowLevel: 0.2000
      HighLevel: 2.3000
    MinDuration: 0
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    MaxDuration: Inf
          Delay: 0
        Holdoff: 0
        Channel: 1
        Enabled: 1

Stream in the sine wave signal again.

while(1) 
    scope(swv)
end
release(scope)

The display freezes once you enable the trigger.

The triangle markers show the trigger positions and levels. For more information on the trigger,
hover over the triangle.
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Version History
Introduced in R2022a

See Also
timescope

Topics
“Configure Time Scope MATLAB Object”
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CursorMeasurementsConfiguration
Measure signal values using vertical waveform cursors that track along the signal

Description
Use the CursorMeasurementsConfiguration object to enable waveform cursors. You can control
the cursor settings from the toolstrip of the scope or from the command line.

To display vertical cursors on each signal and to modify the cursor settings in the scope UI, click the
Measurements tab and enable Data Cursors. Each cursor tracks a vertical line along the signal.
The scope displays the difference between x- and y-values of the signal at the two cursors in the box
between the cursors. The cursors appear only when the scope has at least one signal in its display.
You can use the mouse to move the vertical cursors left and right.

Time Scope Toolstrip
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Creation

Syntax
cursormeas = CursorMeasurementsConfiguration()

Description

cursormeas = CursorMeasurementsConfiguration() creates a cursor measurements
configuration object.

Properties
All properties are tunable.

XLocation — x-coordinates of the cursors
[2 8] (default) | two-element vector

x-coordinates of the cursors, specified as a two-element vector of real numbers.

Scope Window Use

On the Measurements tab, select Data Cursors and then click Data Cursors to specify the two
elements in X location properties.
Data Types: double

SnapToData — Position cursors on signal data points
false (default) | true

Position cursors on the signal data points, specified as true or false.

Scope Window Use

On the Measurements tab, select Data Cursors and then click Data Cursors to select Snap to
data.
Data Types: logical

LockSpacing — Lock spacing between cursors
false (default) | true

Lock spacing between cursors, specified as true or false. Set this property to true to lock the
frequency difference between the cursors.

Scope Window Use

On the Measurements tab, select Data Cursors and then click Data Cursors to select Lock cursor
spacing.
Data Types: logical

Enabled — Enable cursor measurements
false (default) | true
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Enable cursor measurements, specified as true or false. Set this property to true to enable cursor
measurements.

Scope Window Use

On the Measurements tab, select Data Cursors.
Data Types: logical

Examples

Configure Cursor Measurements Programmatically in Time Scope MATLAB Object

Create a sine wave and view it in the Time Scope. Enable data cursors programmatically.

Initialization

Create the input sine wave using the sin function. Create a timescope MATLAB® object to display
the signal. Set the TimeSpan property to 1 second.

f = 100;
fs = 1000;
swv = sin(2.*pi.*f.*(0:1/fs:1-1/fs)).';
scope = timescope(SampleRate=fs,...
    TimeSpanSource="property",...
    TimeSpan=1);

Data Cursors

Enable data cursors in the scope programmatically by setting the Enabled property of the
CursorMeasurementsConfiguration object to true.

scope.CursorMeasurements.Enabled = true;
scope(swv);
release(scope)
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Version History
Introduced in R2022a

R2022b: Enhancements to Data Cursor Measurements

Starting in R2022b, the CursorMeasurementsConfiguration object has a new LockSpacing
property. Use this property to lock the spacing between waveform cursors in the scope window.

In the Measurements tab of the scope UI window, these data cursor settings are new:

• Lock cursor spacing –– This setting corresponds to the LockSpacing property in the
CursorMeasurementsConfiguration object.

• X location –– These fields are enabled and correspond to the XLocation property in the
CursorMeasurementsConfiguration object.

See Also
timescope

Topics
“Configure Time Scope MATLAB Object”
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PeakFinderConfiguration
Compute and display the largest calculated peak values on the scope display

Description
Use the PeakFinderConfiguration object to compute and display peaks in the scope. The scope
computes and displays peaks for only the portion of the input signal that is currently on display in the
scope.

You can specify the number of peaks you want the scope to display, the minimum height above which
you want the scope to detect peaks, the minimum distance between peaks, and label the peaks. You
can control the peak finder settings from the scope toolstrip or from the command line. The algorithm
defines a peak as a local maximum with lower values present on either side of the peak. It does not
consider end points as peaks. For more information on the algorithm, see the findpeaks function.

To modify the peak finder settings in the scope interface, click the Measurements tab and enable
Peak Finder. Once you enable the Peak Finder, an arrow appears on the plot at each maxima and a
Peaks panel appears at the bottom of the scope window.

Time Scope Toolstrip
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Creation

Syntax
pkfinder = PeakFinderConfiguration()

Description

pkfinder = PeakFinderConfiguration() creates a peak finder configuration object.

Properties
All properties are tunable.

MinHeight — Level above which scope detects peaks
-Inf (default) | real scalar value

Level above which the scope detects peaks, specified as a real scalar.

Scope Window Use

On the Measurements tab, select Peak Finder. In the peak finder settings, specify a real scalar in
the Min Height box.
Data Types: double

NumPeaks — Maximum number of peaks to show
3 (default) | positive integer less than 100

Maximum number of peaks to show, specified as a positive integer less than 100.

Scope Window Use

On the Measurements tab, select Peak Finder. In the peak finder settings, specify a positive
integer less than 100 in the Num Peaks box.
Data Types: double

MinDistance — Minimum number of samples between adjacent peaks
1 (default) | positive integer

Minimum number of samples between adjacent peaks, specified as a positive integer.

Scope Window Use

On the Measurements tab, select Peak Finder. In the peak finder settings, specify a positive
integer in the Min Distance box.
Data Types: double

Threshold — Minimum difference in height of peak and its neighboring samples
0 (default) | nonnegative scalar

Minimum difference in the height of the peak and its neighboring samples, specified as a nonnegative
scalar.
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Scope Window Use

On the Measurements tab, select Peak Finder. In the peak finder settings, specify a nonnegative
scalar in the Threshold box.
Data Types: double

LabelPeaks — Label found peaks
false (default) | true

Label found peaks, specified as true or false. The scope displays the labels (P1, P2, …) above the
arrows in the plot.

Scope Window Use

On the Measurements tab, select Peak Finder. In the peak finder settings, select Label Peaks.
Data Types: logical

LabelFormat — Coordinates to display
"x + y" (default) | "x" | "y"

Coordinates to display next to the calculated peak value, specified as "x", "y", or "x + y".
Data Types: char | string

Enabled — Enable peak finder measurements
false (default) | true

Enable peak finder measurements, specified as true or false. Set this property to true to enable
the peak finder measurements.

Scope Window Use

On the Measurements tab, select Peak Finder.
Data Types: logical

Examples

Enable Peak Finder Programmatically in a Time Scope Object

Create a sine wave and view it in the Time Scope. Enable the peak finder programmatically.

Initialization

Create the input sine wave using the sin function. Create a timescope MATLAB® object to display
the signal. Set the TimeSpan property to 1 second.

f = 100;
fs = 1000;
swv = sin(2.*pi.*f.*(0:1/fs:1-1/fs)).';
scope = timescope(SampleRate=fs,...
    TimeSpanSource="property", ...
    TimeSpan=1);
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Peaks

Enable the peak finder and label the peaks. Set the scope to show three peaks and label them.

scope.PeakFinder.Enabled = true;
scope.PeakFinder.LabelPeaks = true;
scope(swv)
release(scope)

Version History
Introduced in R2022a

See Also
timescope

Topics
“Configure Time Scope MATLAB Object”
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tunerconfig
Fusion filter tuner configuration options

Description
The tunerconfig object creates a tuner configuration for a fusion filter used to tune the filter for
reduced estimation error.

Creation

Syntax
config = tunerconfig(filterName)
config = tunerconfig(filter)
config = tunerconfig(filterName,Name,Value)

Description

config = tunerconfig(filterName) creates a tunerconfig object controlling the optimization
algorithm of the tune function of the fusion filter by specifying a filter name.

config = tunerconfig(filter) creates a tunerconfig object controlling the optimization
algorithm of the tune function of the fusion filter by specifying a filter object.

config = tunerconfig(filterName,Name,Value) configures the created tunerconfig object
properties using one or more name-value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside quotes. You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN. Any unspecified properties take
default values.

For example, tunerconfig('imufilter','MaxIterations',3) create a tunerconfig object
for the imufilter object with the a maximum of three allowed iterations.

Inputs Arguments

filterName — Fusion filter name
'imufilter' | 'ahrsfilter' | 'ahrs10filter' | 'insfilterAsync' | 'insfilterMARG' |
'insfitlerErrorState' | 'insfilterNonholonomic'

Fusion filter name, specified as one of these options:

• 'imufilter'
• 'ahrsfilter'
• 'ahrs10filter'
• 'insfilterAsync'
• 'insfilterMARG'
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• 'insfitlerErrorState'
• 'insfilterNonholonomic'

filter — Fusion filter
fusion filter object

Fusion filter, specified as one of these fusion filter objects:

• insEKF
• ahrs10filter
• insfilterAsync
• insfilterMARG
• insfilterErrorState
• insfilterNonholonomic
• ahrsfilter
• imufilter

.

Properties
Filter — Class name of filter
string

This property is read-only.

Class name of filter, specified as a string. Its value is one of these strings:

• "imufilter"
• "ahrsfilter"
• "ahrs10filter"
• "insfilterAsync"
• "insfilterMARG"
• "insfitlerErrorState"
• "insfilterNonholonomic"

TunableParameters — Tunable parameters
array of string (default) | cell array

Tunable parameters, specified as an array of strings or a cell array.

• If you want to tune all the elements in each parameter together (scaling up or down all the
elements in a process noise matrix for example), then specify the property as an array of strings.
Each string corresponds to a property name.

For filter objects other than the insEKF object, this is the default option. With the default option,
the property contains all the tunable parameter names as an array of strings. Each string is a
tunable property name of the fusion filter.
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• If you want to tune a subset of elements for at least one noise parameter, specify it as a cell array.
The number of cells is the number of parameters that you want to tune.

• You can specify any cell element as a character vector, representing the property that you want
to tune. In this case, the filter tunes all the elements in the property together.

• You can also specify any cell element as a 1-by-2 cell array, in which the first cell is a character
vector, representing the property that you want tune. The second cell in the cell array is a
vector of indices, representing the elements that you want to tune in the property. These
indices are column-based indices.

This is default option for the insEKF object.

For example, running the following:

>> filter = insEKF;
config = tunerconfig(filter);
tunable = config.TunableParameters

and you can obtain:

tunable =

  1×3 cell array

    {1×2 cell}    {'AccelerometerNoise'}    {'GyroscopeNoise'}

>> firstCell = tunable{1}

firstCell =

  1×2 cell array

    {'AdditiveProcessNoise'}    {[1 15 29 43 57 71 85 99 113 127 141 155 169]}

In the filter, the additive process noise matrix is a 13-by-13 matrices, and the column-based
indices represent all the diagonal elements of the matrix.

Example: ["AccelerometerNoise" "GyroscopeNoise"]

StepForward — Factor of forward step
1.1 (default) | scalar larger than 1

Factor of a forward step, specified as a scalar larger than 1. During the tuning process, the tuner
increases or decreases the noise parameters to achieve smaller estimation errors. This property
specifies the ratio of parameter increase during a parameter increase step.

StepBackward — Factor of backward step
0.5 (default) | scalar in range (0,1)

Factor of a backward step, specified as a scalar in the range of (0,1). During the tuning process, the
tuner increases or decreases the noise parameters to achieve smaller estimation errors. This property
specifies the factor of parameter decrease during a parameter decrease step.

MaxIterations — Maximum number of iterations
20 (default) | positive integer
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Maximum number of iterations allowed by the tuning algorithm, specified as a positive integer.

ObjectiveLimit — Cost at which to stop tuning process
0.1 (default) | positive scalar

Cost at which to stop the tuning process, specified as a positive scalar.

FunctionTolerance — Minimum change in cost to continue tuning
0 (default) | nonnegative scalar

Minimum change in cost to continue tuning, specified as a nonnegative scalar. If the change in cost is
smaller than the specified tolerance, the tuning process stops.

Display — Enable showing the iteration details
"iter" (default) | "none"

Enable showing the iteration details, specified as "iter" or "none". When specified as:

• "iter" — The program shows the tuned parameter details in each iteration in the Command
Window.

• "none" — The program does not show any tuning information.

Cost — Metric for evaluating filter performance
"RMS" (default) | "Custom"

Metric for evaluating filter performance, specified as "RMS" or "Custom". When specified as:

• "RMS" — The program optimizes the root-mean-squared (RMS) error between the estimate and
the truth.

• "Custom" — The program optimizes the filter performance by using a customized cost function
specified by the CustomCostFcn property.

CustomCostFcn — Customized cost function
[] (default) | function handle

Customized cost function, specified as a function handle.

Dependencies

To enable this property, set the Cost property to 'Custom'.

OutputFcn — Output function called at each iteration
[] (default) | function handle

Output function called at each iteration, specified as a function handle. The function must use the
following syntax:

stop = myOutputFcn(params,tunerValues)

params is a structure of the current best estimate of each parameter at the end of the current
iteration. tunerValues is a structure containing information of the tuner configuration, sensor data,
and truth data. It has these fields:
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Field Name Description
Iteration Iteration count of the tuner, specified as a

positive integer
SensorData Sensor data input to the tune function
GroundTruth Ground truth input to the tune function
Configuration tunerconfig object used for tuning
Cost Tuning cost at the end of the current iteration

Tip You can use the built-in function tunerPlotPose to visualize the truth data and the estimates
for most of your tuning applications. See the “Visualize Tuning Results Using tunerPlotPose” on page
1-324 example for details.

Examples

Create Tunerconfig Object and Show Tunable Parameters

Create a tunerconfig object for the insfilterAsync object.

config = tunerconfig('insfilterAsync')

config = 
  tunerconfig with properties:

               Filter: "insfilterAsync"
    TunableParameters: ["AccelerometerNoise"    "GyroscopeNoise"    "MagnetometerNoise"    "GPSPositionNoise"    "GPSVelocityNoise"    "QuaternionNoise"    "AngularVelocityNoise"    "PositionNoise"    "VelocityNoise"    "AccelerationNoise"    ...    ]
          StepForward: 1.1000
         StepBackward: 0.5000
        MaxIterations: 20
       ObjectiveLimit: 0.1000
    FunctionTolerance: 0
              Display: iter
                 Cost: RMS
            OutputFcn: []

Display the default tunable parameters.

config.TunableParameters

ans = 1x14 string
    "AccelerometerNoise"    "GyroscopeNoise"    "MagnetometerNoise"    "GPSPositionNoise"    "GPSVelocityNoise"    "QuaternionNoise"    "AngularVelocityNoise"    "PositionNoise"    "VelocityNoise"    "AccelerationNoise"    "GyroscopeBiasNoise"    "AccelerometerBiasNoise"    "GeomagneticVectorNoise"    "MagnetometerBiasNoise"

Tune insfilterAsync to Optimize Pose Estimate

Load the recorded sensor data and ground truth data.

load('insfilterAsyncTuneData.mat');
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Create timetables for the sensor data and the truth data.

sensorData = timetable(Accelerometer, Gyroscope, ...
    Magnetometer, GPSPosition, GPSVelocity, 'SampleRate', 100);
groundTruth = timetable(Orientation, Position, ...
    'SampleRate', 100);

Create an insfilterAsync filter object that has a few noise properties.

filter = insfilterAsync('State', initialState, ...
    'StateCovariance', initialStateCovariance, ...
    'AccelerometerBiasNoise', 1e-7, ...
    'GyroscopeBiasNoise', 1e-7, ...
    'MagnetometerBiasNoise', 1e-7, ...
    'GeomagneticVectorNoise', 1e-7);

Create a tuner configuration object for the filter. Set the maximum iterations to two. Also, set the
tunable parameters as the unspecified properties.

config = tunerconfig('insfilterAsync','MaxIterations',8);
config.TunableParameters = setdiff(config.TunableParameters, ...
    {'GeomagneticVectorNoise', 'AccelerometerBiasNoise', ...
    'GyroscopeBiasNoise', 'MagnetometerBiasNoise'});
config.TunableParameters

ans = 1×10 string
    "AccelerationNoise"    "AccelerometerNoise"    "AngularVelocityNoise"    "GPSPositionNoise"    "GPSVelocityNoise"    "GyroscopeNoise"    "MagnetometerNoise"    "PositionNoise"    "QuaternionNoise"    "VelocityNoise"

Use the tuner noise function to obtain a set of initial sensor noises used in the filter.

measNoise = tunernoise('insfilterAsync')

measNoise = struct with fields:
    AccelerometerNoise: 1
        GyroscopeNoise: 1
     MagnetometerNoise: 1
      GPSPositionNoise: 1
      GPSVelocityNoise: 1

Tune the filter and obtain the tuned parameters.

tunedParams = tune(filter,measNoise,sensorData,groundTruth,config);

    Iteration    Parameter               Metric
    _________    _________               ______
    1            AccelerationNoise       2.1345
    1            AccelerometerNoise      2.1264
    1            AngularVelocityNoise    1.9659
    1            GPSPositionNoise        1.9341
    1            GPSVelocityNoise        1.8420
    1            GyroscopeNoise          1.7589
    1            MagnetometerNoise       1.7362
    1            PositionNoise           1.7362
    1            QuaternionNoise         1.7218
    1            VelocityNoise           1.7218
    2            AccelerationNoise       1.7190
    2            AccelerometerNoise      1.7170
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    2            AngularVelocityNoise    1.6045
    2            GPSPositionNoise        1.5948
    2            GPSVelocityNoise        1.5323
    2            GyroscopeNoise          1.4803
    2            MagnetometerNoise       1.4703
    2            PositionNoise           1.4703
    2            QuaternionNoise         1.4632
    2            VelocityNoise           1.4632
    3            AccelerationNoise       1.4596
    3            AccelerometerNoise      1.4548
    3            AngularVelocityNoise    1.3923
    3            GPSPositionNoise        1.3810
    3            GPSVelocityNoise        1.3322
    3            GyroscopeNoise          1.2998
    3            MagnetometerNoise       1.2976
    3            PositionNoise           1.2976
    3            QuaternionNoise         1.2943
    3            VelocityNoise           1.2943
    4            AccelerationNoise       1.2906
    4            AccelerometerNoise      1.2836
    4            AngularVelocityNoise    1.2491
    4            GPSPositionNoise        1.2258
    4            GPSVelocityNoise        1.1880
    4            GyroscopeNoise          1.1701
    4            MagnetometerNoise       1.1698
    4            PositionNoise           1.1698
    4            QuaternionNoise         1.1688
    4            VelocityNoise           1.1688
    5            AccelerationNoise       1.1650
    5            AccelerometerNoise      1.1569
    5            AngularVelocityNoise    1.1454
    5            GPSPositionNoise        1.1100
    5            GPSVelocityNoise        1.0778
    5            GyroscopeNoise          1.0709
    5            MagnetometerNoise       1.0675
    5            PositionNoise           1.0675
    5            QuaternionNoise         1.0669
    5            VelocityNoise           1.0669
    6            AccelerationNoise       1.0634
    6            AccelerometerNoise      1.0549
    6            AngularVelocityNoise    1.0549
    6            GPSPositionNoise        1.0180
    6            GPSVelocityNoise        0.9866
    6            GyroscopeNoise          0.9810
    6            MagnetometerNoise       0.9775
    6            PositionNoise           0.9775
    6            QuaternionNoise         0.9768
    6            VelocityNoise           0.9768
    7            AccelerationNoise       0.9735
    7            AccelerometerNoise      0.9652
    7            AngularVelocityNoise    0.9652
    7            GPSPositionNoise        0.9283
    7            GPSVelocityNoise        0.8997
    7            GyroscopeNoise          0.8947
    7            MagnetometerNoise       0.8920
    7            PositionNoise           0.8920
    7            QuaternionNoise         0.8912
    7            VelocityNoise           0.8912
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    8            AccelerationNoise       0.8885
    8            AccelerometerNoise      0.8811
    8            AngularVelocityNoise    0.8807
    8            GPSPositionNoise        0.8479
    8            GPSVelocityNoise        0.8238
    8            GyroscopeNoise          0.8165
    8            MagnetometerNoise       0.8165
    8            PositionNoise           0.8165
    8            QuaternionNoise         0.8159
    8            VelocityNoise           0.8159

Fuse the sensor data using the tuned filter.

dt = seconds(diff(groundTruth.Time));
N = size(sensorData,1);
qEst = quaternion.zeros(N,1);
posEst = zeros(N,3);
% Iterate the filter for prediction and correction using sensor data.
for ii=1:N
    if ii ~= 1
        predict(filter, dt(ii-1));
    end
    if all(~isnan(Accelerometer(ii,:)))
        fuseaccel(filter,Accelerometer(ii,:), ...
            tunedParams.AccelerometerNoise);
    end
    if all(~isnan(Gyroscope(ii,:)))
        fusegyro(filter, Gyroscope(ii,:), ...
            tunedParams.GyroscopeNoise);
    end
    if all(~isnan(Magnetometer(ii,1)))
        fusemag(filter, Magnetometer(ii,:), ...
            tunedParams.MagnetometerNoise);
    end
    if all(~isnan(GPSPosition(ii,1)))
        fusegps(filter, GPSPosition(ii,:), ...
            tunedParams.GPSPositionNoise, GPSVelocity(ii,:), ...
            tunedParams.GPSVelocityNoise);
    end
    [posEst(ii,:), qEst(ii,:)] = pose(filter);
end

Compute the RMS errors.

orientationError = rad2deg(dist(qEst, Orientation));
rmsorientationError = sqrt(mean(orientationError.^2))

rmsorientationError = 2.7801

positionError = sqrt(sum((posEst - Position).^2, 2));
rmspositionError = sqrt(mean( positionError.^2))

rmspositionError = 0.5966

Visualize the results.

figure();
t = (0:N-1)./ groundTruth.Properties.SampleRate;
subplot(2,1,1)
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plot(t, positionError, 'b');
title("Tuned insfilterAsync" + newline + "Euclidean Distance Position Error")
xlabel('Time (s)');
ylabel('Position Error (meters)')
subplot(2,1,2)
plot(t, orientationError, 'b');
title("Orientation Error")
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');

Tune imufilter to Optimize Orientation Estimate

Load recorded sensor data and ground truth data.

ld = load('imufilterTuneData.mat');
qTrue = ld.groundTruth.Orientation; % true orientation

Create an imufilter object and fuse the filter with the sensor data.

fuse = imufilter;
qEstUntuned = fuse(ld.sensorData.Accelerometer, ...
    ld.sensorData.Gyroscope);

Create a tunerconfig object and tune the imufilter to improve the orientation estimate.
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cfg = tunerconfig('imufilter');
tune(fuse, ld.sensorData, ld.groundTruth, cfg);

    Iteration    Parameter                        Metric
    _________    _________                        ______
    1            AccelerometerNoise               0.1149
    1            GyroscopeNoise                   0.1146
    1            GyroscopeDriftNoise              0.1146
    1            LinearAccelerationNoise          0.1122
    1            LinearAccelerationDecayFactor    0.1103
    2            AccelerometerNoise               0.1102
    2            GyroscopeNoise                   0.1098
    2            GyroscopeDriftNoise              0.1098
    2            LinearAccelerationNoise          0.1070
    2            LinearAccelerationDecayFactor    0.1053
    3            AccelerometerNoise               0.1053
    3            GyroscopeNoise                   0.1048
    3            GyroscopeDriftNoise              0.1048
    3            LinearAccelerationNoise          0.1016
    3            LinearAccelerationDecayFactor    0.1002
    4            AccelerometerNoise               0.1001
    4            GyroscopeNoise                   0.0996
    4            GyroscopeDriftNoise              0.0996
    4            LinearAccelerationNoise          0.0962
    4            LinearAccelerationDecayFactor    0.0950
    5            AccelerometerNoise               0.0950
    5            GyroscopeNoise                   0.0943
    5            GyroscopeDriftNoise              0.0943
    5            LinearAccelerationNoise          0.0910
    5            LinearAccelerationDecayFactor    0.0901
    6            AccelerometerNoise               0.0900
    6            GyroscopeNoise                   0.0893
    6            GyroscopeDriftNoise              0.0893
    6            LinearAccelerationNoise          0.0862
    6            LinearAccelerationDecayFactor    0.0855
    7            AccelerometerNoise               0.0855
    7            GyroscopeNoise                   0.0848
    7            GyroscopeDriftNoise              0.0848
    7            LinearAccelerationNoise          0.0822
    7            LinearAccelerationDecayFactor    0.0818
    8            AccelerometerNoise               0.0817
    8            GyroscopeNoise                   0.0811
    8            GyroscopeDriftNoise              0.0811
    8            LinearAccelerationNoise          0.0791
    8            LinearAccelerationDecayFactor    0.0789
    9            AccelerometerNoise               0.0788
    9            GyroscopeNoise                   0.0782
    9            GyroscopeDriftNoise              0.0782
    9            LinearAccelerationNoise          0.0769
    9            LinearAccelerationDecayFactor    0.0768
    10           AccelerometerNoise               0.0768
    10           GyroscopeNoise                   0.0762
    10           GyroscopeDriftNoise              0.0762
    10           LinearAccelerationNoise          0.0754
    10           LinearAccelerationDecayFactor    0.0753
    11           AccelerometerNoise               0.0753
    11           GyroscopeNoise                   0.0747
    11           GyroscopeDriftNoise              0.0747
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    11           LinearAccelerationNoise          0.0741
    11           LinearAccelerationDecayFactor    0.0740
    12           AccelerometerNoise               0.0740
    12           GyroscopeNoise                   0.0734
    12           GyroscopeDriftNoise              0.0734
    12           LinearAccelerationNoise          0.0728
    12           LinearAccelerationDecayFactor    0.0728
    13           AccelerometerNoise               0.0728
    13           GyroscopeNoise                   0.0721
    13           GyroscopeDriftNoise              0.0721
    13           LinearAccelerationNoise          0.0715
    13           LinearAccelerationDecayFactor    0.0715
    14           AccelerometerNoise               0.0715
    14           GyroscopeNoise                   0.0706
    14           GyroscopeDriftNoise              0.0706
    14           LinearAccelerationNoise          0.0700
    14           LinearAccelerationDecayFactor    0.0700
    15           AccelerometerNoise               0.0700
    15           GyroscopeNoise                   0.0690
    15           GyroscopeDriftNoise              0.0690
    15           LinearAccelerationNoise          0.0684
    15           LinearAccelerationDecayFactor    0.0684
    16           AccelerometerNoise               0.0684
    16           GyroscopeNoise                   0.0672
    16           GyroscopeDriftNoise              0.0672
    16           LinearAccelerationNoise          0.0668
    16           LinearAccelerationDecayFactor    0.0667
    17           AccelerometerNoise               0.0667
    17           GyroscopeNoise                   0.0655
    17           GyroscopeDriftNoise              0.0655
    17           LinearAccelerationNoise          0.0654
    17           LinearAccelerationDecayFactor    0.0654
    18           AccelerometerNoise               0.0654
    18           GyroscopeNoise                   0.0641
    18           GyroscopeDriftNoise              0.0641
    18           LinearAccelerationNoise          0.0640
    18           LinearAccelerationDecayFactor    0.0639
    19           AccelerometerNoise               0.0639
    19           GyroscopeNoise                   0.0627
    19           GyroscopeDriftNoise              0.0627
    19           LinearAccelerationNoise          0.0627
    19           LinearAccelerationDecayFactor    0.0624
    20           AccelerometerNoise               0.0624
    20           GyroscopeNoise                   0.0614
    20           GyroscopeDriftNoise              0.0614
    20           LinearAccelerationNoise          0.0613
    20           LinearAccelerationDecayFactor    0.0613

Fuse the sensor data again using the tuned filter.

qEstTuned = fuse(ld.sensorData.Accelerometer, ...
    ld.sensorData.Gyroscope);

Compare the tuned and untuned filter RMS error performances.

dUntuned = rad2deg(dist(qEstUntuned, qTrue));
dTuned = rad2deg(dist(qEstTuned, qTrue));
rmsUntuned = sqrt(mean(dUntuned.^2))
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rmsUntuned = 6.5864

rmsTuned = sqrt(mean(dTuned.^2))

rmsTuned = 3.5098

Visualize the results.

N = numel(dUntuned);
t = (0:N-1)./ fuse.SampleRate;
plot(t, dUntuned, 'r', t, dTuned, 'b');
legend('Untuned', 'Tuned');
title('imufilter - Tuned vs Untuned Error')
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');

Save Tuned Parameters in MAT File Using Output Function

Load the recorded sensor data and ground truth data.

load('insfilterAsyncTuneData.mat');

Create timetables for the sensor data and the truth data.

sensorData = timetable(Accelerometer, Gyroscope, ...
    Magnetometer, GPSPosition, GPSVelocity, 'SampleRate', 100);
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groundTruth = timetable(Orientation, Position, ...
    'SampleRate', 100);

Create an insfilterAsync filter object that has a few noise properties.

filter = insfilterAsync('State', initialState, ...
    'StateCovariance', initialStateCovariance, ...
    'AccelerometerBiasNoise', 1e-7, ...
    'GyroscopeBiasNoise', 1e-7, ...
    'MagnetometerBiasNoise', 1e-7, ...
    'GeomagneticVectorNoise', 1e-7);

Create a tuner configuration object for the filter. Define the OutputFcn property as a customized
function, myOutputFcn, which saves the latest tuned parameters in a MAT file.

config = tunerconfig('insfilterAsync', ...
    'MaxIterations',5, ...
    'Display','none', ...
    'OutputFcn', @myOutputFcn);
config.TunableParameters = setdiff(config.TunableParameters, ...
    {'GeomagneticVectorNoise', 'AccelerometerBiasNoise', ...
    'GyroscopeBiasNoise', 'MagnetometerBiasNoise'});
config.TunableParameters

ans = 1x10 string
    "AccelerationNoise"    "AccelerometerNoise"    "AngularVelocityNoise"    "GPSPositionNoise"    "GPSVelocityNoise"    "GyroscopeNoise"    "MagnetometerNoise"    "PositionNoise"    "QuaternionNoise"    "VelocityNoise"

Use the tuner noise function to obtain a set of initial sensor noises used in the filter.

measNoise = tunernoise('insfilterAsync')

measNoise = struct with fields:
    AccelerometerNoise: 1
        GyroscopeNoise: 1
     MagnetometerNoise: 1
      GPSPositionNoise: 1
      GPSVelocityNoise: 1

Tune the filter and obtain the tuned parameters.

tunedParams = tune(filter,measNoise,sensorData,groundTruth,config);

Display the save parameters using the saved file.

fileObject = matfile('myfile.mat');
fileObject.params

ans = struct with fields:
         AccelerationNoise: [88.8995 88.8995 88.8995]
    AccelerometerBiasNoise: [1.0000e-07 1.0000e-07 1.0000e-07]
        AccelerometerNoise: 0.7942
      AngularVelocityNoise: [0.0089 0.0089 0.0089]
          GPSPositionNoise: 1.1664
          GPSVelocityNoise: 0.5210
    GeomagneticVectorNoise: [1.0000e-07 1.0000e-07 1.0000e-07]
        GyroscopeBiasNoise: [1.0000e-07 1.0000e-07 1.0000e-07]
            GyroscopeNoise: 0.5210
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     MagnetometerBiasNoise: [1.0000e-07 1.0000e-07 1.0000e-07]
         MagnetometerNoise: 1.0128
             PositionNoise: [5.2100e-07 5.2100e-07 5.2100e-07]
           QuaternionNoise: [1.3239e-06 1.3239e-06 1.3239e-06 1.3239e-06]
         ReferenceLocation: [0 0 0]
                     State: [28x1 double]
           StateCovariance: [28x28 double]
             VelocityNoise: [6.3678e-07 6.3678e-07 6.3678e-07]

The output function

function stop = myOutputFcn(params, ~)
save('myfile.mat','params'); % overwrite the file with latest
stop = false;
end

Version History
Introduced in R2020b

See Also
insfilterAsync | insfilterNonholonomic | insfilterMARG | insfilterErrorState |
ahrsfilter | ahrs10filter | imufilter
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validatorOccupancyMap
State validator based on 2-D grid map

Description
The validatorOccupancyMap object validates states and discretized motions based on the value in
a 2-D occupancy map. An occupied map location is interpreted as an invalid state.

Creation
Syntax
Description

validator = validatorOccupancyMap creates a 2-D occupancy map validator associated with an
SE2 state space with default settings.

validator = validatorOccupancyMap(stateSpace) creates a validator in the given state
space definition derived from nav.StateSpace.

validator = validatorOccupancyMap(stateSpace,Name,Value) specifies the Map or
XYIndices properties using Name,Value pair arguments.

Properties
StateSpace — State space for validating states
stateSpaceSE2 (default) | subclass of nav.StateSpace

State space for validating states, specified as a subclass of nav.StateSpace. Provided state space
objects include:

• stateSpaceSE2
• stateSpaceDubins
• stateSpaceReedsShepp

Map — Map used for validating states
binaryOccupancyMap(10,10) (default) | binaryOccupancyMap object | occupancyMap object

Map used for validating states, specified as a binaryOccupancyMap or occupancyMap object.

ValidationDistance — Interval for checking state validity
Inf (default) | positive numeric scalar

Interval for sampling between states and checking state validity, specified as a positive numeric
scalar.

XYIndices — State variable mapping for xy-coordinates
[1 2] (default) | [xIdx yIdx]
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State variable mapping for xy-coordinates in state vector, specified as a two-element vector, [xIdx
yIdx]. For example, if a state vector is given as [r p y x y z], the xy-coordinates are [4 5].

Object Functions
copy Create deep copy of state validator object
isStateValid Check if state is valid
isMotionValid Check if path between states is valid

Examples

Validate Path Through Occupancy Map Environment

This example shows how to validate paths through an environment.

Load example maps. Use the simple map to create a binary occupancy map.

load exampleMaps.mat
map = occupancyMap(simpleMap);
show(map)

Specify a coarse path through the map.

path = [2 2 pi/2; 10 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")

2 Classes

2-1730



Create a state validator using the stateSpaceSE2 definition. Specify the map and the distance for
interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are considered
valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

   1
   1
   1

Check the motion between each sequential path states. The isMotionValid function interpolates
along the path between states. If a path segment is invalid, plot the last valid point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Specify the Map and XYIndices properties when you create the object. For example:

validator = validatorOccupancyMap('Map',occMap,'XYIndices',[4 5])

As of MATLAB R2022a, default map behavior during code generation has changed, which may result
in backwards compatibility issues. Maps such as validatorOccupancyMap now support fixed-size
code generation (DynamicMemoryAllocation="off").

1 Maps that are either default-constructed or constructed with compile-time constant size
information (or matrices that are of compile-time constant size) produce fixed-size maps.

2 To restore the previous behavior, use the coder.ignoreConst function when specifying size
inputs, or coder.varsize matrix variable name specified as a string scalar or character vector,
prior to constructing the map.

See Also
stateSpaceSE2 | nav.StateSpace | nav.StateValidator
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validatorOccupancyMap3D
State validator based on 3-D grid map

Description
The validatorOccupancyMap3D object validates states and discretized motions based on
occupancy values in a 3-D occupancy map. The object interprets obstacle-free map locations as valid
states. The object interprets occupied and unknown map locations as invalid states.

Creation

Syntax
validator = validatorOccupancyMap3D
validator = validatorOccupancyMap3D(stateSpace)
validator = validatorOccupancyMap3D(stateSpace,Name,Value)

Description

validator = validatorOccupancyMap3D creates a 3-D occupancy map validator associated with
an SE(3) state space with default settings.

validator = validatorOccupancyMap3D(stateSpace) creates a validator in the specified
state space. The stateSpace input sets the value of the StateSpace property.

validator = validatorOccupancyMap3D(stateSpace,Name,Value) sets properties using one
or more name-value pairs. Unspecified properties have default values. Enclose each property name in
quotes.

For example, validatorOccupancyMap3D('ValidationDistance',0.1) creates a 3-D
occupancy map validator with a sampling interval of 0.1.

Properties
StateSpace — State space for validating states
stateSpaceSE3 object (default) | subclass of nav.StateSpace

This property is read-only.

State space for validating states, specified as a subclass of nav.StateSpace. These are the
predefined state space objects:

• stateSpaceSE3
• stateSpaceSE2
• stateSpaceDubins
• stateSpaceReedsShepp
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Example: validatorOccupancyMap3D(stateSpaceSE3)

Map — Map used for validating states
occupancyMap3D (default) | occupancyMap3D object

Map used for validating states, specified as an occupancyMap3D object.
Example: validator.Map = occupancyMap3D(10)

ValidationDistance — Interval for checking state validity
Inf (default) | positive numeric scalar

Interval for sampling between states and checking state validity, specified as a positive numeric
scalar.
Example: validator.ValidationDistance = 0.1
Data Types: double

XYZIndices — State variable mapping for xyz-coordinates
[1 2 3] (default) | three-element vector

State variable mapping for xyz-coordinates in the state vector, specified as a three-element vector of
form [xIdx yIdx zIdx].
Data Types: double

Object Functions
copy Create deep copy of state validator object
isMotionValid Check if path between states is valid
isStateValid Check if state is valid

Examples

Validate Path Through 3-D Occupancy Map Environment

Create a 3-D occupancy map and associated state validator. Plan, validate, and visualize a path
through the occupancy map.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify a threshold for which cells to
consider as obstacle-free.

mapData = load('dMapCityBlock.mat');
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([-20 220;
    -20 220;
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    -10 100;
    inf inf;
    inf inf;
    inf inf;
    inf inf]);

Create a 3-D occupancy map state validator using the created state space.

sv = validatorOccupancyMap3D(ss);

Assign the occupancy map to the state validator object. Specify the sampling distance interval.

sv.Map = omap;
sv.ValidationDistance = 0.1;

Plan and Visualize Path

Create a path planner with increased maximum connection distance. Reduce the maximum number of
iterations.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 50;
planner.MaxIterations = 1000;

Create a user-defined evaluation function for determining whether the path reaches the goal. Specify
the probability of choosing the goal state during sampling.

planner.GoalReachedFcn = @(~,x,y)(norm(x(1:3)-y(1:3))<5);
planner.GoalBias = 0.1;

Set the start and goal states.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Plan a path using the specified start, goal, and planner.

[pthObj,solnInfo] = plan(planner,start,goal);

Check that the points of the path are valid states.

isValid = isStateValid(sv,pthObj.States)

isValid = 7x1 logical array

   1
   1
   1
   1
   1
   1
   1

Check that the motion between each sequential path state is valid.

isPathValid = zeros(size(pthObj.States,1)-1,1,'logical');
for i = 1:size(pthObj.States,1)-1
    [isPathValid(i),~] = isMotionValid(sv,pthObj.States(i,:),...
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        pthObj.States(i+1,:));
end
isPathValid

isPathValid = 6x1 logical array

   1
   1
   1
   1
   1
   1

Visualize the results.

show(omap)
hold on
scatter3(start(1,1),start(1,2),start(1,3),'g','filled') % draw start state
scatter3(goal(1,1),goal(1,2),goal(1,3),'r','filled')    % draw goal state
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3),...
    'r-','LineWidth',2) % draw path

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
occupancyMap3D | stateSpaceSE3 | validatorOccupancyMap
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validatorVehicleCostmap
State validator based on 2-D costmap

Description
The validatorOccupancyMap object validates states and discretized motions based on the value in
a 2-D costmap. An occupied map location is interpreted as an invalid state.

Creation
Syntax
Description

validator = validatorVehicleCostmap creates a vehicle cost map validator associated with an
SE2 state space with default settings.

validator = validatorVehicleCostmap(stateSpace) creates a validator in the given state
space definition derived from nav.StateSpace.

validator = validatorVehicleCostmap(stateSpace,xyIndices)sets the XYIndices
property to specify which variables in the state vector define the xy-coordinates.

validator = validatorVehicleCostmap(stateSpace,Name,Value) specifies the Map or
XYIndices properties using Name,Value pair arguments.

Properties
StateSpace — State space for validating states
stateSpaceSE2 (default) | subclass of nav.StateSpace

State space for validating states, specified as a subclass of nav.StateSpace. Provided state space
objects include:

• stateSpaceSE2
• stateSpaceDubins
• stateSpaceReedsShepp

Map — Map used for validating states
vehicleCostmap(10,10) (default) | vehicleCostmap object

Map used for validating states, specified as a vehicleCostmap object.

ValidationDistance — Interval for checking state validity
Inf (default) | positive numeric scalar

Interval for sampling between states and checking state validity, specified as a positive numeric
scalar.

2 Classes

2-1738



XYIndices — State variable mapping for xy-coordinates
[1 2] (default) | [xIdx yIdx]

State variable mapping for xy-coordinates in state vector, specified as a two-element vector, [xIdx
yIdx]. For example, if a state vector is given as [r p y x y z], the xy-coordinates are [4 5].

ThetaIndex — State variable mapping for theta coordinate
NaN (default) | positive integer

State variable mapping for theta coordinate in state vector, specified as a positive integer. For
example, if a state vector is given as [x y theta], the theta coordinate is 3.

Object Functions
copy Create deep copy of state validator object
isStateValid Check if state is valid
isMotionValid Check if path between states is valid

Examples

Validate Path Through Vehicle Costmap Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a vehicle cost map. Specify an inflation raidus of 1
meter.

load exampleMaps.mat
map = vehicleCostmap(double(simpleMap));
map.CollisionChecker = inflationCollisionChecker("InflationRadius",1);
plot(map)
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Specify a coarse path through the map.

path = [3 3 pi/2; 8 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the distance for
interpolating and validating path segments.

validator = validatorVehicleCostmap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are considered
valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

   1
   1
   1

Check the motion between each sequential path states. The isMotionValid function interpolates
along the path between states. If a path segment is invalid, plot the last valid point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
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        end
    end
hold off

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, the map used inside the object must remain constant.

See Also
validatorOccupancyMap | stateSpaceSE2 | nav.StateSpace | nav.StateValidator
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copy
Create deep copy of state validator object

Syntax
validator2 = copy(validator1)

Description
validator2 = copy(validator1) creates a deep copy of the specified state validator object.

Examples

Create Deep Copy of 3-D Occupancy Map State Validator Object

Create a validator object and set a custom validation distance.

validator = validatorOccupancyMap3D;
validator.ValidationDistance = 4.5

validator = 
  validatorOccupancyMap3D with properties:

                   Map: [1x1 occupancyMap3D]
            StateSpace: [1x1 stateSpaceSE3]
            XYZIndices: [1 2 3]
    ValidationDistance: 4.5000

Create a deep copy of the state validator object.

validator2 = copy(validator)

validator2 = 
  validatorOccupancyMap3D with properties:

                   Map: [1x1 occupancyMap3D]
            StateSpace: [1x1 stateSpaceSE3]
            XYZIndices: [1 2 3]
    ValidationDistance: 4.5000

Verify that the ValidationDistance property values of the two state validator objects are equal.

isequal(validator.ValidationDistance,validator2.ValidationDistance)

ans = logical
   1
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Input Arguments
validator1 — State validator object
validatorOccupancyMap object | validatorOccupancyMap3D object |
validatorVehicleCostmap object

State validator object, specified as a validatorOccupancyMap, validatorOccupancyMap3D, or
validatorVehicleCostmap object.

Output Arguments
validator2 — State validator object
validatorOccupancyMap object | validatorOccupancyMap3D object |
validatorVehicleCostmap object

State validator object, returned as a validatorOccupancyMap, validatorOccupancyMap3D, or
validatorVehicleCostmap object.

Version History
Introduced in R2020b

See Also
validatorOccupancyMap | validatorOccupancyMap3D | validatorVehicleCostmap
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isMotionValid
Check if path between states is valid

Syntax
[isValid,lastValid] = isMotionValid(validator,state1,state2)

Description
[isValid,lastValid] = isMotionValid(validator,state1,state2) checks if the path
between two states is valid by interpolating between states. The function also returns the last valid
state along the path.

Examples

Validate Path Through Occupancy Map Environment

This example shows how to validate paths through an environment.

Load example maps. Use the simple map to create a binary occupancy map.

load exampleMaps.mat
map = occupancyMap(simpleMap);
show(map)

Specify a coarse path through the map.
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path = [2 2 pi/2; 10 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")

Create a state validator using the stateSpaceSE2 definition. Specify the map and the distance for
interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are considered
valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

   1
   1
   1

Check the motion between each sequential path states. The isMotionValid function interpolates
along the path between states. If a path segment is invalid, plot the last valid point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off
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Validate Path Through Vehicle Costmap Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a vehicle cost map. Specify an inflation raidus of 1
meter.

load exampleMaps.mat
map = vehicleCostmap(double(simpleMap));
map.CollisionChecker = inflationCollisionChecker("InflationRadius",1);
plot(map)
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Specify a coarse path through the map.

path = [3 3 pi/2; 8 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the distance for
interpolating and validating path segments.

validator = validatorVehicleCostmap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are considered
valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

   1
   1
   1

Check the motion between each sequential path states. The isMotionValid function interpolates
along the path between states. If a path segment is invalid, plot the last valid point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
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        end
    end
hold off

Validate Path Through 3-D Occupancy Map Environment

Create a 3-D occupancy map and associated state validator. Plan, validate, and visualize a path
through the occupancy map.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify a threshold for which cells to
consider as obstacle-free.

mapData = load('dMapCityBlock.mat');
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([-20 220;
    -20 220;
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    -10 100;
    inf inf;
    inf inf;
    inf inf;
    inf inf]);

Create a 3-D occupancy map state validator using the created state space.

sv = validatorOccupancyMap3D(ss);

Assign the occupancy map to the state validator object. Specify the sampling distance interval.

sv.Map = omap;
sv.ValidationDistance = 0.1;

Plan and Visualize Path

Create a path planner with increased maximum connection distance. Reduce the maximum number of
iterations.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 50;
planner.MaxIterations = 1000;

Create a user-defined evaluation function for determining whether the path reaches the goal. Specify
the probability of choosing the goal state during sampling.

planner.GoalReachedFcn = @(~,x,y)(norm(x(1:3)-y(1:3))<5);
planner.GoalBias = 0.1;

Set the start and goal states.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Plan a path using the specified start, goal, and planner.

[pthObj,solnInfo] = plan(planner,start,goal);

Check that the points of the path are valid states.

isValid = isStateValid(sv,pthObj.States)

isValid = 7x1 logical array

   1
   1
   1
   1
   1
   1
   1

Check that the motion between each sequential path state is valid.

isPathValid = zeros(size(pthObj.States,1)-1,1,'logical');
for i = 1:size(pthObj.States,1)-1
    [isPathValid(i),~] = isMotionValid(sv,pthObj.States(i,:),...
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        pthObj.States(i+1,:));
end
isPathValid

isPathValid = 6x1 logical array

   1
   1
   1
   1
   1
   1

Visualize the results.

show(omap)
hold on
scatter3(start(1,1),start(1,2),start(1,3),'g','filled') % draw start state
scatter3(goal(1,1),goal(1,2),goal(1,3),'r','filled')    % draw goal state
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3),...
    'r-','LineWidth',2) % draw path

Input Arguments
validator — State validator object
object of subclass of nav.StateValidator
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State validator object, specified as an object of subclass of nav.StateValidator. These are the
predefined state validator objects:

• validatorOccupancyMap
• validatorVehicleCostmap
• validatorOccupancyMap3D

state1 — Initial state positions
n-element row vector | m-by-n matrix

Initial state positions, specified as an n-element row vector or m-by-n matrix. n is the dimension of the
state space specified in validator. m is the number of states to validate.
Data Types: single | double

state2 — Final state positions
n-element row vector | m-by-n matrix

Final state positions, specified as an n-element row vector or m-by-n matrix. n is the dimension of the
state space specified in validator. m is the number of states to validate.
Data Types: single | double

Output Arguments
isValid — Valid states
m-element logical column vector

Valid states, returned as an m-element logical column vector.
Data Types: logical

lastValid — Final valid state along each path
n-element row vector | m-by-n matrix

Final valid state along each path, returned as an n-element row vector or m-by-n matrix. n is the
dimension of the state space specified in the state space property in validator. m is the number of
paths validated. Each row contains the final valid state along the associated path.
Data Types: single | double

Version History
Introduced in R2019b

See Also
isStateValid | stateSpaceSE2 | nav.StateSpace | nav.StateValidator
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isStateValid
Check if state is valid

Syntax
isValid = isStateValid(validator,states)

Description
isValid = isStateValid(validator,states) checks if a set of given states are valid.

Examples

Validate Path Through Occupancy Map Environment

This example shows how to validate paths through an environment.

Load example maps. Use the simple map to create a binary occupancy map.

load exampleMaps.mat
map = occupancyMap(simpleMap);
show(map)

Specify a coarse path through the map.

path = [2 2 pi/2; 10 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the distance for
interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are considered
valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

   1
   1
   1

Check the motion between each sequential path states. The isMotionValid function interpolates
along the path between states. If a path segment is invalid, plot the last valid point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off
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Validate Path Through Vehicle Costmap Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a vehicle cost map. Specify an inflation raidus of 1
meter.

load exampleMaps.mat
map = vehicleCostmap(double(simpleMap));
map.CollisionChecker = inflationCollisionChecker("InflationRadius",1);
plot(map)
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Specify a coarse path through the map.

path = [3 3 pi/2; 8 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the distance for
interpolating and validating path segments.

validator = validatorVehicleCostmap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are considered
valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

   1
   1
   1

Check the motion between each sequential path states. The isMotionValid function interpolates
along the path between states. If a path segment is invalid, plot the last valid point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
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        end
    end
hold off

Validate Path Through 3-D Occupancy Map Environment

Create a 3-D occupancy map and associated state validator. Plan, validate, and visualize a path
through the occupancy map.

Load and Assign Map to State Validator

Load a 3-D occupancy map of a city block into the workspace. Specify a threshold for which cells to
consider as obstacle-free.

mapData = load('dMapCityBlock.mat');
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([-20 220;
    -20 220;
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    -10 100;
    inf inf;
    inf inf;
    inf inf;
    inf inf]);

Create a 3-D occupancy map state validator using the created state space.

sv = validatorOccupancyMap3D(ss);

Assign the occupancy map to the state validator object. Specify the sampling distance interval.

sv.Map = omap;
sv.ValidationDistance = 0.1;

Plan and Visualize Path

Create a path planner with increased maximum connection distance. Reduce the maximum number of
iterations.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 50;
planner.MaxIterations = 1000;

Create a user-defined evaluation function for determining whether the path reaches the goal. Specify
the probability of choosing the goal state during sampling.

planner.GoalReachedFcn = @(~,x,y)(norm(x(1:3)-y(1:3))<5);
planner.GoalBias = 0.1;

Set the start and goal states.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Plan a path using the specified start, goal, and planner.

[pthObj,solnInfo] = plan(planner,start,goal);

Check that the points of the path are valid states.

isValid = isStateValid(sv,pthObj.States)

isValid = 7x1 logical array

   1
   1
   1
   1
   1
   1
   1

Check that the motion between each sequential path state is valid.

isPathValid = zeros(size(pthObj.States,1)-1,1,'logical');
for i = 1:size(pthObj.States,1)-1
    [isPathValid(i),~] = isMotionValid(sv,pthObj.States(i,:),...
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        pthObj.States(i+1,:));
end
isPathValid

isPathValid = 6x1 logical array

   1
   1
   1
   1
   1
   1

Visualize the results.

show(omap)
hold on
scatter3(start(1,1),start(1,2),start(1,3),'g','filled') % draw start state
scatter3(goal(1,1),goal(1,2),goal(1,3),'r','filled')    % draw goal state
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3),...
    'r-','LineWidth',2) % draw path

Input Arguments
validator — State validator object
object of subclass of nav.StateValidator
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State validator object, specified as an object of subclass of nav.StateValidator. These are the
predefined state validator objects:

• validatorOccupancyMap
• validatorVehicleCostmap
• validatorOccupancyMap3D

states — State positions
n-element row vector | m-by-n matrix

State positions, specified as an n-element row vector or m-by-n matrix. n is the dimension of the state
space specified in validator. m is the number of states to validate.
Data Types: single | double

Output Arguments
isValid — Valid states
m-element logical column vector

Valid states, returned as an m-element logical column vector.
Data Types: logical

Version History
Introduced in R2019b

See Also
isMotionValid | stateSpaceSE2 | nav.StateSpace | nav.StateValidator
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waypointTrajectory
Waypoint trajectory generator

Description
The waypointTrajectory System object generates trajectories based on specified waypoints. When
you create the System object, you can choose to specify the time of arrival, velocity, or ground speed
at each waypoint. You can optionally specify other properties such as orientation at each waypoint.
See “Algorithms” on page 2-1797 for more details.

To generate a trajectory from waypoints:

1 Create the waypointTrajectory object and set its properties.
2 Call the object as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
trajectory = waypointTrajectory
trajectory = waypointTrajectory(Waypoints,TimeOfArrival)
trajectory = waypointTrajectory(Waypoints,GroundSpeed=groundSpeed)
trajectory = waypointTrajectory(Waypoints,Velocities=velocities)
trajectory = waypointTrajectory( ___ ,Name=Value)

Description

trajectory = waypointTrajectory returns a System object, trajectory, that generates a
trajectory based on default stationary waypoints.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival) specifies the time of arrival
at which the generated trajectory passes through each waypoint. See the TimeOfArrival property
for more details.

Tip When you specify the TimeOfArrival argument, you must not specify these properties:

• JerkLimit
• InitialTime
• WaitTime

trajectory = waypointTrajectory(Waypoints,GroundSpeed=groundSpeed) specifies the
ground speed at which the generated trajectory passes through at each waypoint. See the
GroundSpeed property for more details.
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trajectory = waypointTrajectory(Waypoints,Velocities=velocities) specifies the
velocity at which the generated trajectory passes through at each waypoint. See the Velocities
property for more details.

trajectory = waypointTrajectory( ___ ,Name=Value) sets each property by using name-
value arguments. Unspecified properties have default or inferred values. You can use this syntax with
any of the previous syntaxes.
Example: trajectory = waypointTrajectory([10,10,0;20,20,0;20,20,10],[0,0.5,10])
creates a waypoint trajectory System object, trajectory, that starts at waypoint [10,10,0], and
then passes through [20,20,0] after 0.5 seconds and [20,20,10] after 10 seconds.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive scalar integer

Number of samples per output frame, specified as a positive scalar integer.
Data Types: double

Waypoints — Positions in the navigation coordinate system (m)
N-by-3 matrix

Positions in the navigation coordinate system in meters, specified as an N-by-3 matrix. The columns of
the matrix correspond to the first, second, and third axes, respectively. The rows of the matrix, N,
correspond to individual waypoints.

Tip To let the trajectory wait at a specific waypoint, use one of the two options:

• If you specified the TimeOfArrival input argument, repeat the waypoint coordinate in two
consecutive rows.

• If you did not specify the TimeOfArrival input argument, specify the wait time using the
WaitTime property.

Data Types: double
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TimeOfArrival — Time at each waypoint (s)
N-element column vector of nonnegative increasing numbers

Time corresponding to arrival at each waypoint in seconds, specified as an N-element column vector.
The first element of TimeOfArrival must be 0. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.

Dependencies

To set this property, you must not specify these properties:

• JerkLimit
• InitialTime
• WaitTime

Data Types: double

Velocities — Velocity in navigation coordinate system at each waypoint (m/s)
N-by-3 matrix

Velocity in the navigation coordinate system at each waypoint in meters per second, specified as an
N-by-3 matrix. The columns of the matrix correspond to the first, second, and third axes, respectively.
The number of samples, N, must be the same as the number of samples (rows) defined by
Waypoints.

If the velocity is specified as a non-zero value, the object automatically calculates the course of the
trajectory based on the velocity. If the velocity is specified as zero, the object infers the course of the
trajectory from adjacent waypoints.
Data Types: double

Course — Horizontal direction of travel (degree)
N-element real vector

Horizontal direction of travel, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, course is inferred from the waypoints.

Dependencies

To set this property, the Velocities property must not be specified.
Data Types: double

GroundSpeed — Groundspeed at each waypoint (m/s)
N-element real vector

Groundspeed at each waypoint, specified as an N-element real vector in m/s. If the property is not
specified, it is inferred from the waypoints. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.

• To render forward motion, specify positive ground speed values.
• To render backward motion, specify negative ground speed values.
• To render reverse motion, separate positive and negative groundspeed values by a zero

groundspeed value.
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Dependencies

To set this property, the Velocities property must not be specified.
Data Types: double

ClimbRate — Climb rate at each waypoint (m/s)
N-element real vector

Climb Rate at each waypoint in meters per second, specified as an N-element real vector. The number
of samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, climb rate is inferred from the waypoints.

Dependencies

To set this property, the Velocities property must not be specified.
Data Types: double

JerkLimit — Longitudinal jerk limit (m/s3)
Inf (default) | positive scalar

Longitudinal jerk limit, specified as a positive scalar in m/s3. Jerk is the time derivative of the
acceleration. When you specify this property, the object produces a horizontal trapezoidal
acceleration profile based on the jerk limit. If the waypointTrajectory object cannot achieve the
specified JerkLimit, the object issues an error. You can set this property only during object
creation.

Dependencies

To set this property, the TimeOfArrival property must not be specified.
Data Types: double

InitialTime — Time before trajectory starts (s)
0 (default) | nonnegative scalar

Time before the trajectory starts, specified as a nonnegative scalar in seconds. The object reports
quantities, such as position and velocity, as NaN before the trajectory starts. You can set this property
only during object creation.

Dependencies

To set this property, the TimeOfArrival property must not be specified. Instead, you must specify
either the GroundSpeed or Velocities property when creating the object.
Data Types: double

WaitTime — Wait time at each waypoint (s)
N-element vector of 0 (default) | N-element vector of nonnegative scalars

Wait time at each waypoint, specified as an N-element vector of nonnegative scalars. N must be the
same as the number of samples (rows) defined by Waypoints. You can set this property only during
object creation.

Dependencies

To set this property, the TimeOfArrival property must not be specified.
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If you specified the TimeOfArrival property, then you cannot specify wait time through this property.
Instead, specify wait time by repeating the waypoint coordinate in two consecutive rows in the
Waypoints property.
Data Types: double

Orientation — Orientation at each waypoint
N-element quaternion column vector | 3-by-3-by-N array of real numbers

Orientation at each waypoint, specified as an N-element quaternion column vector or 3-by-3-by-N
array of real numbers. Each quaternion must have a norm of 1. Each 3-by-3 rotation matrix must be
an orthonormal matrix. The number of quaternions or rotation matrices, N, must be the same as the
number of samples (rows) defined by Waypoints.

If Orientation is specified by quaternions, the underlying class must be double.
Data Types: double

AutoPitch — Align pitch angle with direction of motion
false (default) | true

Align pitch angle with the direction of motion, specified as true or false. When specified as true,
the pitch angle automatically aligns with the direction of motion. If specified as false, the pitch
angle is set to zero (level orientation).

Dependencies

To set this property, the Orientation property must not be specified.

AutoBank — Align roll angle to counteract centripetal force
false (default) | true

Align roll angle to counteract the centripetal force, specified as true or false. When specified as
true, the roll angle automatically counteracts the centripetal force. If specified as false, the roll
angle is set to zero (flat orientation).

Dependencies

To set this property, the Orientation property must not be specified.

ReferenceFrame — Reference frame of trajectory
'NED' (default) | 'ENU'

Reference frame of the trajectory, specified as 'NED' (North-East-Down) or 'ENU' (East-North-Up).

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()

Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs a frame of trajectory data based on specified creation arguments and properties.
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Output Arguments

position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the SamplesPerFrame property.
Data Types: double

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to waypointTrajectory
waypointInfo Get waypoint information table
lookupPose Obtain pose information for certain time
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isDone End-of-data status

Examples

Create Default waypointTrajectory

trajectory = waypointTrajectory

trajectory = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
     ReferenceFrame: 'NED'

Inspect the default waypoints and times of arrival by calling waypointInfo. By default, the
waypoints indicate a stationary position for one second.

waypointInfo(trajectory)

ans=2×2 table
    TimeOfArrival     Waypoints 
    _____________    ___________
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          0          0    0    0
          1          0    0    0

Create Square Trajectory

Create a square trajectory and examine the relationship between waypoint constraints, sample rate,
and the generated trajectory.

Create a square trajectory by defining the vertices of the square. Define the orientation at each
waypoint as pointing in the direction of motion. Specify a 1 Hz sample rate and use the default
SamplesPerFrame of 1.

waypoints = [0,0,0; ... % Initial position
             0,1,0; ...
             1,1,0; ...
             1,0,0; ...
             0,0,0];    % Final position

toa = 0:4; % time of arrival

orientation = quaternion([0,0,0; ...
                          45,0,0; ...
                          135,0,0; ...
                          225,0,0; ...
                          0,0,0], ...
                          "eulerd","ZYX","frame");

trajectory = waypointTrajectory(waypoints, ...
    TimeOfArrival=toa, ...
    Orientation=orientation, ...
    SampleRate=1);

Create a figure and plot the initial position of the platform.

figure(1)
plot(waypoints(1,1),waypoints(1,2),"b*")
title("Position")
axis([-1,2,-1,2])
axis square
xlabel("X")
ylabel("Y")
grid on
hold on
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In a loop, step through the trajectory to output the current position and current orientation. Plot the
current position and log the orientation. Use pause to mimic real-time processing.

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,"quaternion");
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),"bo")

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
hold off

 waypointTrajectory

2-1771



Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],"ZYX","frame");
plot(toa,eulerAngles(:,1),"ko", ...
     toa,eulerAngles(:,2),"bd", ...
     toa,eulerAngles(:,3),"r.");
title("Orientation Over Time")
legend("Rotation around Z-axis","Rotation around Y-axis","Rotation around X-axis")
xlabel("Time (seconds)")
ylabel("Rotation (degrees)")
grid on
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So far, the trajectory object has only output the waypoints that were specified during construction. To
interpolate between waypoints, increase the sample rate to a rate faster than the time of arrivals of
the waypoints. Set the trajectory sample rate to 100 Hz and call reset.

trajectory.SampleRate = 100;
reset(trajectory)

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),"b*")
title("Position")
axis([-1,2,-1,2])
axis square
xlabel("X")
ylabel("Y")
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,"quaternion");
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),"bo")
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   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
hold off

The trajectory output now appears circular. This is because the waypointTrajectory System
object™ minimizes the acceleration and angular velocity when interpolating, which results in
smoother, more realistic motions in most scenarios.

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time. The orientation is also interpolated.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],"ZYX","frame");
t = 0:1/trajectory.SampleRate:4;
plot(t,eulerAngles(:,1),"ko", ...
     t,eulerAngles(:,2),"bd", ...
     t,eulerAngles(:,3),"r.");
title("Orientation Over Time")
legend("Rotation around Z-axis","Rotation around Y-axis","Rotation around X-axis")
xlabel("Time (seconds)")
ylabel("Rotation (degrees)")
grid on
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The waypointTrajectory algorithm interpolates the waypoints to create a smooth trajectory. To
return to the square trajectory, provide more waypoints, especially around sharp changes. To track
corresponding times, waypoints, and orientation, specify all the trajectory info in a single matrix.

               % Time, Waypoint, Orientation
trajectoryInfo = [0,   0,0,0,    0,0,0; ... % Initial position
                  0.1, 0,0.1,0,  0,0,0; ...

                  0.9, 0,0.9,0,  0,0,0; ...
                  1,   0,1,0,    45,0,0; ...
                  1.1, 0.1,1,0,  90,0,0; ...

                  1.9, 0.9,1,0,  90,0,0; ...
                  2,   1,1,0,    135,0,0; ...
                  2.1, 1,0.9,0,  180,0,0; ...

                  2.9, 1,0.1,0,  180,0,0; ...
                  3,   1,0,0,    225,0,0; ...
                  3.1, 0.9,0,0,  270,0,0; ...

                  3.9, 0.1,0,0,  270,0,0; ...
                  4,   0,0,0,    270,0,0];    % Final position

trajectory = waypointTrajectory(trajectoryInfo(:,2:4), ...
    TimeOfArrival=trajectoryInfo(:,1), ...
    Orientation=quaternion(trajectoryInfo(:,5:end),"eulerd","ZYX","frame"), ...
    SampleRate=100);
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Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),"b*")
title("Position")
axis([-1,2,-1,2])
axis square
xlabel("X")
ylabel("Y")
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,"quaternion");
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),"bo")

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count+1;
end
hold off

The trajectory output now appears more square-like, especially around the vertices with waypoints.
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Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],"ZYX","frame");
t = 0:1/trajectory.SampleRate:4;
eulerAngles = plot(t,eulerAngles(:,1),"ko", ...
                   t,eulerAngles(:,2),"bd", ...
                   t,eulerAngles(:,3),"r.");
title("Orientation Over Time")
legend("Rotation around Z-axis", ...
       "Rotation around Y-axis", ...
       "Rotation around X-axis", ...
       "Location", "SouthWest")
xlabel("Time (seconds)")
ylabel("Rotation (degrees)")
grid on

Create Arc Trajectory

This example shows how to create an arc trajectory using the waypointTrajectory System
object™. waypointTrajectory creates a path through specified waypoints that minimizes
acceleration and angular velocity. After creating an arc trajectory, you restrict the trajectory to be
within preset bounds.

 waypointTrajectory

2-1777



Create an Arc Trajectory

Define a constraints matrix consisting of waypoints, times of arrival, and orientation for an arc
trajectory. The generated trajectory passes through the waypoints at the specified times with the
specified orientation. The waypointTrajectory System object requires orientation to be specified
using quaternions or rotation matrices. Convert the Euler angles saved in the constraints matrix to
quaternions when specifying the Orientation property.

          % Arrival, Waypoints, Orientation
constraints = [0,    20,20,0,    90,0,0;
               3,    50,20,0,    90,0,0;
               4,    58,15.5,0,  162,0,0;
               5.5,  59.5,0,0    180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
    TimeOfArrival=constraints(:,1), ...
    Orientation=quaternion(constraints(:,5:7),"eulerd","ZYX","frame"));

Call waypointInfo on trajectory to return a table of your specified constraints. The creation
properties Waypoints, TimeOfArrival, and Orientation are variables of the table. The table is
convenient for indexing while plotting.

tInfo = waypointInfo(trajectory)

tInfo =

  4x3 table

    TimeOfArrival         Waypoints            Orientation   
    _____________    ____________________    ________________

           0           20      20       0    {1x1 quaternion}
           3           50      20       0    {1x1 quaternion}
           4           58    15.5       0    {1x1 quaternion}
         5.5         59.5       0       0    {1x1 quaternion}

The trajectory object outputs the current position, velocity, acceleration, and angular velocity at each
call. Call trajectory in a loop and plot the position over time. Cache the other outputs.

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),"b*")
title("Position")
axis([20,65,0,25])
xlabel("North")
ylabel("East")
grid on
daspect([1 1 1])
hold on

orient = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,1,"quaternion");
vel = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,3);
acc = vel;
angVel = vel;

count = 1;
while ~isDone(trajectory)
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   [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

   plot(pos(1),pos(2),"bo")

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end

Inspect the orientation, velocity, acceleration, and angular velocity over time. The
waypointTrajectory System object™ creates a path through the specified constraints that
minimized acceleration and angular velocity.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd([tInfo.Orientation{1};orient],"ZYX","frame");
plot(timeVector,eulerAngles(:,1), ...
     timeVector,eulerAngles(:,2), ...
     timeVector,eulerAngles(:,3));
title("Orientation Over Time")
legend("Rotation around Z-axis", ...
       "Rotation around Y-axis", ...
       "Rotation around X-axis", ...
       "Location","southwest")
xlabel("Time (seconds)")
ylabel("Rotation (degrees)")
grid on
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figure(3)
plot(timeVector(2:end),vel(:,1), ...
     timeVector(2:end),vel(:,2), ...
     timeVector(2:end),vel(:,3));
title("Velocity Over Time")
legend("North","East","Down")
xlabel("Time (seconds)")
ylabel("Velocity (m/s)")
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
     timeVector(2:end),acc(:,2), ...
     timeVector(2:end),acc(:,3));
title("Acceleration Over Time")
legend("North","East","Down","Location","southwest")
xlabel("Time (seconds)")
ylabel("Acceleration (m/s^2)")
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
     timeVector(2:end),angVel(:,2), ...
     timeVector(2:end),angVel(:,3));
title("Angular Velocity Over Time")
legend("North","East","Down")
xlabel("Time (seconds)")
ylabel("Angular Velocity (rad/s)")
grid on
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Restrict Arc Trajectory Within Preset Bounds

You can specify additional waypoints to create trajectories within given bounds. Create upper and
lower bounds for the arc trajectory.

figure(1)
xUpperBound = [(20:50)';50+10*sin(0:0.1:pi/2)';60*ones(11,1)];
yUpperBound = [20.5.*ones(31,1);10.5+10*cos(0:0.1:pi/2)';(10:-1:0)'];

xLowerBound = [(20:49)';50+9*sin(0:0.1:pi/2)';59*ones(11,1)];
yLowerBound = [19.5.*ones(30,1);10.5+9*cos(0:0.1:pi/2)';(10:-1:0)'];

plot(xUpperBound,yUpperBound,"r","LineWidth",2);
plot(xLowerBound,yLowerBound,"r","LineWidth",2)
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To create a trajectory within the bounds, add additional waypoints. Create a new
waypointTrajectory System object™, and then call it in a loop to plot the generated trajectory.
Cache the orientation, velocity, acceleration, and angular velocity output from the trajectory
object.

            % Time,  Waypoint,     Orientation
constraints = [0,    20,20,0,      90,0,0;
               1.5,  35,20,0,      90,0,0;
               2.5   45,20,0,      90,0,0;
               3,    50,20,0,      90,0,0;
               3.3,  53,19.5,0,    108,0,0;
               3.6,  55.5,18.25,0, 126,0,0;
               3.9,  57.5,16,0,    144,0,0;
               4.2,  59,14,0,      162,0,0;
               4.5,  59.5,10,0     180,0,0;
               5,    59.5,5,0      180,0,0;
               5.5,  59.5,0,0      180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
    TimeOfArrival=constraints(:,1), ...
    Orientation=quaternion(constraints(:,5:7),"eulerd","ZYX","frame"));
tInfo = waypointInfo(trajectory);

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),"b*")

count = 1;
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while ~isDone(trajectory)
   [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

   plot(pos(1),pos(2),"gd")

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end

The generated trajectory now fits within the specified boundaries. Visualize the orientation, velocity,
acceleration, and angular velocity of the generated trajectory.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd(orient,"ZYX","frame");
plot(timeVector(2:end),eulerAngles(:,1), ...
     timeVector(2:end),eulerAngles(:,2), ...
     timeVector(2:end),eulerAngles(:,3));
title("Orientation Over Time")
legend("Rotation around Z-axis", ...
       "Rotation around Y-axis", ...
       "Rotation around X-axis", ...
       "Location","southwest")
xlabel("Time (seconds)")
ylabel("Rotation (degrees)")
grid on

figure(3)
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plot(timeVector(2:end),vel(:,1), ...
     timeVector(2:end),vel(:,2), ...
     timeVector(2:end),vel(:,3));
title("Velocity Over Time")
legend("North","East","Down")
xlabel("Time (seconds)")
ylabel("Velocity (m/s)")
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
     timeVector(2:end),acc(:,2), ...
     timeVector(2:end),acc(:,3));
title("Acceleration Over Time")
legend("North","East","Down")
xlabel("Time (seconds)")
ylabel("Acceleration (m/s^2)")
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
     timeVector(2:end),angVel(:,2), ...
     timeVector(2:end),angVel(:,3));
title("Angular Velocity Over Time")
legend("North","East","Down")
xlabel("Time (seconds)")
ylabel("Angular Velocity (rad/s)")
grid on
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Note that while the generated trajectory now fits within the spatial boundaries, the acceleration and
angular velocity of the trajectory are somewhat erratic. This is due to over-specifying waypoints.

Generate Racetrack Trajectory Using waypointTrajectory

Consider a racetrack trajectory as the following.
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The four corner points of the trajectory are (0,0,0), (20,0,0), (20,5,0) and (0,5,0) in meters,
respectively. Therefore, specify the waypoints of a loop as:

wps = [0 0 0;
      20 0 0;
      20 5 0;
      0  5 0;
      0  0 0];

Assume the trajectory has a constant speed of 2 m/s, and thus the velocities at the five waypoints are:

vels = [2 0 0;
        2 0 0;
       -2 0 0;
       -2 0 0;
        2 0 0];

The time of arrival for the five waypoints is:

t = cumsum([0 20/2 5*pi/2/2 20/2 5*pi/2/2]');

The orientation of the trajectory at the five waypoints are:

eulerAngs = [0 0 0;
             0 0 0;
           180 0 0;
           180 0 0;
             0 0 0]; % Angles in degrees.
% Convert Euler angles to quaternions.
quats = quaternion(eulerAngs,"eulerd","ZYX","frame");

Specify the sample rate as 100 for smoothing trajectory lines.

fs = 100;
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Construct the waypointTrajectory.

traj = waypointTrajectory(wps,SampleRate=fs, ...
        Velocities=vels,...
        TimeOfArrival=t,...
        Orientation=quats);

Sample and plot the trajectory.

[pos, orient, vel, acc, angvel] = traj();
i = 1;

spf = traj.SamplesPerFrame;
while ~isDone(traj)
    idx = (i+1):(i+spf);
    [pos(idx,:), orient(idx,:), ...
        vel(idx,:), acc(idx,:), angvel(idx,:)] = traj();
    i = i+spf;
end

Plot the trajectory and the specified waypoints.

plot(pos(:,1),pos(:,2), wps(:,1),wps(:,2), "--o")
xlabel("X (m)")
ylabel("Y (m)")
zlabel("Z (m)")
legend({"Trajectory", "Waypoints"})
axis equal
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Create Trajectory Using Waypoints and Ground Speed

Create a waypointTrajectory object that connects two waypoints. The velocity of the trajectory at
the two waypoints is 0 m/s and 10 m/s, respectively. Restrict the jerk limit to 0.5 m/s3 to enable the
trapezoidal acceleration profile.

waypoints = [0  0  0;
            10 50 10];
speeds = [0 10];
jerkLimit = 0.5;
trajectory = waypointTrajectory(waypoints,GroundSpeed=speeds,JerkLimit=jerkLimit);

Obtain the initial time and final time of the trajectory by querying the TimeOfArrival property.
Create time stamps to sample the trajectory.

t0 = trajectory.TimeOfArrival(1);
tf = trajectory.TimeOfArrival(end);
sampleTimes = linspace(t0,tf,100);

Obtain the position, velocity, and acceleration information at these sampled time stamps using the
lookupPose object function.

[position,~,velocity,acceleration,~] = lookupPose(trajectory,sampleTimes);

Plot the trajectory.

figure()
plot3(position(:,1),position(:,2),position(:,3))
xlabel("x (m)")
ylabel("y (m)")
zlabel("z (m)")
title("Trajectory")
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Plot the velocity profile.

figure()
subplot(3,1,1)
plot(sampleTimes,velocity(:,1));
ylabel("v_x (m/s)")
title("Velocity Profile")
subplot(3,1,2)
plot(sampleTimes,velocity(:,2));
ylabel("v_y (m/s)")
subplot(3,1,3)
plot(sampleTimes,velocity(:,3));
ylabel("v_z (m/s)")
xlabel("Time (sec)")
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Plot the acceleration profile. From the results, the acceleration profile of the planar motion is
trapezoidal.

figure()
subplot(3,1,1)
plot(sampleTimes,acceleration(:,1));
axis padded
ylabel("a_x (m/s^2)")
title("Acceleration Profile")
subplot(3,1,2)
plot(sampleTimes,acceleration(:,2));
ylabel("a_y (m/s^2)")
axis padded
subplot(3,1,3)
plot(sampleTimes,acceleration(:,3));
ylabel("a_z (m/s^2)")
xlabel("Time (sec)")
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Algorithms
The waypointTrajectory System object defines a trajectory that smoothly passes through
waypoints. The trajectory connects the waypoints through an interpolation that assumes the gravity
direction expressed in the trajectory reference frame is constant. Generally, you can use
waypointTrajectory to model platform or vehicle trajectories within a hundreds of kilometers
distance span.

The planar path of the trajectory (the x-y plane projection) consists of piecewise, clothoid curves. The
curvature of the curve between two consecutive waypoints varies linearly with the curve length
between them. The tangent direction of the path at each waypoint is chosen to minimize
discontinuities in the curvature, unless the course is specified explicitly via the Course property or
implicitly via the Velocities property. Once the path is established, the object uses cubic Hermite
interpolation to compute the location of the vehicle throughout the path as a function of time and the
planar distance traveled. If the JerkLimit property is specified, the objects produces a horizontal
trapezoidal acceleration profile for any segment that is between two waypoints. The trapezoidal
acceleration profile consists of three subsegments:

• A constant-magnitude jerk subsegment
• A constant-magnitude acceleration subsegment
• A constant-magnitude jerk subsegment

The normal component (z-component) of the trajectory is subsequently chosen to satisfy a shape-
preserving piecewise spline (PCHIP) unless the climb rate is specified explicitly via the ClimbRate
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property or the third column of the Velocities property. Choose the sign of the climb rate based on
the selected ReferenceFrame:

• When an 'ENU' reference frame is selected, specifying a positive climb rate results in an
increasing value of z.

• When an 'NED' reference frame is selected, specifying a positive climb rate results in a decreasing
value of z.

You can define the orientation of the vehicle through the path in two primary ways:

• If the Orientation property is specified, then the object uses a piecewise-cubic, quaternion
spline to compute the orientation along the path as a function of time.

• If the Orientation property is not specified, then the yaw of the vehicle is always aligned with
the path. The roll and pitch are then governed by the AutoBank and AutoPitch property values,
respectively.

AutoBank AutoPitch Description
false false The vehicle is always level

(zero pitch and roll). This is
typically used for large
marine vessels.

false true The vehicle pitch is aligned
with the path, and its roll is
always zero. This is typically
used for ground vehicles.

true false The vehicle pitch and roll are
chosen so that its local z-axis
is aligned with the net
acceleration (including
gravity). This is typically used
for rotary-wing craft.

true true The vehicle roll is chosen so
that its local transverse plane
aligns with the net
acceleration (including
gravity). The vehicle pitch is
aligned with the path. This is
typically used for two-wheeled
vehicles and fixed-wing
aircraft.

Version History
Introduced in R2019b

R2023a: Specify waypointTrajectory using ground speed or velocity input and new
properties
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When creating a waypointTrajectory object, if you specify the velocity or ground speed input, the
time-of-arrival input is no longer required. When you do not specify the time-of-arrival input, you can
use these new properties:

• JerkLimit — Longitudinal limit of trajectory jerk. Jerk is the derivative of the translational
acceleration. If you specify a finite value for the jerk limit, waypointTrajectory produces a
horizontal trapezoidal acceleration profile based on JerkLimit.

• InitialTime — Time before trajectory starts. If specified as nonzero, waypointTrajectory
delays the start of the trajectory by the initial time.

• WaitTime— Wait time at each waypoint. If specified as nonzero for a waypoint,
waypointTrajectory waits at the waypoint.

R2022b: Specify wait and reverse motion for waypoint trajectory

You can now specify wait and reverse motion using the waypointTrajectory System object.

• To let the trajectory wait at a specific waypoint, simply repeat the waypoint coordinate in two
consecutive rows when specifying the Waypoints property.

• To render reverse motion, separate positive (forward) and negative (backward) groundspeed
values by a zero value in the GroundSpeed property.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object function, waypointInfo, does not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
kinematicTrajectory
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lookupPose
Obtain pose information for certain time

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes)

Description
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes) returns the pose information of the waypoint trajectory at the specified sample
times. If any sample time is beyond the duration of the trajectory, the corresponding pose information
is returned as NaN.

Input Arguments
traj — Waypoint trajectory
waypointTrajectory object

Waypoint trajectory, specified as a waypointTrajectory object.

sampleTimes — Sample times
M-element vector of nonnegative scalar

Sample times in seconds, specified as an M-element vector of nonnegative scalars.

Output Arguments
position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the sampleTimes input.
Data Types: double
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velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the sampleTimes input.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

Version History
Introduced in R2019b

See Also
Objects
waypointTrajectory

Functions
waypointInfo | perturbations | perturb
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waypointInfo
Get waypoint information table

Syntax
trajectoryInfo = waypointInfo(trajectory)

Description
trajectoryInfo = waypointInfo(trajectory) returns a table of waypoints, times of arrival,
velocities, and orientation for the trajectory System object.

Input Arguments
trajectory — Object of waypointTrajectory
object

Object of the waypointTrajectory System object.

Output Arguments
trajectoryInfo — Trajectory information
table

Trajectory information, returned as a table with variables corresponding to set creation properties:
Waypoints, TimeOfArrival, Velocities, and Orientation.

The trajectory information table always has variables Waypoints and TimeOfArrival. If the
Velocities property is set during construction, the trajectory information table additionally returns
velocities. If the Orientation property is set during construction, the trajectory information table
additionally returns orientation.

Version History
Introduced in R2019b

See Also
Objects
waypointTrajectory

Functions
lookupPose | perturbations | perturb
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perturb
Apply perturbations to object

Syntax
offsets = perturb(obj)

Description
offsets = perturb(obj) applies the perturbations defined on the object, obj and returns the
offset values. You can define perturbations on the object by using the perturbations function.

Examples

Perturb Waypoint Trajectory

Define a waypoint trajectory. By default, this trajectory contains two waypoints.

traj = waypointTrajectory

traj = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
     ReferenceFrame: 'NED'

Define perturbations on the Waypoints property and the TimeOfArrival property.

rng(2020);
perturbs1 = perturbations(traj,'Waypoints','Normal',1,1)

perturbs1=2×3 table
       Property          Type            Value       
    _______________    ________    __________________

    "Waypoints"        "Normal"    {[  1]}    {[  1]}
    "TimeOfArrival"    "None"      {[NaN]}    {[NaN]}

perturbs2 = perturbations(traj,'TimeOfArrival','Selection',{[0;1],[0;2]})
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perturbs2=2×3 table
       Property           Type                     Value             
    _______________    ___________    _______________________________

    "Waypoints"        "Normal"       {[     1]}    {[            1]}
    "TimeOfArrival"    "Selection"    {1x2 cell}    {[0.5000 0.5000]}

Perturb the trajectory.

offsets = perturb(traj)

offsets=2×1 struct array with fields:
    Property
    Offset
    PerturbedValue

The Waypoints property and the TimeOfArrival property have changed.

traj.Waypoints

ans = 2×3

    1.8674    1.0203    0.7032
    2.3154   -0.3207    0.0999

traj.TimeOfArrival

ans = 2×1

     0
     2

Perturb Accuracy of insSensor

Create an insSensor object.

sensor = insSensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.2                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         
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Define the perturbation on the RollAccuracy property as three values with an equal possibility
each.

values = {0.1 0.2 0.3}

values=1×3 cell array
    {[0.1000]}    {[0.2000]}    {[0.3000]}

probabilities = [1/3 1/3 1/3]

probabilities = 1×3

    0.3333    0.3333    0.3333

perturbations(sensor,'RollAccuracy','Selection',values,probabilities)

ans=7×3 table
            Property                Type                        Value                 
    _________________________    ___________    ______________________________________

    "RollAccuracy"               "Selection"    {1x3 cell}    {[0.3333 0.3333 0.3333]}
    "PitchAccuracy"              "None"         {[   NaN]}    {[                 NaN]}
    "YawAccuracy"                "None"         {[   NaN]}    {[                 NaN]}
    "PositionAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "VelocityAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "AccelerationAccuracy"       "None"         {[   NaN]}    {[                 NaN]}
    "AngularVelocityAccuracy"    "None"         {[   NaN]}    {[                 NaN]}

Perturb the sensor object using the perturb function.

rng(2020)
perturb(sensor);
sensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.5                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

The RollAccuracy is perturbed to 0.5 deg.
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Perturb imuSensor Parameters

Create an imuSensor object and show its perturbable properties.

imu = imuSensor;
perturbations(imu)

ans=17×3 table
                   Property                    Type           Value       
    ______________________________________    ______    __________________

    "Accelerometer.MeasurementRange"          "None"    {[NaN]}    {[NaN]}
    "Accelerometer.Resolution"                "None"    {[NaN]}    {[NaN]}
    "Accelerometer.ConstantBias"              "None"    {[NaN]}    {[NaN]}
    "Accelerometer.NoiseDensity"              "None"    {[NaN]}    {[NaN]}
    "Accelerometer.BiasInstability"           "None"    {[NaN]}    {[NaN]}
    "Accelerometer.RandomWalk"                "None"    {[NaN]}    {[NaN]}
    "Accelerometer.TemperatureBias"           "None"    {[NaN]}    {[NaN]}
    "Accelerometer.TemperatureScaleFactor"    "None"    {[NaN]}    {[NaN]}
    "Gyroscope.MeasurementRange"              "None"    {[NaN]}    {[NaN]}
    "Gyroscope.Resolution"                    "None"    {[NaN]}    {[NaN]}
    "Gyroscope.ConstantBias"                  "None"    {[NaN]}    {[NaN]}
    "Gyroscope.NoiseDensity"                  "None"    {[NaN]}    {[NaN]}
    "Gyroscope.BiasInstability"               "None"    {[NaN]}    {[NaN]}
    "Gyroscope.RandomWalk"                    "None"    {[NaN]}    {[NaN]}
    "Gyroscope.TemperatureBias"               "None"    {[NaN]}    {[NaN]}
    "Gyroscope.TemperatureScaleFactor"        "None"    {[NaN]}    {[NaN]}
      ⋮

Specify the perturbation for the NoiseDensity property of the accelerometer as a uniform
distribution.

perturbations(imu,'Accelerometer.NoiseDensity', ...
    'Uniform',1e-5,1e-3);

Specify the perturbation for the RandomWalk property of the gyroscope as a truncated normal
distribution.

 perts = perturbations(imu,'Gyroscope.RandomWalk', ...
    'TruncatedNormal',2,1e-5,0,Inf);

Load prerecorded IMU data.

load imuSensorData.mat 
numSamples = size(orientations);

Simulate the imuSensor three times with different perturbation realizations.

rng(2021); % For repeatable results
numRuns = 3;
colors = ['b' 'r' 'g'];
for idx = 1:numRuns

    % Clone IMU to maintain original values
    imuCopy = clone(imu);

    % Perturb noise values
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    offsets = perturb(imuCopy);

    % Obtain the measurements 
    [accelReadings,gyroReadings] = imuCopy(accelerations,angularVelocities,orientations);
    
    % Plot the results
    plot(times,gyroReadings(:,3),colors(idx));
    hold on;
end
xlabel('Time (s)')
ylabel('Z-Component of Gyro Readings (rad/s)')
legend("First Pass","Second Pass","Third Pass");
hold off

Input Arguments
obj — Object for perturbation
objects

Object for perturbation, specified as an object. The objects that you can perturb include:

• waypointTrajectory
• kinematicTrajectory
• insSensor
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• imuSensor

Output Arguments
offsets — Property offsets
array of structure

Property offsets, returned as an array of structures. Each structure contains these fields:

Field Name Description
Property Name of perturbed property
Offset Offset values applied in the perturbation
PerturbedValue Property values after the perturbation

Version History
Introduced in R2020b

See Also
perturbations
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perturbations
Perturbation defined on object

Syntax
perturbs = perturbations(obj)
perturbs = perturbations(obj,property)
perturbs = perturbations(obj,property,'None')
perturbs = perturbations(obj,property,'Selection',values,probabilities)
perturbs = perturbations(obj,property,'Normal',mean,deviation)
perturbs = perturbations(obj,property,'TruncatedNormal',mean,deviation,
lowerLimit,upperLimit)
perturbs = perturbations(obj,property,'Uniform',minVal,maxVal)
perturbs = perturbations(obj,property,'Custom',perturbFcn)

Description
perturbs = perturbations(obj) returns the list of property perturbations, perturbs, defined
on the object, obj. The returned perturbs lists all the perturbable properties. If any property is not
perturbed, then its corresponding Type is returned as "Null" and its corresponding Value is
returned as {Null,Null}.

perturbs = perturbations(obj,property) returns the current perturbation applied to the
specified property.

perturbs = perturbations(obj,property,'None') defines a property that must not be
perturbed.

perturbs = perturbations(obj,property,'Selection',values,probabilities) defines
the property perturbation offset drawn from a set of values that have corresponding
probabilities.

perturbs = perturbations(obj,property,'Normal',mean,deviation) defines the
property perturbation offset drawn from a normal distribution with specified mean and standard
deviation.

perturbs = perturbations(obj,property,'TruncatedNormal',mean,deviation,
lowerLimit,upperLimit) defines the property perturbation offset drawn from a normal
distribution with specified mean, standard deviation, lower limit, and upper limit.

perturbs = perturbations(obj,property,'Uniform',minVal,maxVal) defines the
property perturbation offset drawn from a uniform distribution on an interval [minVal, maxValue].

perturbs = perturbations(obj,property,'Custom',perturbFcn) enables you to define a
custom function, perturbFcn, that draws the perturbation offset value.

Examples
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Default Perturbation Properties of waypointTrajectory

Create a waypointTrajectory object.

traj = waypointTrajectory;

Show the default perturbation properties using the perturbations method.

perturbs = perturbations(traj)

perturbs=2×3 table
       Property         Type           Value       
    _______________    ______    __________________

    "Waypoints"        "None"    {[NaN]}    {[NaN]}
    "TimeOfArrival"    "None"    {[NaN]}    {[NaN]}

Perturb Accuracy of insSensor

Create an insSensor object.

sensor = insSensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.2                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

Define the perturbation on the RollAccuracy property as three values with an equal possibility
each.

values = {0.1 0.2 0.3}

values=1×3 cell array
    {[0.1000]}    {[0.2000]}    {[0.3000]}

probabilities = [1/3 1/3 1/3]

probabilities = 1×3

    0.3333    0.3333    0.3333

perturbations(sensor,'RollAccuracy','Selection',values,probabilities)
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ans=7×3 table
            Property                Type                        Value                 
    _________________________    ___________    ______________________________________

    "RollAccuracy"               "Selection"    {1x3 cell}    {[0.3333 0.3333 0.3333]}
    "PitchAccuracy"              "None"         {[   NaN]}    {[                 NaN]}
    "YawAccuracy"                "None"         {[   NaN]}    {[                 NaN]}
    "PositionAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "VelocityAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "AccelerationAccuracy"       "None"         {[   NaN]}    {[                 NaN]}
    "AngularVelocityAccuracy"    "None"         {[   NaN]}    {[                 NaN]}

Perturb the sensor object using the perturb function.

rng(2020)
perturb(sensor);
sensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.5                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

The RollAccuracy is perturbed to 0.5 deg.

Perturb Waypoint Trajectory

Define a waypoint trajectory. By default, this trajectory contains two waypoints.

traj = waypointTrajectory

traj = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
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     ReferenceFrame: 'NED'

Define perturbations on the Waypoints property and the TimeOfArrival property.

rng(2020);
perturbs1 = perturbations(traj,'Waypoints','Normal',1,1)

perturbs1=2×3 table
       Property          Type            Value       
    _______________    ________    __________________

    "Waypoints"        "Normal"    {[  1]}    {[  1]}
    "TimeOfArrival"    "None"      {[NaN]}    {[NaN]}

perturbs2 = perturbations(traj,'TimeOfArrival','Selection',{[0;1],[0;2]})

perturbs2=2×3 table
       Property           Type                     Value             
    _______________    ___________    _______________________________

    "Waypoints"        "Normal"       {[     1]}    {[            1]}
    "TimeOfArrival"    "Selection"    {1x2 cell}    {[0.5000 0.5000]}

Perturb the trajectory.

offsets = perturb(traj)

offsets=2×1 struct array with fields:
    Property
    Offset
    PerturbedValue

The Waypoints property and the TimeOfArrival property have changed.

traj.Waypoints

ans = 2×3

    1.8674    1.0203    0.7032
    2.3154   -0.3207    0.0999

traj.TimeOfArrival

ans = 2×1

     0
     2

Perturb imuSensor Parameters

Create an imuSensor object and show its perturbable properties.
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imu = imuSensor;
perturbations(imu)

ans=17×3 table
                   Property                    Type           Value       
    ______________________________________    ______    __________________

    "Accelerometer.MeasurementRange"          "None"    {[NaN]}    {[NaN]}
    "Accelerometer.Resolution"                "None"    {[NaN]}    {[NaN]}
    "Accelerometer.ConstantBias"              "None"    {[NaN]}    {[NaN]}
    "Accelerometer.NoiseDensity"              "None"    {[NaN]}    {[NaN]}
    "Accelerometer.BiasInstability"           "None"    {[NaN]}    {[NaN]}
    "Accelerometer.RandomWalk"                "None"    {[NaN]}    {[NaN]}
    "Accelerometer.TemperatureBias"           "None"    {[NaN]}    {[NaN]}
    "Accelerometer.TemperatureScaleFactor"    "None"    {[NaN]}    {[NaN]}
    "Gyroscope.MeasurementRange"              "None"    {[NaN]}    {[NaN]}
    "Gyroscope.Resolution"                    "None"    {[NaN]}    {[NaN]}
    "Gyroscope.ConstantBias"                  "None"    {[NaN]}    {[NaN]}
    "Gyroscope.NoiseDensity"                  "None"    {[NaN]}    {[NaN]}
    "Gyroscope.BiasInstability"               "None"    {[NaN]}    {[NaN]}
    "Gyroscope.RandomWalk"                    "None"    {[NaN]}    {[NaN]}
    "Gyroscope.TemperatureBias"               "None"    {[NaN]}    {[NaN]}
    "Gyroscope.TemperatureScaleFactor"        "None"    {[NaN]}    {[NaN]}
      ⋮

Specify the perturbation for the NoiseDensity property of the accelerometer as a uniform
distribution.

perturbations(imu,'Accelerometer.NoiseDensity', ...
    'Uniform',1e-5,1e-3);

Specify the perturbation for the RandomWalk property of the gyroscope as a truncated normal
distribution.

 perts = perturbations(imu,'Gyroscope.RandomWalk', ...
    'TruncatedNormal',2,1e-5,0,Inf);

Load prerecorded IMU data.

load imuSensorData.mat 
numSamples = size(orientations);

Simulate the imuSensor three times with different perturbation realizations.

rng(2021); % For repeatable results
numRuns = 3;
colors = ['b' 'r' 'g'];
for idx = 1:numRuns

    % Clone IMU to maintain original values
    imuCopy = clone(imu);

    % Perturb noise values
    offsets = perturb(imuCopy);

    % Obtain the measurements 
    [accelReadings,gyroReadings] = imuCopy(accelerations,angularVelocities,orientations);
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    % Plot the results
    plot(times,gyroReadings(:,3),colors(idx));
    hold on;
end
xlabel('Time (s)')
ylabel('Z-Component of Gyro Readings (rad/s)')
legend("First Pass","Second Pass","Third Pass");
hold off

Input Arguments
obj — Object to be perturbed
objects

Object to be perturbed, specified as an object. The objects that you can perturb include:

• waypointTrajectory
• kinematicTrajectory
• insSensor
• imuSensor

property — Perturbable property
property name
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Perturbable property, specified as a property name. Use perturbations to obtain a full list of
perturbable properties for the specified obj.

For the imuSensor System object, you can perturb properties of its accelerometer, gyroscope, and
magnetometer components. For more details, see the “Perturb imuSensor Parameters” on page 2-
1812 example.

values — Perturbation offset values
n-element cell array of property values

Perturbation offset values, specified as an n-element cell array of property values. The function
randomly draws the perturbation value for the property from the cell array based on the values'
corresponding probabilities specified in the probabilities input.

probabilities — Drawing probabilities for each perturbation value
n-element array of nonnegative scalar

Drawing probabilities for each perturbation value, specified as an n-element array of nonnegative
scalars, where n is the number of perturbation values provided in the values input. The sum of all
elements must be equal to one.

For example, you can specify a series of perturbation value-probability pair as {x1,x2,…,xn} and
{p1,p2,…,pn}, where the probability of drawing xi is pi (i = 1, 2, …,n).

mean — Mean of normal or truncated normal distribution
scalar | vector | matrix

Mean of normal or truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of mean must be compatible with the corresponding property that you perturb.

deviation — Standard deviation of normal or truncated normal distribution
nonnegative scalar | vector of nonnegative scalar | matrix of nonnegative scalar

Standard deviation of normal or truncated normal distribution, specified as a nonnegative scalar,
vector of nonnegative scalars, or matrix of nonnegative scalars. The dimension of deviation must
be compatible with the corresponding property that you perturb.

lowerLimit — Lower limit of truncated normal distribution
scalar | vector | matrix

Lower limit of the truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of lowerLimit must be compatible with the corresponding property that you perturb.

upperLimit — Upper limit of truncated normal distribution
scalar | vector | matrix

Upper limit of the truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of upperLimit must be compatible with the corresponding property that you perturb.

minVal — Minimum value of uniform distribution interval
scalar | vector | matrix

Minimum value of the uniform distribution interval, specified as a scalar, vector, or matrix. The
dimension of minVal must be compatible with the corresponding property that you perturb.
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maxVal — Maximum value of uniform distribution interval
scalar | vector | matrix

Maximum value of the uniform distribution interval, specified as a scalar, vector, or matrix. The
dimension of maxVal must be compatible with the corresponding property that you perturb.

perturbFcn — Perturbation function
function handle

Perturbation function, specified as a function handle. The function must have this syntax:

offset = myfun(propVal)

where propVal is the value of the property and offset is the perturbation offset for the property.

Output Arguments
perturbs — Perturbations defined on object
table of perturbation property

Perturbations defined on the object, returned as a table of perturbation properties. The table has
three columns:

• Property — Property names.
• Type — Type of perturbations, returned as "None", "Selection", "Normal",

"TruncatedNormal", "Uniform", or "Custom".
• Value — Perturbation values, returned as a cell array.

More About
Specify Perturbation Distributions

You can specify the distribution for the perturbation applied to a specific property.

• Selection distribution — The function defines the perturbation offset as one of the specified values
with the associated probability. For example, if you specify the values as [1 2] and specify the
probabilities as [0.7 0.3], then the perturb function adds an offset value of 1 to the property
with a probability of 0.7 and add an offset value of 2 to the property with a probability of 0.3.
Use selection distribution when you only want to perturb the property with a number of discrete
values.

• Normal distribution — The function defines the perturbation offset as a value drawn from a normal
distribution with the specified mean and standard deviation (or covariance). Normal distribution is
the most commonly used distribution since it mimics the natural perturbation of parameters in
most cases.

• Truncated normal distribution — The function defines the perturbation offset as a value drawn
from a truncated normal distribution with the specified mean, standard deviation (or covariance),
lower limit, and upper limit. Different from the normal distribution, the values drawn from a
truncated normal distribution are truncated by the lower and upper limit. Use truncated normal
distribution when you want to apply a normal distribution, but the valid values of the property are
confined in an interval.
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• Uniform distribution — The function defines the perturbation offset as a value drawn from a
uniform distribution with the specified minimum and maximum values. All the values in the
interval (specified by the minimum and maximum values) have the same probability of realization.

• Custom distribution — Customize your own perturbation function. The function must have this
syntax:

offset = myfun(propVal)

where propVal is the value of the property and offset is the perturbation offset for the
property.

This figure shows probability density functions for a normal distribution, a truncated normal
distribution, and a uniform distribution, respectively.

Version History
Introduced in R2020b

See Also
perturb
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wheelEncoderAckermann
Simulate wheel encoder sensor readings for Ackermann vehicle

Description
The wheelEncoderAckermann System object computes wheel encoder tick readings based on the
pose input of an Ackermann vehicle.

To obtain the encoder tick readings:

1 Create the wheelEncoderAckermann object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
encoder = wheelEncoderAckermann
encoder= wheelEncoderAckermann(Name,Value)

Description

encoder = wheelEncoderAckermann creates a wheelEncoderAckermann System object,
encoder.

encoder= wheelEncoderAckermann(Name,Value) sets properties for the encoder using one or
more name-value pairs. For example, wheelAckermann('SampleRate',120) sets the sample rate
of the encoder to 120 Hz. Unspecified properties have default values. Enclose each property name in
quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of encoder
100 (default) | positive scalar

Sample rate of the encoder, specified as a positive scalar in Hz.
Example: 'SampleRate',100
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Data Types: double

TicksPerRevolution — Number of encoder ticks per wheel revolution
[2048 2048 2048 2048] (default) | four-element vector of positive integers

Number of encoder ticks per wheel revolution, specified as a four-element vector of positive integers.
The first, second, third, and fourth elements are for the back-left, back-right, front-left, and front-
right wheels, respectively.
Data Types: double

WheelRadius — Wheel radius
[0.35 0.35 0.35 0.35] (default) | four-element vector of positive scalars

Wheel radius, specified as a four-element vector of positive scalars in meters. The first, second, third,
and fourth elements are for the back-left, back-right, front-left, and front-right wheels, respectively.
Data Types: double

WheelRadiusBias — Bias of wheel radius
[0 0 0 0] (default) | four-element vector of scalars

Bias of the wheel radius, specified as a four-element vector of scalars in meters. The first, second,
third, and fourth elements are for the back-left, back-right, front-left, and front-right wheels,
respectively.
Data Types: double

WheelPositionAccuracy — Standard deviation of wheel position error
[0 0 0 0] (default) | four-element vector of nonnegative scalars

Standard deviation of wheel position error, specified as a four-element vector of nonnegative scalars
in radians. The first, second, third, and fourth elements are for the back-left, back-right, front-left,
and front-right wheels, respectively.
Data Types: double

SlipRatio — Slip or skid ratio of wheel
[0 0 0 0] (default) | four-element vector of scalars

Slip or skid ratio of the wheel, specified as a four-element vector of scalars in which each scalar is
larger than or equal to –1. The first, second, third, and fourth elements are for the back-left, back-
right, front-left, and front-right wheels, respectively.

• For a wheel that slips (over rotation), specify it as a positive value. A higher value denotes more
slipping.

• For a wheel that skids (under rotation), specify it as a negative value larger than or equal to –1. A
lower value denotes more skidding. For a wheel that does not rotate, specify it as –1.

Data Types: double

TrackWidth — Distance between wheel axles
[1.572 1.572] (default) | two-element vector of positive scalars

Distance between the wheel axles, specified as a two-element vector of positive scalars in meters. The
first element is for the back track, and the second element is for the front track.
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Data Types: double

TrackWidthBias — Bias of track width
0 (default) | two-element vector of scalars

Bias of track width, specified as a two-element vector of scalars in meters. The first element is for the
back track, and the second element is for the front track.
Data Types: double

WheelBase — Distance between front and rear axles
2.818 (default) | positive scalar

Distance between the front and the rear axles, specified as a positive scalar in meters.
Data Types: double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.

Usage

Syntax
ticks = encoder(velocity,angularVelocity,orientation)

Description

ticks = encoder(velocity,angularVelocity,orientation) return the wheel tick readings,
ticks, form velocity, angular velocity, and orientation information.

Input Arguments

velocity — Velocity of vehicle
N-by-3 matrix of scalars

Velocity of the vehicle in the local navigation frame, specified as an N-by-3 matrix of scalars in m/s. N
is the number of samples.
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angularVelocity — Angular velocity of vehicle
N-by-3 matrix of scalars

Angular velocity of the vehicle in the local navigation frame, specified as an N-by-3 matrix of scalars
in rad/s. N is the number of samples.

orientation — orientation of vehicle
N-element vector of quaternion | 3-by-3-by-N array of rotation matrices

Orientation of the vehicle in the local navigation frame, specified as an N-element vector of
quaternion or a 3-by-3-by-N array of rotation matrices. N is the number of samples. Each
quaternion or rotation matrix is a frame rotation from the local navigation coordinate system to the
current vehicle body coordinate system.

Output Arguments

ticks — Number of wheel ticks per time step
N-by-4 matrix of nonnegative integers

Number of wheel ticks the vehicle moved per time step, returned as an N-by-4 matrix of nonnegative
integers. N is the number of samples. The first, second, third, and fourth columns are for the back-
left, back-right, front-left, and front-right wheels, respectively.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use

Examples

Generate Wheel Ticks from Ackermann Vehicle Pose

Create the wheel encoder sensor.

encoder = wheelEncoderAckermann;

Define poses of the vehicle.

orient = [quaternion([60 0 0],'eulerd','ZYX','frame'); quaternion([45 0 0], 'eulerd', 'ZYX', 'frame')];
vel = [1 0 0; 0 1 0];
angvel = [0 0 0.2; 0 0 0.1];

Generate wheel ticks from the poses.
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ticks = encoder(vel,angvel,orient)

ticks = 2×4

     3     6     6     8
     6     7     6     7

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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wheelEncoderBicycle
Simulate wheel encoder sensor readings for bicycle vehicle

Description
The wheelEncoderBicycle System object computes wheel encoder tick readings based on the pose
input for a bicycle vehicle.

To obtain the encoder tick readings:

1 Create the wheelEncoderBicycle object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
encoder = wheelEncoderBicycle
encoder= wheelEncoderBicycle(Name,Value)

Description

encoder = wheelEncoderBicycle creates a wheelEncoderBicycle System object, encoder.

encoder= wheelEncoderBicycle(Name,Value) sets properties for the encoder using one or
more name-value pairs. For example, wheelEncoderBicycle('SampleRate',120) sets the
sample rate of the encoder to 120 Hz. Unspecified properties have default values. Enclose each
property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of encoder
100 (default) | positive scalar

Sample rate of the encoder, specified as a positive scalar in Hz.
Data Types: double
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TicksPerRevolution — Number of encoder ticks per wheel revolution
[2048 2048] (default) | two-element vector of positive integers

Number of encoder ticks per wheel revolution, specified as a two-element vector of positive integers.
The first element is for the back wheel, and the second element is for the front wheel.
Data Types: double

WheelRadius — Wheel radius
[0.35 0.35] (default) | two-element vector of positive scalars

Wheel radius, specified as a two-element vector of positive scalars in meters. The first element is for
the back wheel, and the second element is for the front wheel.
Data Types: double

WheelRadiusBias — Bias of wheel radius
[0 0] (default) | two-element vector of scalars

Bias of the wheel radius, specified as a two-element vector of scalars in meters. The first element is
for the back wheel, and the second element is for the front wheel.
Data Types: double

WheelPositionAccuracy — Standard deviation of wheel position error
[0 0] (default) | two-element vector of nonnegative scalars

Standard deviation of wheel position error, specified as a two-element vector of nonnegative scalars
in radians. The first element is for the back wheel, and the second element is for the front wheel.
Data Types: double

SlipRatio — Slip or skid ratio of wheel
[0 0] (default) | two-element vector of scalar

Slip or skid ratio of the wheel, specified as a two-element vector of scalars in which each scalar is
larger than or equal to –1. The first element is for the back wheel, and the second element is for the
front wheel.

• For a wheel that slips (over rotation), specify it as a positive value. A higher value denotes more
slipping.

• For a wheel that skids (under rotation), specify it as a negative value larger than or equal to –1. A
lower value denotes more skidding. For a wheel that does not rotate, specify it as –1.

Data Types: double

WheelBase — Distance between front and rear wheels
2.818 (default) | positive scalar

Distance between the front and the rear wheels, specified as a positive scalar in meters.
Data Types: double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:
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• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number generator
67 (default) | nonnegative integer

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.

Usage

Syntax
ticks = encoder(velocity,angularVelocity,orientation)

Description

ticks = encoder(velocity,angularVelocity,orientation) return the wheel tick readings,
ticks, from velocity, angular velocity, and orientation information.

Input Arguments

velocity — Velocity of vehicle
N-by-3 matrix of scalars

Velocity of the vehicle in the local navigation frame, specified as an N-by-3 matrix of scalars in m/s. N
is the number of samples.

angularVelocity — Angular velocity of vehicle
N-by-3 matrix of scalars

Angular velocity of the vehicle in the local navigation frame, specified as an N-by-3 matrix of scalars
in rad/s. N is the number of samples.

orientation — orientation of vehicle
N-element vector of quaternion | 3-by-3-by-N array of rotation matrices

Orientation of the vehicle in the local navigation frame, specified as an N-element vector of
quaternion or a 3-by-3-by-N array of rotation matrices. N is the number of samples. Each
quaternion or rotation matrix is a frame rotation from the local navigation coordinate system to the
current vehicle body coordinate system.

Output Arguments

ticks — Number of wheel ticks per time step
N-by-2 matrix of integer
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Number of wheel ticks the vehicle moved per time step, returned as an N-by-2 matrix of integers. N is
the number of samples. The first column is for the back wheel, and the second column is for the front
wheel.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use

Examples

Generate Wheel Ticks from Bicycle Vehicle Pose

Create the wheel encoder sensor.

encoder = wheelEncoderBicycle;

Define poses of the vehicle.

orient = [quaternion([90 0 0],'eulerd','ZYX','frame'); quaternion([45 0 0], 'eulerd', 'ZYX', 'frame')];
vel = [1 0 0; 0 1 0];
angvel = [0 0 0.2; 0 0 0.1];

Generate wheel ticks from the poses.

ticks = encoder(vel,angvel,orient)

ticks = 2×2

     0     5
     6     7

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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wheelEncoderDifferentialDrive
Simulate wheel encoder sensor readings for differential drive vehicle

Description
The wheelEncoderDifferentialDrive System object computes wheel encoder tick readings
based on the pose input of a differential drive vehicle.

To obtain the encoder tick readings:

1 Create the wheelEncoderDifferentialDrive object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
encoder = wheelEncoderDifferentialDrive
encoder= wheelEncoderDifferentialDrive(Name,Value)

Description

encoder = wheelEncoderDifferentialDrive creates a wheelEncoderDifferentialDrive
System object, encoder.

encoder= wheelEncoderDifferentialDrive(Name,Value) sets properties for the encoder
using one or more name-value pairs. For example,
wheelEncoderDifferentialDrive('SampleRate',120) sets the sample rate of the encoder to
120 Hz. Unspecified properties have default values. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of encoder
100 (default) | positive scalar

Sample rate of the encoder, specified as a positive scalar in Hz.
Data Types: double
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TicksPerRevolution — Number of encoder ticks per wheel revolution
[2048 2048] (default) | two-element vector of positive integers

Number of encoder ticks per wheel revolution, specified as a two-element vector of positive integers.
The first element is for the left wheel, and the second element is for the right wheel.
Data Types: double

WheelRadius — Wheel radius
[0.35 0.35] (default) | two-element vector of positive scalars

Wheel radius, specified as a two-element vector of positive scalars in meters. The first element is for
the left wheel, and the second element is for the right wheel.
Data Types: double

WheelRadiusBias — Bias of wheel radius
[0 0] (default) | two-element vector of scalars

Bias of the wheel radius, specified as a two-element vector of scalars in meters. The first element is
for the left wheel, and the second element is for the right wheel.
Data Types: double

WheelPositionAccuracy — Standard deviation of wheel position error
[0 0] (default) | two-element vector of nonnegative scalar

Standard deviation of wheel position error, specified as a two-element vector of nonnegative scalars
in radians. The first element is for the left wheel, and the second element is for the right wheel.
Data Types: double

SlipRatio — Slip or skid ratio of wheel
[0 0] (default) | two-element vector of scalar

Slip or skid ratio of the wheel, specified as a two-element vector of scalars in which each scalar is
larger than or equal to –1. The first element is for the left wheel, and the second element is for the
right wheel.

• For a wheel that slips (over rotation), specify it as a positive value. A higher value denotes more
slipping.

• For a wheel that skids (under rotation), specify it as a negative value larger than or equal to –1. A
lower value denotes more skidding. For a wheel that does not rotate, specify it as –1.

Data Types: double

TrackWidth — Distance between wheel axles
1.572 (default) | positive scalar

Distance between the wheel axles, specified as a positive scalar in meters.
Data Types: double

TrackWidthBias — Bias of track width
0 (default) | scalar

Bias of track width, specified as a scalar in meters.
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Data Types: double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.

Usage

Syntax
ticks = encoder(velocity,angularVelocity,orientation)

Description

ticks = encoder(velocity,angularVelocity,orientation) return the wheel tick readings,
ticks, form velocity, angular velocity, and orientation information.

Input Arguments

velocity — Velocity of vehicle
N-by-3 matrix of scalars

Velocity of the vehicle in the local navigation frame, specified as an N-by-3 matrix of scalars in m/s. N
is the number of samples.

angularVelocity — Angular velocity of vehicle
N-by-3 matrix of scalars

Angular velocity of the vehicle in the local navigation frame, specified as an N-by-3 matrix of scalars
in rad/s. N is the number of samples.

orientation — orientation of vehicle
N-element vector of quaternion | 3-by-3-by-N array of rotation matrices

Orientation of the vehicle in the local navigation frame, specified as an N-element vector of
quaternion or a 3-by-3-by-N array of rotation matrices. N is the number of samples. Each
quaternion or rotation matrix is a frame rotation from the local navigation coordinate system to the
current vehicle body coordinate system.
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Output Arguments

ticks — Number of wheel ticks per time step
N-by-2 matrix of nonnegative integers

Number of wheel ticks the vehicle moved per time step, returned as an N-by-2 matrix of integers. N is
the number of samples. The first column is for the left wheel, and the second column is for the right
wheel.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use

Examples

Generate Wheel Ticks from Differential Drive Vehicle Pose

Create the wheel encoder sensor.

encoder = wheelEncoderDifferentialDrive;

Define poses of the vehicle.

orient = [quaternion([60 0 0],'eulerd','ZYX','frame'); quaternion([45 0 0], 'eulerd', 'ZYX', 'frame')];
vel = [1 0 0; 0 1 0];
angvel = [0 0 0.2; 0 0 0.1];

Generate wheel ticks from the poses.

ticks = encoder(vel,angvel,orient)

ticks = 2×2

     3     6
     6     7

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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wheelEncoderUnicycle
Simulate wheel encoder sensor readings for unicycle vehicle

Description
The wheelEncoderUnicycle System object computes wheel encoder tick readings based on the
pose input of a unicycle vehicle.

To obtain the encoder tick readings:

1 Create the wheelEncoderUnicycle object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
encoder = wheelEncoderUnicycle
encoder = wheelEncoderUnicycle(Name,Value)

Description

encoder = wheelEncoderUnicycle creates a wheelEncoderUnicycle System object encoder.

encoder = wheelEncoderUnicycle(Name,Value) sets properties for the encoder using one or
more name-value pairs. For example, wheelEncoderUnicycle('SampleRate',120) sets the
sample rate of the encoder to 120 Hz. Unspecified properties have default values. Enclose each
property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of encoder
100 (default) | positive scalar

Sample rate of the encoder, specified as a positive scalar in Hz.
Data Types: double
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TicksPerRevolution — Number of encoder ticks per wheel revolution
2048 (default) | positive integer

Number of encoder ticks per wheel revolution, specified as a positive integer.
Data Types: double

WheelRadius — Wheel radius
0.35 (default) | positive scalar

Wheel radius, specified as a positive scalar in meters.
Data Types: double

WheelRadiusBias — Bias of wheel radius
0 (default) | scalar

Bias of the wheel radius, specified as a scalar in meters.
Data Types: double

WheelPositionAccuracy — Standard deviation of wheel position error
0 (default) | nonnegative scalar

Standard deviation of wheel position error, specified as a nonnegative scalar in radians.
Data Types: double

SlipRatio — Slip or skid ratio of wheel
0 (default) | scalar

Slip or skid ratio of the wheel, specified as a scalar larger than or equal to –1.

• For a wheel that slips (over rotation), specify it as a positive value. A higher value denotes more
slipping.

• For a wheel that skids (under rotation), specify it as a negative value larger than or equal to –1. A
lower value denotes more skidding. For a wheel that does not rotate, specify it as –1.

Data Types: double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number generator algorithm
67 (default) | nonnegative integer

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer.
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Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.

Usage

Syntax
ticks = encoder(velocity,angularVelocity,orientation)

Description

ticks = encoder(velocity,angularVelocity,orientation) return the wheel tick readings
ticks from the specified velocity, angular velocity, and orientation information.

Input Arguments

velocity — Velocity of vehicle
N-by-3 matrix of scalars

Velocity of the vehicle in the local navigation frame, specified as an N-by-3 matrix of scalars in m/s. N
is the number of samples.

angularVelocity — Angular velocity of vehicle
N-by-3 matrix of scalars

Angular velocity of the vehicle in the local navigation frame, specified as an N-by-3 matrix of scalars
in rad/s. N is the number of samples.

orientation — orientation of vehicle
N-element vector of quaternion | 3-by-3-by-N array of rotation matrices

Orientation of the vehicle in the local navigation frame, specified as an N-element vector of
quaternion or a 3-by-3-by-N array of rotation matrices. N is the number of samples. Each
quaternion or rotation matrix is a frame rotation from the local navigation coordinate system to the
current vehicle body coordinate system.

Output Arguments

ticks — Number of wheel ticks per time step
N-element vector of nonnegative integers

Number of wheel ticks the vehicle moved per time step, returned as an N-element vector of
nonnegative integers. N is the number of samples.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use

Examples

Generate Wheel Ticks from Unicycle Vehicle Pose

Create the wheel encoder sensor.

encoder = wheelEncoderUnicycle;

Define poses of the vehicle.

orient = [quaternion([90 0 0],'eulerd','ZYX','frame'); quaternion([45 0 0], 'eulerd', 'ZYX', 'frame')];
vel = [1 0 0; 0 1 0];
angvel = [0 0 0.2; 0 0 0.1];

Generate wheel ticks from the poses.

ticks = encoder(vel,angvel,orient)

ticks = 2×1

     0
     6

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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wheelEncoderOdometryAckermann
Compute Ackermann vehicle odometry using wheel encoder ticks and steering angle

Description
The wheelEncoderOdometryAckermann System object computes Ackermann vehicle odometry
using the wheel encoder ticks and steering angle of the vehicle.

To compute Ackermann vehicle odometry:

1 Create the wheelEncoderOdometryAckermann object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
whlEncOdom = wheelEncoderOdometryAckermann
whlEncOdom = wheelEncoderOdometryAckermann(encoder)
whlEncOdom = wheelEncoderOdometryAckermann(Name,Value)

Description

whlEncOdom = wheelEncoderOdometryAckermann creates a
wheelEncoderOdometryAckermann System object with default property values.

whlEncOdom = wheelEncoderOdometryAckermann(encoder) creates a
wheelEncoderOdometryAckermann System object using the specified wheelEncoderAckermann
System object, encoder, to set properties.

whlEncOdom = wheelEncoderOdometryAckermann(Name,Value) sets properties using one or
more name-value pairs. Unspecified properties have default values. Enclose each property name in
quotes.

For example, whlEncOdom = wheelEncoderOdometryAckermann('SampleRate',100) sets the
sample rate of the sensor to 100 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SampleRate — Sample rate of sensor
100 (default) | positive scalar

Sample rate of sensor, specified as a positive scalar in hertz.
Example: 'SampleRate',100
Data Types: double

TicksPerRevolution — Number of encoder ticks per wheel revolution
[2048 2048] (default) | positive integer | two-element vector of positive integers

Number of encoder ticks per wheel revolution, specified as a positive integer or two-element vector of
positive integers.

When specifying this value as a two-element vector, the first element corresponds to the back left
wheel and the second to the back right wheel.
Example: 'TicksPerRevolution',[2048 2048]
Data Types: double

WheelRadius — Wheel radius
[0.35 0.35] (default) | positive scalar | two-element vector of positive numbers

Wheel radius, specified as a positive scalar or two-element vector of positive numbers in meters.

When specifying this value as a two-element vector, the first element corresponds to the back left
wheel and the second to the back right wheel.
Example: 'WheelRadius',[0.35 0.35]
Data Types: double

TrackWidth — Distance between wheels on axle
1.572 (default) | positive scalar

Distance between the wheels on the axle, specified as a positive scalar in meters.
Example: 'TrackWidth',1.572
Data Types: double

WheelBase — Distance between front and rear axle
2.818 (default) | positive scalar

Distance between the front and rear axle, specified as a positive scalar in meters.
Example: 'WheelBase',2.818
Data Types: double

InitialPose — Initial pose of vehicle
[0 0 0] (default) | three-element vector

Initial pose of the vehicle, specified as three-element vector of the form [X Y Yaw]. X and Y specify the
vehicle position in meters. Yaw specifies the vehicle orientation in radians. All values are in the local
navigation coordinate system.
Example: 'InitialPose',[0 0 0]
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Data Types: double

Usage

Syntax
pose = whlEncOdom(ticks,steer)
[pose,velocity] = whlEncOdom(ticks,steer)

Description

pose = whlEncOdom(ticks,steer) computes the odometry of an Ackermann vehicle using the
specified wheel encoder ticks ticks and steering angle steer, and returns the position and
orientation of the vehicle in the local navigation coordinate system.

[pose,velocity] = whlEncOdom(ticks,steer) additionally returns the linear and angular
velocity of the vehicle in the local navigation coordinate system.

Input Arguments

ticks — Number of wheel encoder ticks
n-by-2 matrix

Number of wheel encoder ticks, specified as an n-by-2 matrix. n is the number of samples in the
current frame.

Each row of the matrix specifies wheel encoder ticks in the form [ticksBackLeft ticksBackRight],
where ticksBackLeft and ticksBackRight specify the number of ticks for the back left and back right
wheels, respectively.
Example: [5 5; 2 2]
Data Types: single | double

steer — Steering angle of vehicle
n-element column vector

Steering angle of the vehicle, specified as an n-element column vector in radians. n is the number of
samples in the current frame.
Example: [0.2; 0.2]
Data Types: single | double

Output Arguments

pose — Position and orientation of vehicle
n-by-3 matrix

Position and orientation of the vehicle, returned as an n-by-3 matrix. n is the number of samples in
the current frame. Each row of the matrix specifies the position and orientation of a sample in the
form [X Y Yaw]. X and Y specify the vehicle position in meters. Yaw specifies the vehicle orientation in
radians. All values are in the local navigation coordinate system.
Data Types: single | double
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velocity — Linear and angular velocity of vehicle
n-by-3 matrix

Linear and angular velocity of the vehicle, returned as an n-by-3 matrix. n is the number of samples in
the current frame. Each row of the matrix specifies the linear and angular velocity of a sample in the
form [velX velY yawRate]. velX and velY specify the linear velocity of the vehicle in meters per
second. yawRate specifies the angular velocity of the vehicle in radians per second. All values are in
the local navigation coordinate system.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use

Examples

Compute Ackermann Vehicle Odometry Using Wheel Encoder Ticks and Steering Angle

Create a wheelEncoderOdometryAckermann System object.

whlEncOdom = wheelEncoderOdometryAckermann;

Specify the number of wheel encoder ticks and the steering angle.

ticks = [5 5; 2 2];
steer = [0.2; 0.2];

Compute the Ackermann vehicle odometry.

[pose,vel] = whlEncOdom(ticks,steer)

pose = 2×3

    0.0054    0.0000    0.0004
    0.0075    0.0000    0.0005

vel = 2×3

    0.5369    0.0002    0.0386
    0.2148    0.0001    0.0154
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Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
wheelEncoderAckermann | wheelEncoderOdometryBicycle |
wheelEncoderOdometryDifferentialDrive | wheelEncoderOdometryUnicycle
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wheelEncoderOdometryBicycle
Compute bicycle odometry using wheel encoder ticks and steering angle

Description
The wheelEncoderOdometryBicycle System object computes bicycle odometry using the wheel
encoder ticks and steering angle of the vehicle.

To compute bicycle odometry:

1 Create the wheelEncoderOdometryBicycle object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
whlEncOdom = wheelEncoderOdometryBicycle
whlEncOdom = wheelEncoderOdometryBicycle(encoder)
whlEncOdom = wheelEncoderOdometryBicycle(Name,Value)

Description

whlEncOdom = wheelEncoderOdometryBicycle creates a wheelEncoderOdometryBicycle
System object with default property values.

whlEncOdom = wheelEncoderOdometryBicycle(encoder) creates a
wheelEncoderOdometryBicycle System object using the specified wheelEncoderBicycle
System object, encoder, to set properties.

whlEncOdom = wheelEncoderOdometryBicycle(Name,Value) sets properties using one or
more name-value pairs. Unspecified properties have default values. Enclose each property name in
quotes.

For example, whlEncOdom = wheelEncoderOdometryBicycle('SampleRate',100) sets the
sample rate of the sensor to 100 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SampleRate — Sample rate of sensor
100 (default) | positive scalar

Sample rate of sensor, specified as a positive scalar in hertz.
Example: 'SampleRate',100
Data Types: double

TicksPerRevolution — Number of encoder ticks per wheel revolution
2048 (default) | positive integer

Number of encoder ticks per wheel revolution, specified as a positive integer. This value corresponds
to the rear wheel of the bicycle.
Example: 'TicksPerRevolution',2048
Data Types: double

WheelRadius — Wheel radius
0.35 (default) | positive scalar

Wheel radius, specified as a positive scalar in meters.
Example: 'WheelRadius',0.35
Data Types: double

WheelBase — Distance between front and rear axle
2.818 (default) | positive scalar

Distance between front and rear axle, specified as a positive scalar in meters.
Example: 'WheelBase',2.818
Data Types: double

InitialPose — Initial pose of vehicle
[0 0 0] (default) | three-element vector

Initial pose of the vehicle, specified as three-element vector of the form [X Y Yaw]. X and Y specify the
vehicle position in meters. Yaw specifies the vehicle orientation in radians. All values are in the local
navigation coordinate system.
Example: 'InitialPose',[0 0 0]

Tunable: No
Data Types: double

Usage

Syntax
pose = whlEncOdom(ticks,steer)
[pose,velocity] = whlEncOdom(ticks,steer)
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Description

pose = whlEncOdom(ticks,steer) computes the odometry of a bicycle using the specified wheel
encoder ticks ticks and steering angle steer, and returns the position and orientation of the
vehicle in the local navigation coordinate system.

[pose,velocity] = whlEncOdom(ticks,steer) additionally returns the linear and angular
velocity of the vehicle in the local navigation coordinate system.

Input Arguments

ticks — Number of wheel encoder ticks
n-element column vector

Number of wheel encoder ticks, specified as an n-element column vector. n is the number of samples
in the current frame. Each element is the number of ticks for the rear wheel of the bicycle in the
corresponding sample.
Example: [5; 2]
Data Types: single | double

steer — Steering angle of vehicle
n-element column vector

Steering angle of the vehicle, specified as an n-element column vector in radians. n is the number of
samples in the current frame.
Example: [0.2; 0.2]
Data Types: single | double

Output Arguments

pose — Position and orientation of vehicle
n-by-3 matrix

Position and orientation of the vehicle, returned as an n-by-3 matrix. n is the number of samples in
the current frame. Each row of the matrix specifies the position and orientation of a sample in the
form [X Y Yaw]. X and Y specify the vehicle position in meters. Yaw specifies the vehicle orientation in
radians. All values are in the local navigation coordinate system.
Data Types: single | double

velocity — Linear and angular velocity of vehicle
n-by-3 matrix

Linear and angular velocity of the vehicle, returned as an n-by-3 matrix. n is the number of samples in
the current frame. Each row of the matrix specifies the linear and angular velocity of a sample in the
form [velX velY yawRate]. velX and velY specify the linear velocity of the vehicle in meters per
second. yawRate specifies the angular velocity of the vehicle in radians per second. All values are in
the local navigation coordinate system.
Data Types: single | double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use

Examples

Compute Bicycle Odometry Using Wheel Encoder Ticks and Steering Angle

Create a wheelEncoderOdometryBicycle System object.

whlEncOdom = wheelEncoderOdometryBicycle;

Specify the number of wheel encoder ticks and the steering angle.

ticks = [5; 2];
steer = [0.2; 0.2];

Compute the bicycle odometry.

[pose,vel] = whlEncOdom(ticks,steer)

pose = 2×3

    0.0054    0.0000    0.0004
    0.0075    0.0000    0.0005

vel = 2×3

    0.5369    0.0002    0.0386
    0.2148    0.0001    0.0154

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
wheelEncoderBicycle | wheelEncoderOdometryAckermann |
wheelEncoderOdometryDifferentialDrive | wheelEncoderOdometryUnicycle
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wheelEncoderOdometryDifferentialDrive

Compute differential-drive vehicle odometry using wheel encoder ticks

Description
The wheelEncoderOdometryDifferentialDrive System object computes differential-drive
vehicle odometry using the wheel encoder ticks.

To compute differential-drive vehicle odometry:

1 Create the wheelEncoderOdometryDifferentialDrive object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
whlEncOdom = wheelEncoderOdometryDifferentialDrive
whlEncOdom = wheelEncoderOdometryDifferentialDrive(encoder)
whlEncOdom = wheelEncoderOdometryDifferentialDrive(Name,Value)

Description

whlEncOdom = wheelEncoderOdometryDifferentialDrive creates a
wheelEncoderOdometryDifferentialDrive System object with default property values.

whlEncOdom = wheelEncoderOdometryDifferentialDrive(encoder) creates a
wheelEncoderOdometryDifferentialDrive System object using the specified
wheelEncoderDifferentialDrive System object, encoder, to set properties.

whlEncOdom = wheelEncoderOdometryDifferentialDrive(Name,Value) sets properties
using one or more name-value pairs. Unspecified properties have default values. Enclose each
property name in quotes.

For example, whlEncOdom =
wheelEncoderOdometryDifferentialDrive('SampleRate',100) sets the sample rate of the
sensor to 100 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 wheelEncoderOdometryDifferentialDrive

2-1847



For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of sensor
100 (default) | positive scalar

Sample rate of sensor, specified as a positive scalar in hertz.
Example: 'SampleRate',100
Data Types: double

TicksPerRevolution — Number of encoder ticks per wheel revolution
[2048 2048] (default) | positive integer | two-element vector of positive integers

Number of encoder ticks per wheel revolution, specified as a positive integer or two-element vector of
positive integers.

When specifying this value as a two-element vector, the first element corresponds to the left wheel
and the second to the right wheel.
Example: 'TicksPerRevolution',[2048 2048]
Data Types: double

WheelRadius — Wheel radius
[0.35 0.35] (default) | positive scalar | two-element vector of positive numbers

Wheel radius, specified as a positive scalar or two-element vector of positive numbers in meters.

When specifying this value as a two-element vector, the first element corresponds to the left wheel
and the second to the right wheel.
Example: 'WheelRadius',[0.35 0.35]
Data Types: double

TrackWidth — Distance between wheels on axle
1.572 (default) | positive scalar

Distance between the wheels on the axle, specified as a positive scalar in meters.
Example: 'TrackWidth',1.572
Data Types: double

InitialPose — Initial pose of vehicle
[0 0 0] (default) | three-element vector

Initial pose of the vehicle, specified as three-element vector of the form [X Y Yaw]. X and Y specify the
vehicle position in meters. Yaw specifies the vehicle orientation in radians. All values are in the local
navigation coordinate system.
Example: 'InitialPose',[0 0 0]
Data Types: double
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Usage

Syntax
pose = whlEncOdom(ticks)
[pose,velocity] = whlEncOdom(ticks)

Description

pose = whlEncOdom(ticks) computes the odometry of a differential-drive vehicle using the
specified wheel encoder ticks ticks, and returns the position and orientation of the vehicle in the
local navigation coordinate system.

[pose,velocity] = whlEncOdom(ticks) additionally returns the linear and angular velocity of
the vehicle in the local navigation coordinate system.

Input Arguments

ticks — Number of wheel encoder ticks
n-by-2 matrix

Number of wheel encoder ticks, specified as an n-by-2 matrix. n is the number of samples in the
current frame.

Each row of the matrix specifies wheel encoder ticks in the form [ticksLeft ticksRight], where
ticksLeft and ticksRight specify the number of ticks for the left and right wheels, respectively.
Example: [5 5; 2 2]
Data Types: single | double

Output Arguments

pose — Position and orientation of vehicle
n-by-3 matrix

Position and orientation of the vehicle, returned as an n-by-3 matrix. n is the number of samples in
the current frame. Each row of the matrix specifies the position and orientation of a sample in the
form [X Y Yaw]. X and Y specify the vehicle position in meters. Yaw specifies the vehicle orientation in
radians. All values are in the local navigation coordinate system.
Data Types: single | double

velocity — Linear and angular velocity of vehicle
n-by-3 matrix

Linear and angular velocity of the vehicle, returned as an n-by-3 matrix. n is the number of samples in
the current frame. Each row of the matrix specifies the linear and angular velocity of a sample in the
form [velX velY yawRate]. velX and velY specify the linear velocity of the vehicle in meters per
second. yawRate specifies the angular velocity of the vehicle in radians per second. All values are in
the local navigation coordinate system.
Data Types: single | double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use

Examples

Compute Differential-Drive Vehicle Odometry Using Wheel Encoder Ticks

Create a wheelEncoderOdometryDifferentialDrive System object.

whlEncOdom = wheelEncoderOdometryDifferentialDrive;

Specify the number of wheel encoder ticks.

ticks = [5 5; 2 2];

Compute the differential-drive vehicle odometry.

[pose,vel] = whlEncOdom(ticks)

pose = 2×3

    0.0054         0         0
    0.0075         0         0

vel = 2×3

    0.5369         0         0
    0.2148         0         0

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
wheelEncoderDifferentialDrive | wheelEncoderOdometryAckermann |
wheelEncoderOdometryBicycle | wheelEncoderOdometryUnicycle
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wheelEncoderOdometryUnicycle
Compute unicycle odometry using wheel encoder ticks and angular velocity

Description
The wheelEncoderOdometryUnicycle System object computes unicycle odometry using the wheel
encoder ticks and angular velocity.

To compute unicycle odometry:

1 Create the wheelEncoderOdometryUnicycle object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
whlEncOdom = wheelEncoderOdometryUnicycle
whlEncOdom = wheelEncoderOdometryUnicycle(encoder)
whlEncOdom = wheelEncoderOdometryUnicycle(Name,Value)

Description

whlEncOdom = wheelEncoderOdometryUnicycle creates a wheelEncoderOdometryUnicycle
System object with default property values.

whlEncOdom = wheelEncoderOdometryUnicycle(encoder) creates a
wheelEncoderOdometryUnicycle System object using the specified wheelEncoderUnicycle
System object, encoder, to set properties.

whlEncOdom = wheelEncoderOdometryUnicycle(Name,Value) sets properties using one or
more name-value pairs. Unspecified properties have default values. Enclose each property name in
quotes.

For example, whlEncOdom = wheelEncoderOdometryUnicycle('SampleRate',100) sets the
sample rate of the sensor to 100 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SampleRate — Sample rate of sensor
100 (default) | positive scalar

Sample rate of sensor, specified as a positive scalar in hertz.
Example: 'SampleRate',100
Data Types: double

TicksPerRevolution — Number of encoder ticks per wheel revolution
2048 (default) | positive integer

Number of encoder ticks per wheel revolution, specified as a positive integer.
Example: 'TicksPerRevolution',2048
Data Types: double

WheelRadius — Wheel radius
0.35 (default) | positive scalar

Wheel radius, specified as a positive scalar in meters.
Example: 'WheelRadius',0.35
Data Types: double

InitialPose — Initial pose of vehicle
[0 0 0] (default) | three-element vector

Initial pose of the vehicle, specified as three-element vector of the form [X Y Yaw]. X and Y specify the
vehicle position in meters. Yaw specifies the vehicle orientation in radians. All values are in the local
navigation coordinate system.
Example: 'InitialPose',[0 0 0]

Tunable: No
Data Types: double

Usage

Syntax
pose = whlEncOdom(ticks,angVel)
[pose,velocity] = whlEncOdom(ticks,angVel)

Description

pose = whlEncOdom(ticks,angVel) computes the odometry of a unicycle using the specified
wheel encoder ticks ticks and angular velocity angVel, and returns the position and orientation of
the vehicle in the local navigation coordinate system.

[pose,velocity] = whlEncOdom(ticks,angVel) additionally returns the linear and angular
velocity of the vehicle in the local navigation coordinate system.
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Input Arguments

ticks — Number of wheel encoder ticks
n-element column vector

Number of wheel encoder ticks, specified as an n-element column vector. n is the number of samples
in the current frame.
Example: [5; 2]
Data Types: single | double

angVel — Angular velocity of vehicle in vehicle body coordinate system
n-element column vector

Angular velocity of the vehicle in the vehicle body coordinate system, specified as an n-element
column vector in radians per second. n is the number of samples in the current frame.
Example: [0.2; 0.2]
Data Types: single | double

Output Arguments

pose — Position and orientation of vehicle
n-by-3 matrix

Position and orientation of the vehicle, returned as an n-by-3 matrix. n is the number of samples in
the current frame. Each row of the matrix specifies the position and orientation of a sample in the
form [X Y Yaw]. X and Y specify the vehicle position in meters. Yaw specifies the vehicle orientation in
radians. All values are in the local navigation coordinate system.
Data Types: single | double

velocity — Linear and angular velocity of vehicle
n-by-3 matrix

Linear and angular velocity of the vehicle, returned as an n-by-3 matrix. n is the number of samples in
the current frame. Each row of the matrix specifies the linear and angular velocity of a sample in the
form [velX velY yawRate]. velX and velY specify the linear velocity of the vehicle in meters per
second. yawRate specifies the angular velocity of the vehicle in radians per second. All values are in
the local navigation coordinate system.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object
isLocked Determine if System object is in use

Examples

Compute Unicycle Odometry Using Wheel Encoder Ticks and Angular Velocity

Create a wheelEncoderOdometryUnicycle System object.

whlEncOdom = wheelEncoderOdometryUnicycle;

Specify the number of wheel encoder ticks and angular velocity.

ticks = [5; 2];
angVel = [0.2; 0.2];

Compute the unicycle odometry.

[pose,vel] = whlEncOdom(ticks,angVel)

pose = 2×3

    0.0054    0.0000    0.0020
    0.0075    0.0000    0.0040

vel = 2×3

    0.5369    0.0011    0.2000
    0.2148    0.0009    0.2000

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
wheelEncoderUnicycle | wheelEncoderOdometryAckermann |
wheelEncoderOdometryBicycle | wheelEncoderOdometryDifferentialDrive
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bicycleKinematics
Bicycle vehicle model

Description
bicycleKinematics creates a bicycle vehicle model to simulate simplified car-like vehicle
dynamics. This model represents a vehicle with two axles separated by a distance, WheelBase. The
state of the vehicle is defined as a three-element vector, [x y theta], with a global xy-position,
specified in meters, and a vehicle heading angle, theta, specified in radians. The front wheel can be
turned with steering angle psi. The vehicle heading, theta, is defined at the center of the rear axle. To
compute the time derivative states of the model, use the derivative function with input commands
and the current robot state.

Creation

Syntax
kinematicModel = bicycleKinematics

kinematicModel = bicycleKinematics(Name,Value)

Description

kinematicModel = bicycleKinematics creates a bicycle kinematic model object with default
property values.

kinematicModel = bicycleKinematics(Name,Value) sets additional properties to the
specified values. You can specify multiple properties in any order.

Properties
WheelBase — Distance between front and rear axles
1 (default) | positive numeric scalar

The wheel base refers to the distance between the front and rear vehicle axles, specified in meters.

VehicleSpeedRange — Range of vehicle speeds
[-Inf Inf] (default) | positive numeric scalar
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The vehicle speed range is a two-element vector that provides the minimum and maximum vehicle
speeds, [MinSpeed MaxSpeed], specified in meters per second.

MaxSteeringAngle — Maximum steering angle
pi/4 (default) | numeric scalar

The maximum steering angle, psi, refers to the maximum angle the vehicle can be steered to the right
or left, specified in radians. A value of pi/2 provides the vehicle with a minimum turning radius of 0.
This property is used to validate the user-provided state input.

MinimumTurningRadius — Minimum vehicle turning radius
1.0000 (default) | numeric scalar

This read-only property returns the minimum vehicle turning radius in meters. The minimum radius is
computed using the wheel base and the maximum steering angle.

VehicleInputs — Type of motion inputs for vehicle
"VehicleSpeedSteeringAngle" (default) | character vector | string scalar

The VehicleInputs property specifies the format of the model input commands when using the
derivative function. The property has two valid options, specified as a string or character vector:

• "VehicleSpeedSteeringAngle" — Vehicle speed and steering angle
• "VehicleSpeedHeadingRate" — Vehicle speed and heading angular velocity

Object Functions
derivative Time derivative of bicycle vehicle model

Examples

Plot Path of Bicycle Kinematic Robot

Create a robot and set its initial starting position and orientation.

kinematicModel = bicycleKinematics;
initialState = [0 0 0];

Set the timespan of the simulation to 1 s with 0.05 s time steps and the input commands to 2 m/s for
the vehicle speed and pi/4 rad for the steering angle to create a left turn. Simulate the motion of the
robot by using the ode45 solver on the derivative function.

tspan = 0:0.05:1;
inputs = [2 pi/4]; %Turn left
[t,y] = ode45(@(t,y)derivative(kinematicModel,y,inputs),tspan,initialState);

Plot the path.

figure
plot(y(:,1),y(:,2))
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Version History
Introduced in R2021b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

[2] Corke, Peter I. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Topics
“Mobile Robot Kinematics Equations” (Robotics System Toolbox)
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derivative
Time derivative of bicycle vehicle model

Syntax
stateDot = derivative(kinematicModel,state,cmds)

Description
stateDot = derivative(kinematicModel,state,cmds) returns the current state derivative,
stateDot, as a three-element vector [xDot yDot thetaDot] for a bicycle kinematics vehicle motion
model, kinematicModel. xDot and yDot refer to the vehicle velocity, specified in meters per second.
thetaDot is the angular velocity of the vehicle heading, specified in radians per second.

Examples

Plot Path of Bicycle Kinematic Robot

Create a robot and set its initial starting position and orientation.

kinematicModel = bicycleKinematics;
initialState = [0 0 0];

Set the timespan of the simulation to 1 s with 0.05 s time steps and the input commands to 2 m/s for
the vehicle speed and pi/4 rad for the steering angle to create a left turn. Simulate the motion of the
robot by using the ode45 solver on the derivative function.

tspan = 0:0.05:1;
inputs = [2 pi/4]; %Turn left
[t,y] = ode45(@(t,y)derivative(kinematicModel,y,inputs),tspan,initialState);

Plot the path.

figure
plot(y(:,1),y(:,2))
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Input Arguments
kinematicModel — Bicycle kinematic motion model
bicycleKinematics object

Bicycle kinematic motion model, specified as a bicycleKinematics object.

state — Current vehicle state
three-element vector | four-element vector

Current vehicle state returned as a three-element vector of the form [x y theta].

x and y refer to the vehicle position, specified in meters per second. theta is the vehicle heading,
specified in radians per second.

cmds — Input commands to motion model
two-element vector

Input commands to the motion model, specified as a two-element vector. The VehicleInputs
property value of motionModel determines the format of this command vector. These are the valid
VehicleInputs values for a bicycleKinematics object:

• "VehicleSpeedSteeringAngle" –– [v psiDot]
• "VehicleSpeedHeadingRate" –– [v omegaDot]
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v is the vehicle velocity in the direction of motion in meters per second. psiDot is the steering angle
rate in radians per second. omegaDot is the angular velocity at the rear axle.

Output Arguments
stateDot — Derivative of current state
three-element vector of form [xDot yDot thetaDot]

Derivative of current state, returned as a three-element vector of the form [xDot yDot thetaDot].
xDot and yDot refer to the vehicle velocity, returned in meters per second. thetaDot is the angular
velocity of the vehicle heading, returned in radians per second.

Version History
Introduced in R2021b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bicycleKinematics
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insEKF
Inertial Navigation Using Extended Kalman Filter

Description
The insEKF object creates a continuous-discrete extended Kalman Filter (EKF), in which the state
prediction uses a continuous-time model and the state correction uses a discrete-time model. The
filter uses data from inertial sensors to estimate platform states such as position, velocity, and
orientation. The toolbox provides a few sensor models, such as insAccelerometer, insGyroscope,
insGPS, and insMagnetometer, that you can use to enable the corresponding measurements in the
EKF. You can also customize your own sensor models by inheriting from the
positioning.insSensorModel interface class. The toolbox also provides motion models, such as
insMotionOrientation and insMotionPose, that you can use to enable the corresponding state
propagation in the EKF. You can also customize your own motion models by inheriting from the
positioning.insMotionModel interface class.

Creation

Syntax
filter = insEKF
filter = insEKF(sensor1,sensor2,...,sensorN)
filter = insEKF( ___ ,motionModel)
filter = insEKF( ___ ,options)

Description

filter = insEKF creates an insEKF filter object with default property values. With the default
settings, the filter can estimate orientation by fusing accelerometer and gyroscope data.

filter = insEKF(sensor1,sensor2,...,sensorN) configures the filter to accept and fuse data
from one or more sensors. The filter saves these sensors in its Sensors property.

filter = insEKF( ___ ,motionModel) configures the filter to use the motion model to predict
and estimate state, in addition to any combination of input arguments from previous syntaxes. The
filter saves the specified motion model in the MotionModel property.

filter = insEKF( ___ ,options) configures the filter using the insOptions object options.

Properties
State — State vector of extended Kalman filter
N-element real-valued vector

State vector of the extended Kalman filter, specified as an N-element real-valued vector. N is the
dimension of the filter state, determined by the specific sensors and motion model used to construct
the filter.
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Note In the State property, if a state variable named Orientation has a length of four, the object
assumes it is a quaternion. In that case, the filter renormalizes the quaternion and ensures that the
real part of the quaternion is always positive.

Data Types: single | double

StateCovariance — State error covariance of extended Kalman filter
N-by-N real-valued positive-definite matrix

State error covariance for the extended Kalman filter, specified as an N-by-N real-valued positive-
definite matrix. N is the dimension of the state, specified in the State property of the filter.
Data Types: single | double

AddtiveProcessNoise — Additive process noise for extended Kalman filter
N-by-N real-valued positive definite matrix

Additive process noise for the extended Kalman filter, specified as an N-by-N real-valued positive
definite matrix. N is the dimension of the state, specified in the State of the filter.
Data Types: single | double

MotionModel — Motion model used in extended Kalman filter
insMotionOrientation object | insMotionPose object | object inheriting from
positioning.INSMotionModel class

This property is read-only.

Motion model used in the extended Kalman filter, specified as an insMotionOrientation object ,
an insMotionPose object, or an object inheriting from the positioning.INSMotionModel
interface class. Specify a motion model using the motionModel input argument.
Data Types: object

Sensors — Sensors fused in extended Kalman filter
{insAccelerometer,insGyroscope} (default) | cell array of inertial sensor objects

This property is read-only.

Sensors fused in the extended Kalman filter, specified as a cell array of inertial sensor objects. An
inertial sensor object is one of these objects:

• An insAccelerometer object
• An insMagnetometer object
• An insGPS object
• An insGyroscope object
• An object inheriting from the positioning.INSSensorModel interface class

Data Types: cell

SensorNames — Names of sensors
cell array of character vectors

This property is read-only.
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Names of the sensors, specified as a cell array of character vectors. By default, the filter names the
sensors using the format 'sensorname_n', where sensorname is the name of the sensor, such as
Accelerometer, and n is the index for additional sensors of the same type.

To customize the sensor names, specify the options input when constructing the filter.
Example: {'Accelerometer' 'Accelerometer_1' 'Accelerometer_2' 'Gyroscope'}
Data Types: cell

ReferenceFrame — Reference frame of extended Kalman filter
"NED" (default) | "ENU"

This property is read-only.

Reference frame of the extended Kalman filter, specified as "NED" for the north-east-down frame or
"ENU" for the east-north-up frame.

To specify the reference frame as "ENU", specify the options input when constructing the filter.
Data Types: char | string

Object Functions
predict Predict state estimates forward in time for insEKF
fuse Fuse sensor data for state estimation in insEKF
residual Residual and residual covariance from state measurement for insEKF
correct Correct state estimates in insEKF using direct state measurements
stateparts Get and set part of state vector in insEKF
statecovparts Get and set part of state covariance matrix in insEKF
stateinfo State vector information for insEKF
estimateStates Batch fusion and smoothing of sensor data
tune Tune insEKF parameters to reduce estimation error
createTunerCostTemplate Create template of tuner cost function
tunerCostFcnParam First parameter example for tuning cost function
copy Create copy of insEKF
reset Reset states for insEKF

Examples

Create insEKF with Different Configurations

Create a default insEKF object. By default, the filter fuses the measurement data from an
accelerometer and a gyroscope assuming orientation-only motion.

filter1 = insEKF

filter1 = 
  insEKF with properties:

                   State: [13x1 double]
         StateCovariance: [13x13 double]
    AdditiveProcessNoise: [13x13 double]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {[1x1 insAccelerometer]  [1x1 insGyroscope]}
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             SensorNames: {'Accelerometer'  'Gyroscope'}
          ReferenceFrame: 'NED'

Create a second insEKF object that fuses data from an accelerometer, a gyroscope, and a
magnetometer, as well as models both rotational motion and translational motion.

filter2 = insEKF(insAccelerometer,insGyroscope,insMagnetometer,insMotionPose)

filter2 = 
  insEKF with properties:

                   State: [28x1 double]
         StateCovariance: [28x28 double]
    AdditiveProcessNoise: [28x28 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 insAccelerometer]  [1x1 insGyroscope]  [1x1 insMagnetometer]}
             SensorNames: {'Accelerometer'  'Gyroscope'  'Magnetometer'}
          ReferenceFrame: 'NED'

Create a third insEKF object that fuses data from a gyroscope and a GPS. Specify the reference
frame of the filter as the east-north-up (ENU) frame. Note that the motion model that the filter uses is
the insMotionPose object because a GPS measures platform positions.

option = insOptions(ReferenceFrame="ENU");
filter3 = insEKF(insGyroscope,insGPS,option)

filter3 = 
  insEKF with properties:

                   State: [19x1 double]
         StateCovariance: [19x19 double]
    AdditiveProcessNoise: [19x19 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 insGyroscope]  [1x1 insGPS]}
             SensorNames: {'Gyroscope'  'GPS'}
          ReferenceFrame: 'ENU'

Sequential Fusion of Accelerometer and Gyroscope Data Using insEKF

Load measurement data from an accelerometer and a gyroscope.

load("accelGyroINSEKFData.mat");

Create an insEKF filter object. Specify the orientation part of the state in the filter using the initial
orientation from the measurement data. Specify the diagonal elements of the state estimate error
covariance matrix corresponding to the orientation state as 0.01.

accel = insAccelerometer;
gyro = insGyroscope;
filt = insEKF(accel,gyro);
stateparts(filt,"Orientation",compact(ld.initOrient));
statecovparts(filt,"Orientation",1e-2);
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Specify the measurement noise and the additive process noise. You can obtain these values by using
the tune object function of the filter object.

accNoise = 0.1739;
gyroNoise = 1.1129;
processNoise = diag([ ...
    2.8586 1.3718 0.8956 3.2148 4.3574 2.5411 3.2148 0.5465 0.2811 ...
    1.7149 0.1739 0.7752 0.1739]);
filt.AdditiveProcessNoise = processNoise;

Sequentially fuse the measurement data using the predict and fuse object functions of the filter
object.

N = size(ld.sensorData,1);
estOrient = quaternion.zeros(N,1);
dt = seconds(diff(ld.sensorData.Properties.RowTimes));
for ii = 1:N
    if ii ~= 1
        % Step forward in time.
        predict(filt,dt(ii-1));
    end
    % Fuse accelerometer data.
    fuse(filt,accel,ld.sensorData.Accelerometer(ii,:),accNoise);
    % Fuse gyroscope data.
    fuse(filt,gyro,ld.sensorData.Gyroscope(ii,:),gyroNoise);
    % Extract the orientation state estimate using the stateparts object
    % function.
    estOrient(ii) = quaternion(stateparts(filt,"Orientation"));
end

Visualize the estimate error, in quaternion distance, using the dist object function of the
quaternion object.

figure
plot(rad2deg(dist(estOrient,ld.groundTruth.Orientation)))
xlabel("Samples")
ylabel("Distance (degrees)")
title("Orientation Estimate Error")
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Batch Fusion and State Smoothing Using insEKF

Load measurement data from an accelerometer and a gyroscope.

load("accelGyroINSEKFData.mat");

Create an insEKF filter object. Specify the orientation part of the state in the filter using the initial
orientation from the measurement data. Specify the diagonal elements of the state estimate error
covariance matrix corresponding to the orientation state as 0.01.

filt = insEKF;
stateparts(filt,"Orientation",compact(ld.initOrient));
statecovparts(filt,"Orientation",1e-2);

Specify the measurement noise and the additive process noise. You can obtain these values by using
the tune object function of the filter object.

measureNoise = struct("AccelerometerNoise", 0.1739, ...
    "GyroscopeNoise", 1.1129);
processNoise = diag([ ...
    2.8586 1.3718 0.8956 3.2148 4.3574 2.5411 3.2148 0.5465 0.2811 ...
    1.7149 0.1739 0.7752 0.1739]);
filt.AdditiveProcessNoise = processNoise;

 insEKF

2-1867



Batch-estimate the states using the estimateStates object function. Also, obtain the estimates
after smoothing.

[estimates,smoothEstimates] = estimateStates(filt,ld.sensorData,measureNoise);

Visualize the estimated orientation in Euler angles.

figure
t = estimates.Properties.RowTimes;
plot(t,eulerd(estimates.Orientation,"ZYX","frame"));
title("Estimated Orientation");
ylabel("Degrees")

Visualize the estimated orientation after smoothing in Euler angles.

figure
plot(t,eulerd(smoothEstimates.Orientation,"ZYX","frame"));
title("Smoothed Orientation");
ylabel("Degrees")
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Visualize the estimate error, in quaternion distance, using the dist object function of the
quaternion object.

trueOrient = ld.groundTruth.Orientation;
plot(t,rad2deg(dist(estimates.Orientation, trueOrient)), ...
     t,rad2deg(dist(smoothEstimates.Orientation, trueOrient)));
title("Estimated and Smoother Error");
legend("Estimation Error","Smoothed Error")
xlabel("Time");
ylabel("Degrees")

 insEKF

2-1869



Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insOptions | insAccelerometer | insGPS | insGyroscope | insMagnetometer |
insMotionOrientation | insMotionPose | positioning.INSMotionModel |
positioning.INSSensorModel | tunerconfig | tunernoise | tunerPlotPose
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predict
Predict state estimates forward in time for insEKF

Syntax
[state,stateCovariance] = predict(filter,dt)
[ ___ ] = predict( ___ ,varargin)

Description
[state,stateCovariance] = predict(filter,dt) predicts the state estimates forward in
time by dt seconds based on the motion model of the filter and returns the predicted state and state
estimate error covariance.

[ ___ ] = predict( ___ ,varargin) specifies arguments used in the state transition functions or
state transition Jacobian functions of the sensor models or the motion model used in the filter, in
addition to all arguments from the previous syntax.

Examples

Predict insEKF Filter Object

Create an insEKF filter object. Specify the angular velocity of filter as [.1 0 0] rad/s.

filter = insEKF;
stateparts(filter,"AngularVelocity",[.1 0 0]);

Show the orientation quaternion at time t = 0 seconds.

orientation0 = quaternion(stateparts(filter,"Orientation"))

orientation0 = quaternion
     1 + 0i + 0j + 0k

Predict the filter by 1 second and show the orientation quaternion.

[state, statecov] = predict(filter,1);
orientation1 = quaternion(stateparts(filter,"Orientation"))

orientation1 = quaternion
      0.99875 + 0.049938i +        0j +        0k

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.
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dt — Time step of prediction
positive scalar

Time step of prediction, specified as a positive scalar.
Data Types: single | double

varargin — Additional arguments
any data type

Additional arguments passed to the state transition functions and state transition Jacobian functions
of the motion model and sensor models used in the filter, specified as any data type accepted by the
two functions. You can use these arguments to simulate control or drive inputs, such as a throttle.
Data Types: single | double

Output Arguments
state — Predicted state vector
N-element real-valued vector

Predicted state vector, returned as an N-element real-valued vector, where N is the dimension of the
filter state.
Data Types: single | double

stateCovariance — State estimate error covariance
N-by-N real-valued positive definite matrix

State estimate error covariance, returned as an N-by-N real-valued positive definite matrix, where N
is the dimension of the state.
Data Types: single | double

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fuse | residual | correct | stateparts | statecovparts | stateinfo | estimateStates |
tune | createTunerCostTemplate | tunerCostFcnParam
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fuse
Fuse sensor data for state estimation in insEKF

Syntax
[state,stateCovariance] = fuse(filter,sensor,measurement,measurementNoise)

Description
[state,stateCovariance] = fuse(filter,sensor,measurement,measurementNoise)
fuses the measurement from a sensor, based on the measurement noise, for state estimation.

Examples

Fuse Gyroscope Data Using insEKF

Create an insAccelerometer sensor object and insGyroscope sensor object.

acc = insAccelerometer;
gyro = insGyroscope;

Construct an insEKF object using the two sensor objects.

filter = insEKF(acc,gyro);

Fuse a gyroscope measurement of [0.1 0.2 –0.04] rad/s with a measurement noise covariance of
diag([0.2 0.2 0.2]) deg/s 2.

[state,stateCov] = fuse(filter,gyro,[0.1 0.2 -0.04],diag([0.2 0.2 0.2]));

Show the fused state.

state

state = 13×1

    1.0000
         0
         0
         0
    0.0455
    0.0909
   -0.0182
         0
         0
         0
      ⋮
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Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

sensor — Inertial sensor
insAccelerometer object | insGyroscope object | insMagnetometer object | insGPS object |
object inheriting from positioning.insSensorModel interface class

Inertial sensor, specified as one of these objects used to construct the insEKF filter object:

• An insAccelerometer object
• An insGyroscope object
• An insMagnetometer object
• An insGPS object
• An object inheriting from the positioning.insSensorModel interface class

measurement — Measurement from sensor
M-element real-valued vector

Measurement from the sensor, specified as an M-element real-valued vector, where M is the
dimension of the measurement from the sensor object.
Data Types: single | double

measurementNoise — Measurement noise
M-by-M real-valued positive-definite matrix | M-element vector of positive values | positive scalar

Measurement noise, specified as an M-by-M real-valued positive-definite matrix, an M-element vector
of positive values, or a positive scalar. M is the dimension of the measurement from the sensor
object. When specified as a vector, the vector expands to the diagonal of an M-by-M diagonal matrix.
When specified as a scalar, the value of the property is the product of the scalar and an M-by-M
identity matrix.
Data Types: single | double

Output Arguments
state — State vector after measurement fusion
N-element real-valued vector

State vector after measurement fusion, returned as an N-element real-valued vector, where N is the
dimension of the filter state.
Data Types: single | double

stateCovariance — State estimate error covariance after measurement fusion
N-by-N real-valued positive definite matrix

State estimate error covariance after measurement fusion, returned as an N-by-N real-valued positive
definite matrix, where N is the dimension of the state.
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Data Types: single | double

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
predict | residual | correct | stateparts | statecovparts | stateinfo | estimateStates |
tune | createTunerCostTemplate | tunerCostFcnParam
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residual
Residual and residual covariance from state measurement for insEKF

Syntax
[residual,residualCovariance] = residual(filter,sensor,measurement,
measurementNoise)

Description
[residual,residualCovariance] = residual(filter,sensor,measurement,
measurementNoise) computes the residual and the residual covariance based on the measurement
from the sensor and the measurement covariance.

Examples

Obtain Gyroscope Measurement Residuals Using insEKF

Create an insAccelerometer sensor object and insGyroscope sensor object.

acc = insAccelerometer;
gyro = insGyroscope;

Construct an insEKF object using the two sensor objects. Specify the angular velocity as [0.1 0.1
0.1] rad/s.

filter = insEKF(acc,gyro);
stateparts(filter,"AngularVelocity",[0.1 0.1 0.1]);

Obtain the residuals for a gyroscope measurement of [0.1 0.2 -0.04] rad/s with a measurement
noise covariance of diag([0.2 0.2 0.2]) deg/s 2.

[residual,residualCov] = residual(filter,gyro,[0.1 0.2 -0.04],diag([0.2 0.2 0.2]))

residual = 3×1

         0
    0.1000
   -0.1400

residualCov = 3×3

    2.2000         0         0
         0    2.2000         0
         0         0    2.2000
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Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

sensor — Inertial sensor
insAccelerometer object | insGyroscope object | insMagnetometer object | insGPS object |
object inheriting from positioning.insSensorModel interface class

Inertial sensor, specified as one of these objects used to construct the insEKF filter object:

• An insAccelerometer object
• An insGyroscope object
• An insMagnetometer object
• An insGPS object
• An object inheriting from the positioning.insSensorModel interface class

measurement — Measurement from sensor
M-element real-valued vector

Measurement from the sensor, specified as an M-element real-valued vector, where M is the
dimension of the measurement from the sensor object.
Data Types: single | double

measurementNoise — Measurement noise
M-by-M real-valued positive-definite matrix | M-element vector of positive values | positive scalar

Measurement noise, specified as an M-by-M real-valued positive-definite matrix, an M-element vector
of positive values, or a positive scalar. M is the dimension of the measurement from the sensor
object. When specified as a vector, the vector expands to the diagonal of an M-by-M diagonal matrix.
When specified as a scalar, the value of the property is the product of the scalar and an M-by-M
identity matrix.
Data Types: single | double

Output Arguments
residual — Measurement residual
M-element real-valued vector

Measurement residual, returned as an M-element real-valued vector, where M is the dimension of the
measurement.
Data Types: single | double

residualCovariance — Residual covariance
M-by-M real-valued positive definite matrix

Residual covariance, returned as an M-by-M real-valued positive definite matrix, where M is the
dimension of the measurement.
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Data Types: single | double

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
predict | fuse | correct | stateparts | statecovparts | stateinfo | estimateStates |
tune | createTunerCostTemplate | tunerCostFcnParam
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correct
Correct state estimates in insEKF using direct state measurements

Syntax
[state,stateCovariance] = correct(filter,indices,measurement,
measurementNoise)

Description
[state,stateCovariance] = correct(filter,indices,measurement,
measurementNoise) corrects filter estimates based on a measurement, the associated index of the
measurement, and the measurement noise. The measurement must be a direct measurement of the
state vector. For fusing indirect measurements, use the fuse object function.

Examples

Correct Angular Velocity State in insEKF

Create a default insEKF object and show its state.

filter = insEKF;
filter.State

ans = 13×1

     1
     0
     0
     0
     0
     0
     0
     0
     0
     0
      ⋮

Obtain the indices corresponding to the angular velocity state.

idx = stateinfo(filter,"AngularVelocity");

Correct the angular velocity state and show the corrected state.

state = correct(filter,idx,[1 1 1], diag([0.1 0.1 0.1]))

state = 13×1

    1.0000
         0
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         0
         0
    0.9091
    0.9091
    0.9091
         0
         0
         0
      ⋮

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

indices — State indices
M-element vector of state indices

State indices of the measurement, specified as an M-element vector of state indices, where M is the
dimension of the measurement. For example, if the measurement is the first and third elements in the
state vector of the filter, then specify indices as [1 3].

measurement — Direct state measurement
M-element real-valued vector

Direct state measurement, specified as an M-element real-valued vector, where M is the dimension of
the measurement.
Data Types: single | double

measurementNoise — Measurement noise
M-by-M real-valued positive-definite matrix | M-element vector of positive values | positive scalar

Measurement noise, specified as an M-by-M real-valued positive-definite matrix, an M-element vector
of positive values, or a positive scalar. M is the dimension of the measurement. When specified as a
vector, the vector expands to the diagonal of an M-by-M diagonal matrix. When specified as a scalar,
the value of the property is the product of the scalar and an M-by-M identity matrix.
Data Types: single | double

Output Arguments
state — Corrected state vector
N-element real-valued vector

Corrected state vector, returned as an N-element real-valued vector, where N is the dimension of the
filter state.
Data Types: single | double

stateCovariance — Corrected state estimate error covariance
N-by-N real-valued positive definite matrix
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Corrected state estimate error covariance, returned as an N-by-N real-valued positive definite matrix,
where N is the dimension of the state.
Data Types: single | double

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
predict | fuse | residual | stateparts | stateinfo | estimateStates | tune |
createTunerCostTemplate | tunerCostFcnParam
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stateparts
Get and set part of state vector in insEKF

Syntax
part = stateparts(filter,stateName)
part = stateparts(filter,sensor,stateName)
stateparts(filter,stateName,value)
stateparts(filter,sensor,stateName,value)

Description
part = stateparts(filter,stateName) returns the components of the state vector
corresponding to the specified state name of the filter.

part = stateparts(filter,sensor,stateName) returns the components of the state vector
corresponding to the specified state name of the specified sensor.

stateparts(filter,stateName,value) sets the components of the state vector corresponding
to the specified state name of the filter to the specified value.

stateparts(filter,sensor,stateName,value) sets the components of the state vector
corresponding to the specified state name of the specified sensor to the specified value.

Examples

Set and Get Accelerometer Biases in insEKF

Create an insAccelerometer sensor object and insGyroscope sensor object.

acc = insAccelerometer;
gyro = insGyroscope;

Construct an insEKF object using the two sensor objects.

filter = insEKF(acc,gyro);

Set the bias of the accelerometer to [10 0 1] m/s2.

stateparts(filter,acc,"Bias",[10 0 1])

Get the bias of the accelerometer via the sensor.

accBias = stateparts(filter,acc,"Bias")

accBias = 1×3

    10     0     1

Get the bias of the accelerometer via the filter.
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accBias2 = stateparts(filter,"Accelerometer_Bias")

accBias2 = 1×3

    10     0     1

Set the bias of the accelerometer back to [0 0 0].

stateparts(filter,"Accelerometer_Bias",[0 0 0])

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

stateName — Name of part of state
string scalar | character vector

Name of a part of the state for the filter or the sensor, specified as a string scalar or character vector.

Use the stateinfo object function to find the names of state parts in the filter.
Example: "AngularVelocity"
Example: "Bias"
Data Types: char | string

sensor — Inertial sensor
insAccelerometer object | insGyroscope object | insMagnetometer object | insGPS object |
object inheriting from positioning.insSensorModel interface class

Inertial sensor, specified as one of these objects used to construct the insEKF filter object:

• An insAccelerometer object
• An insGyroscope object
• An insMagnetometer object
• An insGPS object
• An object inheriting from the positioning.insSensorModel interface class

value — Value for filter state or sensor state part
N-element real-valued vector

Value for the filter state or sensor state part, specified as an N-element real-valued vector, where N is
the number of elements in the state part.
Example: [.2 .3]
Data Types: single | double
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Output Arguments
part — Part of state vector
N-element real-valued vector

Part of the state vector, returned as a real-valued vector, where N is the number of elements in the
state part.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Classes

2-1884



statecovparts
Get and set part of state covariance matrix in insEKF

Syntax
covparts = statecovparts(filter,stateName)
covparts = statecovparts(filter,sensor,stateName)
statecovparts(filter,stateName,value)
statecovparts(filter,sensor,stateName,value)

Description
covparts = statecovparts(filter,stateName) returns the covariance submatrix
corresponding to the specified state name of the filter. The returned submatrix is a square matrix
extracted from along the main diagonal of the full state covariance matrix of the filter.

covparts = statecovparts(filter,sensor,stateName) returns the covariance submatrix
corresponding to the specified state name of the sensor.

statecovparts(filter,stateName,value) sets the covariance submatrix corresponding to the
specified state name of the filter to the specified value.

statecovparts(filter,sensor,stateName,value) sets the covariance submatrix
corresponding to the specified state name of the specified sensor to the specified value.

Examples

Set and Get Accelerometer Bias Covariances in insEKF

Create an insAccelerometer sensor object.

acc = insAccelerometer;

Construct an insEKF object using the two sensor objects.

filter = insEKF(acc);

View the state covariance matrix of the filter. By default, the state covariance matrix is a 10-by-10
identity matrix.

filter.StateCovariance

ans = 10×10

     1     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0
     0     0     1     0     0     0     0     0     0     0
     0     0     0     1     0     0     0     0     0     0
     0     0     0     0     1     0     0     0     0     0
     0     0     0     0     0     1     0     0     0     0
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     0     0     0     0     0     0     1     0     0     0
     0     0     0     0     0     0     0     1     0     0
     0     0     0     0     0     0     0     0     1     0
     0     0     0     0     0     0     0     0     0     1

Set the diagonal of the covariance submatrix corresponding to the accelerometer to 3, and show the
submatrix.

statecovparts(filter,acc,"Bias",3);  
statecovparts(filter,acc,"Bias")

ans = 3×3

     3     0     0
     0     3     0
     0     0     3

Set the diagonal of the covariance submatrix corresponding to the accelerometer to [1 2 3], and
show the submatrix.

statecovparts(filter,acc,"Bias",[1 2 3]);  
statecovparts(filter,acc,"Bias")

ans = 3×3

     1     0     0
     0     2     0
     0     0     3

Set the covariance submatrix corresponding to the accelerometer to magic(3), and show the
submatrix.

statecovparts(filter,acc,"Bias",magic(3));  
statecovparts(filter,acc,"Bias")

ans = 3×3

     8     1     6
     3     5     7
     4     9     2

Show the covariance submatrix corresponding to the accelerometer directly through the filter.

statecovparts(filter,"Accelerometer_Bias")

ans = 3×3

     8     1     6
     3     5     7
     4     9     2

View the altered state covariance matrix.

filter.StateCovariance
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ans = 10×10

     1     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0
     0     0     1     0     0     0     0     0     0     0
     0     0     0     1     0     0     0     0     0     0
     0     0     0     0     1     0     0     0     0     0
     0     0     0     0     0     1     0     0     0     0
     0     0     0     0     0     0     1     0     0     0
     0     0     0     0     0     0     0     8     1     6
     0     0     0     0     0     0     0     3     5     7
     0     0     0     0     0     0     0     4     9     2

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

stateName — Name of part of state
string scalar | character vector

Name of a part of the state for the filter or the sensor, specified as a string scalar or character vector.

Use the stateinfo object function to find the names of state parts in the filter.
Example: "AngularVelocity"
Example: "Bias"
Data Types: char | string

sensor — Inertial sensor
insAccelerometer object | insGyroscope object | insMagnetometer object | insGPS object |
object inheriting from positioning.insSensorModel interface class

Inertial sensor, specified as one of these objects used to construct the insEKF filter object:

• An insAccelerometer object
• An insGyroscope object
• An insMagnetometer object
• An insGPS object
• An object inheriting from the positioning.insSensorModel interface class

value — Value for filter or sensor state part covariance matrix
scalar | N-element real-valued vector | N-by-N real-valued matrix

Value for filter or sensor state part covariance matrix, specified as one of these options:

• Real scalar — The diagonal elements of the resulting state part covariance matrix are all equal to
the scalar.
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• N-element real-valued vector — The diagonal of the resulting state part covariance matrix is equal
to the vector, where N is the dimension of the state corresponding to the stateName argument.

• N-by-N real-valued matrix — The resulting state part covariance matrix is equal to the matrix,
where N is the dimension of the state corresponding to the stateName argument.

Data Types: single | double

Output Arguments
covparts — Covariance matrix corresponding to state name
N-by-N real-valued matrix

Covariance matrix corresponding to the state name, returned as an N-by-N real-valued matrix.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
predict | fuse | residual | correct | stateparts | stateinfo | estimateStates | tune |
createTunerCostTemplate | tunerCostFcnParam
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stateinfo
State vector information for insEKF

Syntax
info = stateinfo(filter)
indices = stateinfo(filter,stateName)
indices = stateinfo(filter,sensor,stateName)

Description
info = stateinfo(filter) returns a structure whose fields contain descriptions of the elements
of the state vector in the filter.

indices = stateinfo(filter,stateName) returns the indices of the components of the filter
state vector corresponding to the specified state name.

indices = stateinfo(filter,sensor,stateName) returns the indices of the components of
the sensor state vector corresponding to the specified state name.

Examples

Obtain State Information of insEKF

Create an insGyroscope object and use it to construct an insEKF object.

sensor = insGyroscope;
filt = insEKF(sensor);

Show the information for all the state components.

stateinfo(filt)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
     Gyroscope_Bias: [8 9 10]

Obtain the indices for the orientation state.

stateinfo(filt,"Orientation")

ans = 1×4

     1     2     3     4

Obtain the indices for the sensor bias by using the sensor object input.

stateinfo(filt,sensor,"Bias")
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ans = 1×3

     8     9    10

Obtain the indices for the sensor bias directly from the filter.

stateinfo(filt,"Gyroscope_Bias")

ans = 1×3

     8     9    10

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

stateName — Name of part of state
string scalar | character vector

Name of a part of the state for the filter or the sensor, specified as a string scalar or character vector.

Use the stateinfo object function to find the names of state parts in the filter.
Example: "AngularVelocity"
Example: "Bias"
Data Types: char | string

sensor — Inertial sensor
insAccelerometer object | insGyroscope object | insMagnetometer object | insGPS object |
object inheriting from positioning.insSensorModel interface class

Inertial sensor, specified one of these objects used to construct the insEKF filter object:

• An insAccelerometer object
• An insGyroscope object
• An insMagnetometer
• An insGPS object
• An object inheriting from the positioning.insSensorModel interface class

Output Arguments
info — State information
structure

State information, returned as a structure. The field names of the structure are names of the
elements of the state vector in the filter. The values of each field are the corresponding indices of the
state vector.
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indices — State indices
M-element vector of state indices

State indices, returned as an M-element vector of state indices, where M is the dimension of the state
part corresponding to the stateName. For example, if the state name corresponds to the first,
second, and third elements in the state vector of the filter, then the function returns indices as [1
2 3].

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
predict | fuse | residual | correct | stateparts | statecovparts | estimateStates | tune
| createTunerCostTemplate | tunerCostFcnParam
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estimateStates
Batch fusion and smoothing of sensor data

Syntax
estimates = estimateStates(filter,sensorData,measurementNoise)
[estimates,smoothEstimates] = estimateStates( ___ )

Description
estimates = estimateStates(filter,sensorData,measurementNoise) returns the state
estimates based on the motion model used in the filter, the sensor data, and the measurement noise.
The function predicts the filter state estimates forward in time based on the row times in
sensorData and fuses data from each column of the table one by one.

[estimates,smoothEstimates] = estimateStates( ___ ) additionally returns the smoothed
state estimates by using the Rach-Tung-Striebel (RTS) nonlinear Kalman smoother. For algorithm
details, see “Algorithms” on page 2-1896 and [1].

Tip Smoothing usually requires considerably more memory and computation time. Use this syntax
only when you need the smoothed estimated states.

Examples

Batch Fusion and State Smoothing Using insEKF

Load measurement data from an accelerometer and a gyroscope.

load("accelGyroINSEKFData.mat");

Create an insEKF filter object. Specify the orientation part of the state in the filter using the initial
orientation from the measurement data. Specify the diagonal elements of the state estimate error
covariance matrix corresponding to the orientation state as 0.01.

filt = insEKF;
stateparts(filt,"Orientation",compact(ld.initOrient));
statecovparts(filt,"Orientation",1e-2);

Specify the measurement noise and the additive process noise. You can obtain these values by using
the tune object function of the filter object.

measureNoise = struct("AccelerometerNoise", 0.1739, ...
    "GyroscopeNoise", 1.1129);
processNoise = diag([ ...
    2.8586 1.3718 0.8956 3.2148 4.3574 2.5411 3.2148 0.5465 0.2811 ...
    1.7149 0.1739 0.7752 0.1739]);
filt.AdditiveProcessNoise = processNoise;
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Batch-estimate the states using the estimateStates object function. Also, obtain the estimates
after smoothing.

[estimates,smoothEstimates] = estimateStates(filt,ld.sensorData,measureNoise);

Visualize the estimated orientation in Euler angles.

figure
t = estimates.Properties.RowTimes;
plot(t,eulerd(estimates.Orientation,"ZYX","frame"));
title("Estimated Orientation");
ylabel("Degrees")

Visualize the estimated orientation after smoothing in Euler angles.

figure
plot(t,eulerd(smoothEstimates.Orientation,"ZYX","frame"));
title("Smoothed Orientation");
ylabel("Degrees")
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Visualize the estimate error, in quaternion distance, using the dist object function of the
quaternion object.

trueOrient = ld.groundTruth.Orientation;
plot(t,rad2deg(dist(estimates.Orientation, trueOrient)), ...
     t,rad2deg(dist(smoothEstimates.Orientation, trueOrient)));
title("Estimated and Smoother Error");
legend("Estimation Error","Smoothed Error")
xlabel("Time");
ylabel("Degrees")
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Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

sensorData — Sensor data
timetable

Sensor data, specified as a timetable. Each variable name (as a column) in the timetable must
match one of the sensor names specified in the SensorNames property of the filter. Each entry in
the table is the measurement from the sensor at the corresponding row time.

If a sensor does not produce measurements at a row time, specify the corresponding entry as NaN.

measurementNoise — Measurement noise
structure

Measurement noise of the sensors, specified as a structure. Each field name must match one of the
sensor names specified in the SensorNames property of the filter. The field value is the
corresponding measurement noise covariance matrix. If you specify a field value as a scalar, the
function extends the scalar to the diagonal of the matrix.
Data Types: struct

 estimateStates

2-1895



Output Arguments
estimates — State estimates
timetable

State estimates, returned as a timetable. The name of each variable in the table represents a state.
You can obtain the variable names by using the stateinfo object function of the filter. The last
column in the table is the state estimate error covariance matrix for the complete state vector of the
filter at each of the row times.

smoothEstimates — Smoothed state estimates
timetable

Smoothed state estimates, returned as a timetable. The name of each variable in the table
represents a state. You can obtain the variable names by using the stateinfo object function of the
filter. The last column in the table is the state estimate error covariance matrix for the complete state
vector of the filter at each of the row times.

Algorithms
RTS Smoother

Consider a continuous discrete nonlinear model as follows.

d
dtx(t) = f (x(t), t) + w(t), w(t) N(0, Q(t))

yk = h(xk) + vk, vk N(0, Rk)

In the equation, t represents the continuous system time, x is the system state, f is the state equation,
and w is process noise that follows a normal distribution of mean 0 and covariance Q. k is the discrete
time step, y is the measurement, h is the measurement function, v is measurement noise that follows
a normal distribution of mean 0 and covariance R.

Consider a time period [0, T], where T is the total time considered for smoothing. The smoother first
performs forward filtering for t ∈ [0, T] by using a regular continuous discrete extended Kalman filter.
Eventually, the smoother obtains the forward state estimate xf(T) and forward covariance estimate
Pf(T) at the final time. The smoother also saves the state estimates and covariances at intermediate
steps when the smoother corrects the estimated state with measurements.

Next, the smoother obtains the smoothed state by using a backward filter. For convenience, define a
variable τ = T - t representing the backward time. The backward filter obtains the smoothed state xs
and covariance Ps at each measurement time by using backward integration with these equations.

Kf (t) = QPf
−1(t)

d
dτPs(t) = − F xf (t), t + Kf (t) Pf (t)− Pf (t) F xf (t), t + Kf (t)

T + Q(t), Ps(T) = Pf (T)

d
dτxs(t) = − F xf (t), t + Kf (t) xs(t)− xf (t) − f (xf (t), t), xs(T) = xf (T)

In these equations, Kf(t) is the Kalman gain and F = ∂f(x,t)/∂x is the Jacobian matrix of the state
model.
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Version History
Introduced in R2022a

R2023a: Smooth state estimates using insEKF

You can now obtain smoothed state estimates as the second output from the estimateStates
function. The function uses the Rauch-Tung-Striebel (RTS) smoothing algorithm to obtain the
smoothed state estimates.

References
[1] Crassidis, John L., and John L. Junkins. "Optimal Estimation of Dynamic Systems". 2nd ed, CRC

Press, pp. 349- 352, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
predict | fuse | residual | correct | stateparts | statecovparts | stateinfo | tune |
createTunerCostTemplate | tunerCostFcnParam
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tune
Tune insEKF parameters to reduce estimation error

Syntax
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth)
tunedMeasureNoise = tune( ___ ,config)

Description
tunedMeasureNoise = tune(filter,measureNoise,sensorData,groundTruth) tunes the
AdditiveProcessNoise property of the insEKF filter object filter, and the measurement noise,
to reduce the root-mean-squared (RMS) state estimation error between the fused sensor data and the
ground truth. The function also returns the tuned measurement noise tunedMeasureNoise. The
function uses the property values in the filter and the measurement noise provided in the
measureNoise structure as the initial estimate for the optimization algorithm.

tunedMeasureNoise = tune( ___ ,config) specifies the tuning configuration using a
tunerconfig object config, in addition to all input arguments from the previous syntax.

Examples

Tune insEKF to Optimize Orientation Estimation

Load the recorded sensor data and ground truth data.

load("accelGyroINSEKFData.mat");

Create an insEKF filter object. Specify the orientation part of the state in the filter using the initial
orientation from the measurement data. Specify the diagonal elements of the state estimate error
covariance matrix corresponding to the orientation state as 0.01.

filt = insEKF;
stateparts(filt,"Orientation",compact(ld.initOrient));
statecovparts(filt,"Orientation",1e-2);

Obtain a representative measurement noise structure and use it to estimate states before tuning.

mnoise = tunernoise(filt);
untunedEst = estimateStates(filt,ld.sensorData,mnoise);

Reinitialize the filter, set up a tunerconfig object, and tune the filter.

stateparts(filt,"Orientation",compact(ld.initOrient));
statecovparts(filt,"Orientation",1e-2);
cfg = tunerconfig(filt,MaxIterations=10,ObjectiveLimit=1e-4);
tunedmn = tune(filt,mnoise,ld.sensorData,ld.groundTruth,cfg);

    Iteration    Parameter                    Metric
    _________    _________                    ______
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    1            AdditiveProcessNoise(1)      0.3787
    1            AdditiveProcessNoise(15)     0.3761
    1            AdditiveProcessNoise(29)     0.3695
    1            AdditiveProcessNoise(43)     0.3655
    1            AdditiveProcessNoise(57)     0.3533
    1            AdditiveProcessNoise(71)     0.3446
    1            AdditiveProcessNoise(85)     0.3431
    1            AdditiveProcessNoise(99)     0.3428
    1            AdditiveProcessNoise(113)    0.3427
    1            AdditiveProcessNoise(127)    0.3426
    1            AdditiveProcessNoise(141)    0.3298
    1            AdditiveProcessNoise(155)    0.3206
    1            AdditiveProcessNoise(169)    0.3200
    1            AccelerometerNoise           0.3199
    1            GyroscopeNoise               0.3198
    2            AdditiveProcessNoise(1)      0.3126
    2            AdditiveProcessNoise(15)     0.3098
    2            AdditiveProcessNoise(29)     0.3018
    2            AdditiveProcessNoise(43)     0.2988
    2            AdditiveProcessNoise(57)     0.2851
    2            AdditiveProcessNoise(71)     0.2784
    2            AdditiveProcessNoise(85)     0.2760
    2            AdditiveProcessNoise(99)     0.2744
    2            AdditiveProcessNoise(113)    0.2744
    2            AdditiveProcessNoise(127)    0.2743
    2            AdditiveProcessNoise(141)    0.2602
    2            AdditiveProcessNoise(155)    0.2537
    2            AdditiveProcessNoise(169)    0.2527
    2            AccelerometerNoise           0.2524
    2            GyroscopeNoise               0.2524
    3            AdditiveProcessNoise(1)      0.2476
    3            AdditiveProcessNoise(15)     0.2432
    3            AdditiveProcessNoise(29)     0.2397
    3            AdditiveProcessNoise(43)     0.2381
    3            AdditiveProcessNoise(57)     0.2255
    3            AdditiveProcessNoise(71)     0.2226
    3            AdditiveProcessNoise(85)     0.2221
    3            AdditiveProcessNoise(99)     0.2202
    3            AdditiveProcessNoise(113)    0.2201
    3            AdditiveProcessNoise(127)    0.2201
    3            AdditiveProcessNoise(141)    0.2090
    3            AdditiveProcessNoise(155)    0.2070
    3            AdditiveProcessNoise(169)    0.2058
    3            AccelerometerNoise           0.2052
    3            GyroscopeNoise               0.2052
    4            AdditiveProcessNoise(1)      0.2051
    4            AdditiveProcessNoise(15)     0.2027
    4            AdditiveProcessNoise(29)     0.2019
    4            AdditiveProcessNoise(43)     0.2000
    4            AdditiveProcessNoise(57)     0.1909
    4            AdditiveProcessNoise(71)     0.1897
    4            AdditiveProcessNoise(85)     0.1882
    4            AdditiveProcessNoise(99)     0.1871
    4            AdditiveProcessNoise(113)    0.1870
    4            AdditiveProcessNoise(127)    0.1870
    4            AdditiveProcessNoise(141)    0.1791
    4            AdditiveProcessNoise(155)    0.1783
    4            AdditiveProcessNoise(169)    0.1751
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    4            AccelerometerNoise           0.1748
    4            GyroscopeNoise               0.1747
    5            AdditiveProcessNoise(1)      0.1742
    5            AdditiveProcessNoise(15)     0.1732
    5            AdditiveProcessNoise(29)     0.1712
    5            AdditiveProcessNoise(43)     0.1712
    5            AdditiveProcessNoise(57)     0.1626
    5            AdditiveProcessNoise(71)     0.1615
    5            AdditiveProcessNoise(85)     0.1598
    5            AdditiveProcessNoise(99)     0.1590
    5            AdditiveProcessNoise(113)    0.1589
    5            AdditiveProcessNoise(127)    0.1589
    5            AdditiveProcessNoise(141)    0.1517
    5            AdditiveProcessNoise(155)    0.1508
    5            AdditiveProcessNoise(169)    0.1476
    5            AccelerometerNoise           0.1473
    5            GyroscopeNoise               0.1470
    6            AdditiveProcessNoise(1)      0.1470
    6            AdditiveProcessNoise(15)     0.1470
    6            AdditiveProcessNoise(29)     0.1463
    6            AdditiveProcessNoise(43)     0.1462
    6            AdditiveProcessNoise(57)     0.1367
    6            AdditiveProcessNoise(71)     0.1360
    6            AdditiveProcessNoise(85)     0.1360
    6            AdditiveProcessNoise(99)     0.1350
    6            AdditiveProcessNoise(113)    0.1350
    6            AdditiveProcessNoise(127)    0.1350
    6            AdditiveProcessNoise(141)    0.1289
    6            AdditiveProcessNoise(155)    0.1288
    6            AdditiveProcessNoise(169)    0.1262
    6            AccelerometerNoise           0.1253
    6            GyroscopeNoise               0.1246
    7            AdditiveProcessNoise(1)      0.1246
    7            AdditiveProcessNoise(15)     0.1244
    7            AdditiveProcessNoise(29)     0.1205
    7            AdditiveProcessNoise(43)     0.1203
    7            AdditiveProcessNoise(57)     0.1125
    7            AdditiveProcessNoise(71)     0.1122
    7            AdditiveProcessNoise(85)     0.1117
    7            AdditiveProcessNoise(99)     0.1106
    7            AdditiveProcessNoise(113)    0.1104
    7            AdditiveProcessNoise(127)    0.1104
    7            AdditiveProcessNoise(141)    0.1058
    7            AdditiveProcessNoise(155)    0.1052
    7            AdditiveProcessNoise(169)    0.1035
    7            AccelerometerNoise           0.1024
    7            GyroscopeNoise               0.1014
    8            AdditiveProcessNoise(1)      0.1014
    8            AdditiveProcessNoise(15)     0.1012
    8            AdditiveProcessNoise(29)     0.1012
    8            AdditiveProcessNoise(43)     0.1005
    8            AdditiveProcessNoise(57)     0.0948
    8            AdditiveProcessNoise(71)     0.0948
    8            AdditiveProcessNoise(85)     0.0938
    8            AdditiveProcessNoise(99)     0.0934
    8            AdditiveProcessNoise(113)    0.0931
    8            AdditiveProcessNoise(127)    0.0931
    8            AdditiveProcessNoise(141)    0.0896
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    8            AdditiveProcessNoise(155)    0.0889
    8            AdditiveProcessNoise(169)    0.0867
    8            AccelerometerNoise           0.0859
    8            GyroscopeNoise               0.0851
    9            AdditiveProcessNoise(1)      0.0851
    9            AdditiveProcessNoise(15)     0.0850
    9            AdditiveProcessNoise(29)     0.0824
    9            AdditiveProcessNoise(43)     0.0819
    9            AdditiveProcessNoise(57)     0.0771
    9            AdditiveProcessNoise(71)     0.0771
    9            AdditiveProcessNoise(85)     0.0762
    9            AdditiveProcessNoise(99)     0.0759
    9            AdditiveProcessNoise(113)    0.0754
    9            AdditiveProcessNoise(127)    0.0754
    9            AdditiveProcessNoise(141)    0.0734
    9            AdditiveProcessNoise(155)    0.0724
    9            AdditiveProcessNoise(169)    0.0702
    9            AccelerometerNoise           0.0697
    9            GyroscopeNoise               0.0689
    10           AdditiveProcessNoise(1)      0.0689
    10           AdditiveProcessNoise(15)     0.0686
    10           AdditiveProcessNoise(29)     0.0658
    10           AdditiveProcessNoise(43)     0.0655
    10           AdditiveProcessNoise(57)     0.0622
    10           AdditiveProcessNoise(71)     0.0620
    10           AdditiveProcessNoise(85)     0.0616
    10           AdditiveProcessNoise(99)     0.0615
    10           AdditiveProcessNoise(113)    0.0607
    10           AdditiveProcessNoise(127)    0.0606
    10           AdditiveProcessNoise(141)    0.0590
    10           AdditiveProcessNoise(155)    0.0578
    10           AdditiveProcessNoise(169)    0.0565
    10           AccelerometerNoise           0.0562
    10           GyroscopeNoise               0.0557

Estimate states again, this time using the tuned filter.

tunedEst = estimateStates(filt,ld.sensorData,tunedmn);

Compare the tuned and untuned estimates against the ground truth data.

times = ld.groundTruth.Properties.RowTimes;
duntuned = rad2deg(dist(untunedEst.Orientation,ld.groundTruth.Orientation));
dtuned = rad2deg(dist(tunedEst.Orientation,ld.groundTruth.Orientation));
plot(times,duntuned,times,dtuned);
xlabel("Time (sec)")
ylabel("Error (deg)")
legend("Untuned","Tuned")
title("Filter Orientation Error")
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Print the root-mean-squared (RMS) error of both the untuned and the tuned filters.

untunedRMSError = sqrt(mean(duntuned.^2));
tunedRMSError = sqrt(mean(dtuned.^2));
fprintf("Untuned RMS error: %.2f degrees\n", ...
    untunedRMSError);

Untuned RMS error: 39.47 degrees

fprintf("Tuned RMS error: %.2f degrees\n", ...
    tunedRMSError);

Tuned RMS error: 6.39 degrees

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

measureNoise — Measurement noise
structure

Measurement noise, specified as a structure. The function uses the measurement noise input as the
initial guess for tuning the measurement noise. The structure should contain the measurement noise
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for sensor models specified in the Sensors property of the INS filter. For example, if the insEKF
filter object only contains an insAccelerometer object and an insGyroscope object, you should
specify the structure like this:

Field name Description
AccelerometerNoise Variance of accelerometer noise, specified as a

scalar in (m2/s).
GyroscopeNoise Variance of gyroscope noise, specified as a scalar

in (rad/s)2.

Tip Use the tunernoise function to obtain a representative structure for the measureNoise
structure. For example:

filter = insEKF;
mNoise = tunerNoise(filter)

sensorData — Sensor data
timetable

Sensor data, specified as a timetable. Each variable name (as a column) in the time table must
match one of the sensor names specified in the SensorNames property of the filter. Each entry in
the table is the measurement from the sensor at the corresponding row time.

If a sensor does not produce measurements at the row time, specify the corresponding entry as NaN.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the sensorData input based on your choice.

groundTruth — Ground truth data
timetable

Ground truth data, specified as a timetable. In each row, the table contains the truth data for the
row time. Each variable name (as a column) in the table must be one of the filter state names that you
can obtain using the stateinfo object function.

The function processes each row of the sensorData and groundTruth tables sequentially to
calculate the state estimate and RMS error from the ground truth. State variables not present in
groundTruth input are ignored for the comparison. The sensorData and the groundTruth tables
must have the same row times.

If you set the Cost property of the tuner configuration input, config, to Custom, then you can use
other data types for the groundTruth input based on your choice.

config — Tuner configuration
tunerconfig object

Tuner configuration, specified as a tunerconfig object.
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Output Arguments
tunedMeasureNoise — Tuned measurement noise
structure

Tuned measurement noise, returned as a structure. The structure contains the same fields as the
structure specified in the measureNoise input.

Version History
Introduced in R2022a

References
[1] Abbeel, P., Coates, A., Montemerlo, M., Ng, A.Y. and Thrun, S. Discriminative Training of Kalman

Filters. In Robotics: Science and systems, Vol. 2, pp. 1, 2005.

See Also
tunerconfig | tunernoise | predict | fuse | residual | correct | stateparts |
statecovparts | stateinfo | estimateStates | createTunerCostTemplate |
tunerCostFcnParam
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createTunerCostTemplate
Create template of tuner cost function

Syntax
createTunerCostTemplate(filter)

Description
createTunerCostTemplate(filter) creates a template of a tuner cost function and shows it in
an editor window. The created cost function computes the cost as the root-mean-squared (RMS) error
between the estimated states and the ground truth. You can modify the cost function as desired.

When you tune the filter parameters of the insEKF object using its tune object function, use the
function created by createTunerCostTemplate to specify the cost in the tunerconfig object as
an input to the tune object function.

Examples

Tune insEKF with Custom Cost Function

Create an insEKF filter object and create a cost function using the createTunerCostTemplate
object function.

filter = insEKF;
createTunerCostTemplate(filter);

Save the created function in an m-file.

doc = matlab.desktop.editor.getActive;
doc.saveAs(fullfile(pwd,"tunercost.m"));

Load prerecorded sensor data and ground truth data.

load("accelGyroINSEKFData.mat");

Specify an initial orientation state and its covariance.

stateparts(filter,"Orientation",compact(ld.initOrient));
statecovparts(filter,"Orientation",1e-2);

Create a measurement noise structure using the tunernoise function.

mnoise = tunernoise(filter);

Create a tunerconfig object using the created cost function.

cfg = tunerconfig(filter,MaxIterations=1, ...
    ObjectiveLimit=1e-4, ...
    Cost="custom", ...
    CustomCostFcn=@tunercost);
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Tune the filter. Show the tuned measurement noise and process noise in the filter.

tunedmn = tune(filter,mnoise,ld.sensorData, ...
    ld.groundTruth,cfg)

    Iteration    Parameter                    Metric
    _________    _________                    ______
    1            AdditiveProcessNoise(1)      0.3413
    1            AdditiveProcessNoise(15)     0.3381
    1            AdditiveProcessNoise(29)     0.3353
    1            AdditiveProcessNoise(43)     0.3334
    1            AdditiveProcessNoise(57)     0.3214
    1            AdditiveProcessNoise(71)     0.3121
    1            AdditiveProcessNoise(85)     0.3110
    1            AdditiveProcessNoise(99)     0.3107
    1            AdditiveProcessNoise(113)    0.3106
    1            AdditiveProcessNoise(127)    0.3105
    1            AdditiveProcessNoise(141)    0.2972
    1            AdditiveProcessNoise(155)    0.2872
    1            AdditiveProcessNoise(169)    0.2855
    1            AccelerometerNoise           0.2852
    1            GyroscopeNoise               0.2851

tunedmn = struct with fields:
    AccelerometerNoise: 0.9000
        GyroscopeNoise: 0.9000

orientationNoise = statecovparts(filter,"Orientation")

orientationNoise = 4×4

    0.0100         0         0         0
         0    0.0100         0         0
         0         0    0.0100         0
         0         0         0    0.0100

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

Version History
Introduced in R2022a

See Also
predict | fuse | residual | correct | stateparts | statecovparts | stateinfo |
estimateStates | tune | tunerCostFcnParam
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tunerCostFcnParam
First parameter example for tuning cost function

Syntax
tunerCostFcnParam(filter)

Description
tunerCostFcnParam(filter) creates a structure that has the fields required for tuning an
insEKF filter with a custom cost function. The structure is useful when generating C code for a cost
function using MATLAB Coder™.

Examples

Tune insEKF with MEX-Accelerated Custom Cost Function

Create an insEKF filter object. Then create a cost function using the createTunerCostTemplate
object function.

filter = insEKF;
createTunerCostTemplate(filter);
doc = matlab.desktop.editor.getActive;
doc.saveAs(fullfile(pwd,"tunercost.m"));

Load prerecorded sensor data and ground truth data.

load("accelGyroINSEKFData.mat");

Create a MEX cost function using MATLAB Coder.

p = tunerCostFcnParam(filter);
disp("Generating MEX-accelerated cost function");

Generating MEX-accelerated cost function

codegen tunercost.m -args {p,ld.sensorData,ld.groundTruth};

Code generation successful.

Specify an initial orientation state and its covariance.

stateparts(filter,"Orientation",compact(ld.initOrient));
statecovparts(filter,"Orientation",1e-2);

Create a measurement noise structure using the tunernoise function.

mnoise = tunernoise(filter);

Create a tunerconfig object using the created MEX cost function.

cfg = tunerconfig(filter, MaxIterations=1, ...
    ObjectiveLimit=1e-4, ...
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    Cost="custom", ...
    CustomCostFcn=@tunercost_mex);

Tune the filter. Show the tuned measurement noise and process noise in the filter.

tunedmn = tune(filter,mnoise,ld.sensorData, ...
    ld.groundTruth,cfg)

    Iteration    Parameter                    Metric
    _________    _________                    ______
    1            AdditiveProcessNoise(1)      0.3413
    1            AdditiveProcessNoise(15)     0.3381
    1            AdditiveProcessNoise(29)     0.3353
    1            AdditiveProcessNoise(43)     0.3334
    1            AdditiveProcessNoise(57)     0.3214
    1            AdditiveProcessNoise(71)     0.3121
    1            AdditiveProcessNoise(85)     0.3110
    1            AdditiveProcessNoise(99)     0.3107
    1            AdditiveProcessNoise(113)    0.3106
    1            AdditiveProcessNoise(127)    0.3105
    1            AdditiveProcessNoise(141)    0.2972
    1            AdditiveProcessNoise(155)    0.2872
    1            AdditiveProcessNoise(169)    0.2855
    1            AccelerometerNoise           0.2852
    1            GyroscopeNoise               0.2851

tunedmn = struct with fields:
    AccelerometerNoise: 0.9000
        GyroscopeNoise: 0.9000

orientationNoise = statecovparts(filter,"Orientation")

orientationNoise = 4×4

    0.0100         0         0         0
         0    0.0100         0         0
         0         0    0.0100         0
         0         0         0    0.0100

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
predict | fuse | residual | correct | stateparts | statecovparts | stateinfo |
estimateStates | tune | createTunerCostTemplate
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copy
Create copy of insEKF

Syntax
newFilter = copy(filter)

Description
newFilter = copy(filter) returns a copy of the insEKF object filter. The new filter object
has the exactly the same property values.

Examples

Create Copy of insEKF

Create a default insEKF object.

filter = insEKF

filter = 
  insEKF with properties:

                   State: [13x1 double]
         StateCovariance: [13x13 double]
    AdditiveProcessNoise: [13x13 double]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {[1x1 insAccelerometer]  [1x1 insGyroscope]}
             SensorNames: {'Accelerometer'  'Gyroscope'}
          ReferenceFrame: 'NED'

Create a copy of the insEKF object.

newFilter = copy(insEKF)

newFilter = 
  insEKF with properties:

                   State: [13x1 double]
         StateCovariance: [13x13 double]
    AdditiveProcessNoise: [13x13 double]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {[1x1 insAccelerometer]  [1x1 insGyroscope]}
             SensorNames: {'Accelerometer'  'Gyroscope'}
          ReferenceFrame: 'NED'
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Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

Output Arguments
newFilter — Filter copy
insEKF object

Filter copy, returned as an insEKF object.

Version History
Introduced in R2022b

See Also
insEKF
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reset
Reset states for insEKF

Syntax
reset(filter)

Description
reset(filter) resets the State and StateCovariance properties of the insEKF object filter
to their default values.

Examples

Reset insEKF Filter object

Create an insEKF filter object.

filter = insEKF

filter = 
  insEKF with properties:

                   State: [13x1 double]
         StateCovariance: [13x13 double]
    AdditiveProcessNoise: [13x13 double]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {[1x1 insAccelerometer]  [1x1 insGyroscope]}
             SensorNames: {'Accelerometer'  'Gyroscope'}
          ReferenceFrame: 'NED'

Show the default angular velocity state using the stateparts object function.

stateparts(filter,"AngularVelocity")

ans = 1×3

     0     0     0

Specify the angular velocity state as [0.1 0.1 0.1] rad/s using the stateparts object function.

stateparts(filter,"AngularVelocity",[0.1 0.1 0.1])
stateparts(filter,"AngularVelocity")

ans = 1×3

    0.1000    0.1000    0.1000

Reset the filter and show the angular velocity state.
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reset(filter)
stateparts(filter,"AngularVelocity")

ans = 1×3

     0     0     0

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

Version History
Introduced in R2022b

See Also
insEKF
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insOptions
Options for configuration of insEKF object

Description
The insOptions object specifies properties for an insEKF object.

Creation

Syntax
options = insOptions
options = insOptions(Name=Value)

Description

options = insOptions returns an insOptions object with default property values.

options = insOptions(Name=Value) specifies properties using one or more name-value
arguments. For example, options = insOptions(ReferenceFrame="ENU") sets the reference
frame used in the insEKF object as the east-north-up (ENU) frame. Unspecified properties have
default values.

Properties
Datatype — Data type of insEKF variables
"double" (default) | "single"

Data type of insEKF variables, specified as "single" or "double". This data type applies to
variables such as state, state covariance, and other internal variables.
Data Types: char | string

SensorNamesSource — Source for names of sensors fused
"default" (default) | "property"

Source for the names of the sensors fused in the insEKF object, specified as "default" or
"property".

• "default" — The insEKF object names the fused sensors using the default convention. See the
SensorNames property of the insEKF object for details on the default names.

• "property" — Specify the names of sensors fused in the insEKF object using the SensorNames
property of the insOptions object.

Data Types: char | string

ReferenceFrame — Reference frame of insEKF object
"NED" (default) | "ENU"
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Reference frame of the insEKF object, specified as "NED" for the north-east-down frame or "ENU"
for the east-north-up frame.
Data Types: char | string

SensorNames — Names of sensors fused in filter
{''} (default) | cell array of character vectors

Names of sensors fused in the filter, specified as a cell array of character vectors.
Example: {'Sensor1','Accelerometer2'}
Data Types: cell

Examples

Create insOptions to Use with insEKF Object

Create an insOptions object, and specify the sensor names as Sensor1 and Sensor2. Specify the
data type as single.

options = insOptions(SensorNamesSource="Property", ...
    SensorNames={'Sensor1','Sensor2'}, ...
    Datatype="single")

options = 
  insOptions with properties:

             Datatype: 'single'
    SensorNamesSource: property
       ReferenceFrame: NED
          SensorNames: {'Sensor1'  'Sensor2'}

Create an insEKF filter object with one accelerometer and one magnetometer. Specify the properties
of the filter using the insOptions object. In the created filter, the sensor names are Sensor1 and
Sensor2, respectively. The data type is single.

filter = insEKF(insAccelerometer,insMagnetometer,options)

filter = 
  insEKF with properties:

                   State: [16x1 single]
         StateCovariance: [16x16 single]
    AdditiveProcessNoise: [16x16 single]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {[1x1 insAccelerometer]  [1x1 insMagnetometer]}
             SensorNames: {'Sensor1'  'Sensor2'}
          ReferenceFrame: 'NED'

Version History
Introduced in R2022a
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See Also
insEKF
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insAccelerometer
Model accelerometer readings for sensor fusion

Description
The insAccelerometer object models accelerometer readings for sensor fusion. Passing an
insAccelerometer object to an insEKF object enables the insEKF object to fuse accelerometer
data. For details on the accelerometer model, see “Algorithms” on page 2-1919.

Creation

Syntax
sensor = insAccelerometer

Description

sensor = insAccelerometer creates an insAccelerometer object. Passing the created sensor
to an insEKF object enables the insEKF object to fuse accelerometer data. When fusing data with
the fuse object function of insEKF, pass sensor as the second argument to identify the data as
obtained from an accelerometer.

Examples

Create insAccelerometer for Use in insEKF

Create two insAccelerometer objects and pass them to an insEKF object.

sensor1 = insAccelerometer;
sensor2 = insAccelerometer;
filterOrientation = insEKF(sensor1,sensor2,insMotionOrientation)

filterOrientation = 
  insEKF with properties:

                   State: [13x1 double]
         StateCovariance: [13x13 double]
    AdditiveProcessNoise: [13x13 double]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {[1x1 insAccelerometer]  [1x1 insAccelerometer]}
             SensorNames: {'Accelerometer'  'Accelerometer_1'}
          ReferenceFrame: 'NED'

Since the insMotionOrientation object does not model linear acceleration, the filter does not
estimate acceleration.

stateinfo(filterOrientation)
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ans = struct with fields:
             Orientation: [1 2 3 4]
         AngularVelocity: [5 6 7]
      Accelerometer_Bias: [8 9 10]
    Accelerometer_1_Bias: [11 12 13]

Create another two insAccelerometer objects and pass them to a new insEKF object. Since the
insMotionPose object models linear acceleration, the filter estimates acceleration.

sensor3 = insAccelerometer;
sensor4 = insAccelerometer;

filterPose = insEKF(sensor3,sensor4,insMotionPose)

filterPose = 
  insEKF with properties:

                   State: [22x1 double]
         StateCovariance: [22x22 double]
    AdditiveProcessNoise: [22x22 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 insAccelerometer]  [1x1 insAccelerometer]}
             SensorNames: {'Accelerometer'  'Accelerometer_1'}
          ReferenceFrame: 'NED'

stateinfo(filterPose)

ans = struct with fields:
             Orientation: [1 2 3 4]
         AngularVelocity: [5 6 7]
                Position: [8 9 10]
                Velocity: [11 12 13]
            Acceleration: [14 15 16]
      Accelerometer_Bias: [17 18 19]
    Accelerometer_1_Bias: [20 21 22]

Fuse a measurement from sensor3.

fuse(filterPose,sensor3,[1 1 1],eye(3))

ans = 22×1

    0.9958
    0.0649
   -0.0649
         0
         0
         0
         0
         0
         0
         0
      ⋮
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Algorithms
The insAccelerometer object models the accelerometer reading as acceleration in the sensor
frame. Depending on whether the insEKF object estimates linear acceleration in the state equations,
the measurement equation takes one of two forms:

• If the insEKF object does not estimate the acceleration state, the measurement equation is:

h(x) = gsensor + Δ

where h(x) is the three-dimensional measurement output, gsensor is the gravitational acceleration
expressed in the sensor frame, and Δ is the three-dimensional bias of the sensor, modeled as a
constant vector in the sensor frame.

• If the insEKF object estimates the acceleration state, the equation is:

h(x) = gsensor + asensor + Δ

where asensor is the acceleration, excluding the gravity acceleration, expressed in the sensor frame.

Passing an insAccelerometer object to an insEKF filter object enables the filter object to
additionally track the bias of the accelerometer. Internally, the insEKF object decides if the
acceleration state is estimated by calling its stateparts object function.

Version History
Introduced in R2022a

See Also
insEKF | insOptions
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insGyroscope
Model gyroscope readings for sensor fusion

Description
The insGyroscope object models gyroscope readings for sensor fusion. Passing an insGyroscope
object to an insEKF object enables the insEKF object to fuse gyroscope data. For details on the
gyroscope model, see “Algorithms” on page 2-1921.

Creation
Syntax
sensor = insGyroscope

Description

sensor = insGyroscope creates an insGyroscope object. Passing the created sensor to an
insEKF object enables the insEKF object to fuse gyroscope data. When fusing data with the fuse
object function of insEKF, pass sensor as the second argument to identify the data as obtained from
a gyroscope.

Examples

Create insGyroscope for Use in insEKF

Create an insGyroscope object and pass it to an insEKF object.

sensor = insGyroscope;
filterOrientation = insEKF(sensor)

filterOrientation = 
  insEKF with properties:

                   State: [10x1 double]
         StateCovariance: [10x10 double]
    AdditiveProcessNoise: [10x10 double]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {[1x1 insGyroscope]}
             SensorNames: {'Gyroscope'}
          ReferenceFrame: 'NED'

Show the state information of the filter. Notice that the state contains the gyroscope bias component.

stateinfo(filterOrientation)

ans = struct with fields:
        Orientation: [1 2 3 4]
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    AngularVelocity: [5 6 7]
     Gyroscope_Bias: [8 9 10]

Fuse a gyroscope measurement of [0.1 0.1 0.1] rad/s with measurement noise of diag([0.01
0.01 0.01]).

measure = [0.1 0.1 0.1];
measureNoise = diag([0.01 0.01 0.01]);

state = fuse(filterOrientation,sensor,measure,measureNoise)

state = 10×1

    1.0000
         0
         0
         0
    0.0498
    0.0498
    0.0498
    0.0498
    0.0498
    0.0498

Algorithms
The insGyroscope object models the angular velocity vector expressed in the sensor frame. The
measurement equation is:

h(x) = ωgyro + Δ

where h(x) is the three-dimensional measurement output, ωgyro is the angular velocity of the platform
expressed in the sensor frame, and Δ is the three-dimensional bias of the sensor, modeled as a
constant vector in the sensor frame.

Passing an insGyroscope object to an insEKF filter object enables the filter object to additionally
track the bias of the gyroscope.

Version History
Introduced in R2022a

See Also
insEKF | insOptions
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insGPS
Model GPS readings for sensor fusion

Description
The insGPS object models GPS readings for sensor fusion. Passing an insGPS object to an insEKF
object enables the insEKF object to fuse position and optional velocity data. For details on the GPS
model, see “Algorithms” on page 2-1924.

Creation
Syntax
sensor = insGPS

Description

sensor = insGPS creates an insGPS object. Passing the created sensor to an insEKF object
enables the insEKF object to fuse position and optional velocity data. When fusing data with the
fuse object function of insEKF, pass sensor as the second argument to identify the data as
obtained from a GPS.

To enable position and velocity estimation in insEKF, use a motion model that models position and
velocity states, such as the insMotionPose object.

Properties
ReferenceLocation — Origin of local navigation reference frame
[0 0 0] (default) | three-element row vector of form [latitude longitude altitude]

Origin of the local navigation reference frame, specified as a three 3-element row vector in geodetic
coordinates [latitude longitude altitude]. Altitude is the height above the reference
ellipsoid model, WGS84, in meters. Latitude and longitude are in degrees.

The reference frame is a north-east-down (NED) or east-north-up (ENU) frame, based on the
ReferenceFrame property of the insEKF object.
Data Types: single | double

Examples

Create insGPS for Use in insEKF

Create an insGPS object and pass it to an insEKF object.

sensor = insGPS;
filter = insEKF(sensor)
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filter = 
  insEKF with properties:

                   State: [16x1 double]
         StateCovariance: [16x16 double]
    AdditiveProcessNoise: [16x16 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 insGPS]}
             SensorNames: {'GPS'}
          ReferenceFrame: 'NED'

Show the state information of the filter. Since the GPS sensor reports position measurements, the
filter by default models both rotational and translational motion.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
           Position: [8 9 10]
           Velocity: [11 12 13]
       Acceleration: [14 15 16]

Assume a GPS position measurement of 10 degrees in latitude, 10 degrees in longitude, and 10
meters in altitude. The velocity measurement of the GPS is [5 5 0] in m/s.

lla = [10 10 10];
vel = [5 5 0];
llaNoise = eye(3);
velNoise = 0.1*eye(3);

Fuse the GPS position measurement.

state = fuse(filter,sensor,lla,llaNoise)

state = 16×1
105 ×

    0.0000
         0
         0
         0
         0
         0
         0
    5.5013
    5.4542
    0.9585
      ⋮

Fuse the GPS position measurement along with the velocity measurement.

measure = [lla vel];
measureNoise = blkdiag(llaNoise,velNoise);
state2 = fuse(filter,sensor,measure,measureNoise)
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state2 = 16×1
105 ×

    0.0000
         0
         0
         0
         0
         0
         0
    7.3350
    7.2722
    1.2779
      ⋮

Algorithms
The insGPS object models the GPS reading as the longitude, latitude, and altitude (LLA) position,
and optional velocity data in the navigation frame.

Depending on whether you include the velocity data when using the fuse object function of insEKF,
the measurement equation takes one of two forms:

• If you do not fuse velocity data, the measurement is the latitude in meters, longitude in degrees,
and altitude in meters (LLA).

• If you fuse velocity data, the measurement is the LLA measurement, and the velocity of the
platform in m/s, expressed in the reference frame defined by the ReferenceLoation property of
the insGPS object and the ReferenceFrame property of the insEKF object.

Version History
Introduced in R2022a

See Also
insEKF | insOptions
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insMagnetometer
Model magnetometer readings for sensor fusion

Description
The insMagnetometer object models magnetometer readings for sensor fusion. Passing an
insMagnetometer object to an insEKF object enables the insEKF object to fuse magnetometer
data. For details on the magnetometer model, see “Algorithms” on page 2-1926.

Creation

Syntax
sensor = insMagnetometer

Description

sensor = insMagnetometer creates an insMagnetometer object. Passing the created sensor to
an insEKF object enables the insEKF object to fuse magnetometer data. When fusing data with the
fuse object function of insEKF, pass sensor as the second argument to identify the data as
obtained from a magnetometer.

Examples

Create insMagnetometer for Use in insEKF

Create an insMagnetometer object and pass it to an insEKF object.

sensor = insMagnetometer;
filterOrientation = insEKF(sensor)

filterOrientation = 
  insEKF with properties:

                   State: [13x1 double]
         StateCovariance: [13x13 double]
    AdditiveProcessNoise: [13x13 double]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {[1x1 insMagnetometer]}
             SensorNames: {'Magnetometer'}
          ReferenceFrame: 'NED'

Show the state information of the filter. Notice that the state contains the geomagnetic vector
component and the magnetometer bias component.

stateinfo(filterOrientation)
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ans = struct with fields:
          Orientation: [1 2 3 4]
      AngularVelocity: [5 6 7]
    GeomagneticVector: [8 9 10]
    Magnetometer_Bias: [11 12 13]

Fuse a magnetometer reading of [27 -2 -16] μT with a measurement noise of diag([0.1 0.1
0.1]) μT2.

measure = [27 -2 -16];
measureNoise = diag([0.1 0.1 0.1]);

fuse(filterOrientation,sensor,measure,measureNoise)

ans = 13×1

    1.0000
   -0.0032
   -0.0032
   -0.0050
         0
         0
         0
   27.5550
   -2.4168
  -16.0849
      ⋮

Algorithms
The insMagnetometer object models the magnetometer reading as the geomagnetic vector in the
sensor frame. The measurement equation is:

h(x) = gmag + Δ

where h(x) is the three-dimensional measurement output, gmag is the geomagnetic vector expressed in
the sensor frame, and Δ is the three-dimensional bias of the sensor, which is modeled as a constant
vector in the sensor frame.

Passing an insMagnetometer object to an insEKF filter object enables the filter object to
additionally track the unique geomagnetic vector, as well as the bias of the magnetometer.

Version History
Introduced in R2022a

See Also
insEKF | insOptions
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insMotionOrientation
Motion model for 3-D orientation estimation

Description
The insMotionOrientation object models orientation-only platform motion assuming a constant
angular velocity. Passing an insMotionOrientation object to an insEKF object enables the
estimation of 3-D orientation and angular velocity. For details on the motion model, see “Algorithms”
on page 2-1928.

Creation

Syntax
model = insMotionOrientation

Description

model = insMotionOrientation creates an insMotionOrientation object. Passing the
created model to an insEKF object enables the estimation of:

• The orientation quaternion from the navigation frame to the body frame.
• The angular velocity of the platform, expressed in the body frame.

Examples

Create insMotionOrientation for Use in insEKF

Create an insMotionOrientation object and pass it to an insEKF object.

motionModel = insMotionOrientation

motionModel = 
  insMotionOrientation with no properties.

filter = insEKF(motionModel)

filter = 
  insEKF with properties:

                   State: [7x1 double]
         StateCovariance: [7x7 double]
    AdditiveProcessNoise: [7x7 double]
             MotionModel: [1x1 insMotionOrientation]
                 Sensors: {}
             SensorNames: {1x0 cell}
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          ReferenceFrame: 'NED'

Show the state maintained in the filter.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]

Algorithms
The insMotionOrientation object models the orientation-only motion of platforms. The state
equation of the motion model is:

q̇ = 1
2ωq

ω̇ = 0

where:

• q = (q0, q1, q2, q3) is the quaternion from the navigation frame to the body frame.
• ω is the angular velocity of the platform, expressed in the body frame.

Version History
Introduced in R2022a

See Also
insEKF | insOptions | insMotionPose | positioning.insMotionModel
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insMotionPose
Model for 3-D motion estimation

Description
The insMotionPose object models 3-D motion assuming constant angular velocity and constant
linear acceleration. Passing an insMotionPose object to an insEKF object enables the estimation of
3-D motion, including orientation, angular velocity, position, linear velocity, and linear acceleration.
For details on the motion model, see “Algorithms” on page 2-1930.

Creation

Syntax
model = insMotionPose

Description

model = insMotionPose creates an insMotionPose object. Passing model to an insEKF object
enables the estimation of:

• The orientation quaternion from the navigation frame to the body frame.
• The angular velocity of the platform, expressed in the body frame.
• The position of the platform, expressed in the navigation frame.
• The velocity of the platform, expressed in the navigation frame.
• The acceleration of the platform, expressed in the navigation frame.

Examples

Create insMotionPose for Use in insEKF

Create an insMotionPose object and pass it to an insEKF object.

motionModel = insMotionPose

motionModel = 
  insMotionPose with no properties.

filter = insEKF(motionModel)

filter = 
  insEKF with properties:

                   State: [16x1 double]
         StateCovariance: [16x16 double]
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    AdditiveProcessNoise: [16x16 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {}
             SensorNames: {1x0 cell}
          ReferenceFrame: 'NED'

Show the state maintained in the filter.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
           Position: [8 9 10]
           Velocity: [11 12 13]
       Acceleration: [14 15 16]

Algorithms
The insMotionPose object models the orientation-only motion of platforms. The state equation of
the motion model is:

q̇ = 1
2ωq

ω̇ = 0
ṗ = v
v̇ = a
ȧ = 0

where:

• q = (q0, q1, q2, q3) is the quaternion from the navigation frame to the body frame.
• ω is the angular velocity of the platform, expressed in the body frame.
• p is the position of the platform, expressed in the navigation frame.
• v is the linear velocity of the platform, expressed in the navigation frame.
• a is the linear acceleration of the platform, expressed in the navigation frame.

Version History
Introduced in R2022a

See Also
insEKF | insOptions | insMotionOrientation | positioning.insMotionModel
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positioning.INSMotionModel class
Package: positioning

Base class for defining motion models used with insEKF

Description
The positioning.INSMotionModel class defines the base class for motion models used with INS
filters. Derive from this class to define your own motion model.

To define a new motion model:

• Inherit from this class and implement at least two methods: modelstates and
stateTransition.

• Optionally, if you want a higher fidelity simulation, you can implement a
stateTransitionJacobian method that returns the Jacobian of the state transition function. If
you do not implement this method, the object calculates the Jacobian numerically with lower
accuracy and higher computation cost.

As an example of implementing this interface class, see the implementation details of
insMotionOrientation by typing this in the Command Window:

edit insMotionOrientation

The positioning.INSMotionModel class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation

Syntax
sensor = positioning.INSMotionModel()

Description

sensor = positioning.INSMotionModel() creates an INS sensor model object. This
constructor can only be called from a derived class.

Methods
Public Methods
modelstates States for motion model
stateTransition State transition of motion model
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stateTransitionJacobian Jacobian of state transition function
copy Create copy of motion model

Examples

Customize Motion Model Used with insEKF

Customize a 1-D constant velocity motion model used with an insEKF object. Customize the motion
model by inheriting from the positioning.INSMotionModel interface class and implement the
modelstates and stateTranistion methods. You can also optionally implement the
stateTransitionJacobian method. These sections provide an overview of how the
ConstantVelocityMotion class implements the positioning.INSMotionModel methods, but
for more details on their implementation, see the attached ConstantVelocityMotion.m file.

Implement modelstates method

To model 1-D constant velocity motion, you need to return only the 1-D position and velocity state as a
structure. When you add a ConstantVelocityMotion object to an insEKF filter object, the filter
adds the Position and Velocity components to the state vector of the filter.

Implement stateTransition method

The stateTransition method returns the derivatives of the state defined by the motion model as a
structure. The derivative of the Position is the Velocity, and the derivative of the Velocity is 0.

Implement stateTransitionJacobian method

The stateTransitionJacobian method returns the partial derivatives of stateTransition
method, with respect to the state vector of the filter, as a structure. All the partial derivatives are 0,
except the partial derivative of the derivative of the Position component, which is the Velocity,
with respect to the Velocity state, is 1.

Create and add inherited object

Create a ConstantVelocityMotion object.

cvModel = ConstantVelocityMotion

cvModel = 
  ConstantVelocityMotion with no properties.

Create an insEKF object with the created cvModel object.

filter = insEKF(insAccelerometer,cvModel)

filter = 
  insEKF with properties:

                   State: [5x1 double]
         StateCovariance: [5x5 double]
    AdditiveProcessNoise: [5x5 double]
             MotionModel: [1x1 ConstantVelocityMotion]
                 Sensors: {[1x1 insAccelerometer]}
             SensorNames: {'Accelerometer'}
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          ReferenceFrame: 'NED'

The filter state contains the Position and Velocity components.

stateinfo(filter)

ans = struct with fields:
              Position: 1
              Velocity: 2
    Accelerometer_Bias: [3 4 5]

Show customized ConstantVelocityMotion class
type ConstantVelocityMotion.m

classdef ConstantVelocityMotion < positioning.INSMotionModel
% CONSTANTVELOCITYMOTION Constant velocity motion in 1-D

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function m = modelstates(~,~)
            % Return the state of motion model (added to the state of the
            % filter) as a structure.
            % Since the motion is 1-D constant velocity motion,
            % retrun only 1-D position and velocity state.  
            m = struct('Position',0,'Velocity',0); 
        end
        function sdot = stateTransition(~,filter,~, varargin)
            % Return the derivative of each state with respect to time as a
            % structure.

            % Deriviative of position = velocity.
            % Deriviative of velocity = 0 because this model assumes constant
            % velocity.

            % Find the current estimated velocity
            currentVelocityEstimate = stateparts(filter,'Velocity');

            % Return the derivatives
            sdot = struct( ...
                'Position',currentVelocityEstimate, ...
                'Velocity',0); 
        end
        function dfdx = stateTransitionJacobian(~,filter,~,varargin)
            % Return the Jacobian of the stateTransition method with
            % respect to the state vector. The output is a structure with the
            % same fields as stateTransition but the value of each field is a
            % vector containing the derivative of that state relative to
            % all other states.

            % First, figure out the number of state components in the filter
            % and the corresponding indices
            N = numel(filter.State);  
            idx = stateinfo(filter);  
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            % Compute the N partial derivatives of Position with respect to
            % the N states. The partial derivative of the derivative of the
            % Position stateTransition function with respect to Velocity is
            % just 1. All others are 0.
            dpdx = zeros(1,N);  
            dpdx(1,idx.Velocity) =  1;
            
            % Compute the N partial derivatives of Velocity with respect to
            % the N states. In this case all the partial derivatives are 0.
            dvdx = zeros(1,N);

            % Return the partial derivatives as a structure.
            dfdx = struct('Position',dpdx,'Velocity',dvdx);
        end
    end
end

Version History
Introduced in R2022a

See Also
insEKF | insOptions
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modelstates
Package: positioning

States for motion model

Syntax
s = modelstates(filter,options)

Description
s = modelstates(filter,options) returns a structure that describes the motion model states
tracked by the insEKF filter object.

Tip After defining an insEKF object with a custom motion model, you can access the model states
using the stateparts object function of insEKF.

Examples

Customize Motion Model Used with insEKF

Customize a 1-D constant velocity motion model used with an insEKF object. Customize the motion
model by inheriting from the positioning.INSMotionModel interface class and implement the
modelstates and stateTranistion methods. You can also optionally implement the
stateTransitionJacobian method. These sections provide an overview of how the
ConstantVelocityMotion class implements the positioning.INSMotionModel methods, but
for more details on their implementation, see the attached ConstantVelocityMotion.m file.

Implement modelstates method

To model 1-D constant velocity motion, you need to return only the 1-D position and velocity state as a
structure. When you add a ConstantVelocityMotion object to an insEKF filter object, the filter
adds the Position and Velocity components to the state vector of the filter.

Implement stateTransition method

The stateTransition method returns the derivatives of the state defined by the motion model as a
structure. The derivative of the Position is the Velocity, and the derivative of the Velocity is 0.

Implement stateTransitionJacobian method

The stateTransitionJacobian method returns the partial derivatives of stateTransition
method, with respect to the state vector of the filter, as a structure. All the partial derivatives are 0,
except the partial derivative of the derivative of the Position component, which is the Velocity,
with respect to the Velocity state, is 1.

Create and add inherited object

Create a ConstantVelocityMotion object.
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cvModel = ConstantVelocityMotion

cvModel = 
  ConstantVelocityMotion with no properties.

Create an insEKF object with the created cvModel object.

filter = insEKF(insAccelerometer,cvModel)

filter = 
  insEKF with properties:

                   State: [5x1 double]
         StateCovariance: [5x5 double]
    AdditiveProcessNoise: [5x5 double]
             MotionModel: [1x1 ConstantVelocityMotion]
                 Sensors: {[1x1 insAccelerometer]}
             SensorNames: {'Accelerometer'}
          ReferenceFrame: 'NED'

The filter state contains the Position and Velocity components.

stateinfo(filter)

ans = struct with fields:
              Position: 1
              Velocity: 2
    Accelerometer_Bias: [3 4 5]

Show customized ConstantVelocityMotion class

type ConstantVelocityMotion.m

classdef ConstantVelocityMotion < positioning.INSMotionModel
% CONSTANTVELOCITYMOTION Constant velocity motion in 1-D

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function m = modelstates(~,~)
            % Return the state of motion model (added to the state of the
            % filter) as a structure.
            % Since the motion is 1-D constant velocity motion,
            % retrun only 1-D position and velocity state.  
            m = struct('Position',0,'Velocity',0); 
        end
        function sdot = stateTransition(~,filter,~, varargin)
            % Return the derivative of each state with respect to time as a
            % structure.

            % Deriviative of position = velocity.
            % Deriviative of velocity = 0 because this model assumes constant
            % velocity.

            % Find the current estimated velocity
            currentVelocityEstimate = stateparts(filter,'Velocity');
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            % Return the derivatives
            sdot = struct( ...
                'Position',currentVelocityEstimate, ...
                'Velocity',0); 
        end
        function dfdx = stateTransitionJacobian(~,filter,~,varargin)
            % Return the Jacobian of the stateTransition method with
            % respect to the state vector. The output is a structure with the
            % same fields as stateTransition but the value of each field is a
            % vector containing the derivative of that state relative to
            % all other states.

            % First, figure out the number of state components in the filter
            % and the corresponding indices
            N = numel(filter.State);  
            idx = stateinfo(filter);  

            % Compute the N partial derivatives of Position with respect to
            % the N states. The partial derivative of the derivative of the
            % Position stateTransition function with respect to Velocity is
            % just 1. All others are 0.
            dpdx = zeros(1,N);  
            dpdx(1,idx.Velocity) =  1;
            
            % Compute the N partial derivatives of Velocity with respect to
            % the N states. In this case all the partial derivatives are 0.
            dvdx = zeros(1,N);

            % Return the partial derivatives as a structure.
            dfdx = struct('Position',dpdx,'Velocity',dvdx);
        end
    end
end

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

options — Options for INS filter
insOptions object

Options for the INS filter, specified as an insOptions object.

Output Arguments
s — State structure
structure

State structure, returned as a structure. The field names of the structure are the names of the states
that you want estimate. The insEKF filter object uses the value of each field as the default value of its
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corresponding state component, and uses the size of the value as the size of the corresponding state
component.

Tip You can use the stateparts object function of the insEKF object to access the states, saved in
the filter.

Version History
Introduced in R2022a

See Also
stateTransition | stateTransitionJacobian
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stateTransition
Package: positioning

State transition of motion model

Syntax
statedot = stateTransition(model,filter,dt,varargin)

Description
statedot = stateTransition(model,filter,dt,varargin) returns the derivatives of the
states of the motion model used with the INS filter.

Examples

Customize Motion Model Used with insEKF

Customize a 1-D constant velocity motion model used with an insEKF object. Customize the motion
model by inheriting from the positioning.INSMotionModel interface class and implement the
modelstates and stateTranistion methods. You can also optionally implement the
stateTransitionJacobian method. These sections provide an overview of how the
ConstantVelocityMotion class implements the positioning.INSMotionModel methods, but
for more details on their implementation, see the attached ConstantVelocityMotion.m file.

Implement modelstates method

To model 1-D constant velocity motion, you need to return only the 1-D position and velocity state as a
structure. When you add a ConstantVelocityMotion object to an insEKF filter object, the filter
adds the Position and Velocity components to the state vector of the filter.

Implement stateTransition method

The stateTransition method returns the derivatives of the state defined by the motion model as a
structure. The derivative of the Position is the Velocity, and the derivative of the Velocity is 0.

Implement stateTransitionJacobian method

The stateTransitionJacobian method returns the partial derivatives of stateTransition
method, with respect to the state vector of the filter, as a structure. All the partial derivatives are 0,
except the partial derivative of the derivative of the Position component, which is the Velocity,
with respect to the Velocity state, is 1.

Create and add inherited object

Create a ConstantVelocityMotion object.

cvModel = ConstantVelocityMotion
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cvModel = 
  ConstantVelocityMotion with no properties.

Create an insEKF object with the created cvModel object.

filter = insEKF(insAccelerometer,cvModel)

filter = 
  insEKF with properties:

                   State: [5x1 double]
         StateCovariance: [5x5 double]
    AdditiveProcessNoise: [5x5 double]
             MotionModel: [1x1 ConstantVelocityMotion]
                 Sensors: {[1x1 insAccelerometer]}
             SensorNames: {'Accelerometer'}
          ReferenceFrame: 'NED'

The filter state contains the Position and Velocity components.

stateinfo(filter)

ans = struct with fields:
              Position: 1
              Velocity: 2
    Accelerometer_Bias: [3 4 5]

Show customized ConstantVelocityMotion class

type ConstantVelocityMotion.m

classdef ConstantVelocityMotion < positioning.INSMotionModel
% CONSTANTVELOCITYMOTION Constant velocity motion in 1-D

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function m = modelstates(~,~)
            % Return the state of motion model (added to the state of the
            % filter) as a structure.
            % Since the motion is 1-D constant velocity motion,
            % retrun only 1-D position and velocity state.  
            m = struct('Position',0,'Velocity',0); 
        end
        function sdot = stateTransition(~,filter,~, varargin)
            % Return the derivative of each state with respect to time as a
            % structure.

            % Deriviative of position = velocity.
            % Deriviative of velocity = 0 because this model assumes constant
            % velocity.

            % Find the current estimated velocity
            currentVelocityEstimate = stateparts(filter,'Velocity');

            % Return the derivatives
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            sdot = struct( ...
                'Position',currentVelocityEstimate, ...
                'Velocity',0); 
        end
        function dfdx = stateTransitionJacobian(~,filter,~,varargin)
            % Return the Jacobian of the stateTransition method with
            % respect to the state vector. The output is a structure with the
            % same fields as stateTransition but the value of each field is a
            % vector containing the derivative of that state relative to
            % all other states.

            % First, figure out the number of state components in the filter
            % and the corresponding indices
            N = numel(filter.State);  
            idx = stateinfo(filter);  

            % Compute the N partial derivatives of Position with respect to
            % the N states. The partial derivative of the derivative of the
            % Position stateTransition function with respect to Velocity is
            % just 1. All others are 0.
            dpdx = zeros(1,N);  
            dpdx(1,idx.Velocity) =  1;
            
            % Compute the N partial derivatives of Velocity with respect to
            % the N states. In this case all the partial derivatives are 0.
            dvdx = zeros(1,N);

            % Return the partial derivatives as a structure.
            dfdx = struct('Position',dpdx,'Velocity',dvdx);
        end
    end
end

Input Arguments
model — Motion model used with INS filter
object inherited from positioning.INSMotionModel class

Motion model used with an INS filter, specified as an object inherited from the
positioning.INSMotionModel abstract class.

filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

dt — Filter time step
positive scalar

Filter time step, specified as a positive scalar.
Data Types: single | double

varargin — Additional inputs
any data type
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Additional inputs that are passed as the varargin inputs of the predict object function of the
insEKF object.

Output Arguments
statedot — Derivatives of states
structure

Derivatives of the states, returned as a structure. The field names must be exactly the same as those
of the structure returned by the modelstates method of model. The field values are the
corresponding time derivatives of the sensor states.

Version History
Introduced in R2022a

See Also
modelstates | stateTransitionJacobian
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stateTransitionJacobian
Package: positioning

Jacobian of state transition function

Syntax
jac = stateTransitionJacobian(model,filter,dt,varargin)

Description
jac = stateTransitionJacobian(model,filter,dt,varargin) returns the Jacobian matrix
for the state transition function of the model object inherited from the
positioning.INSMotionModel abstract class.

Note Implementing this method is optional for a subclass of the positioning.INSMotionModel
abstract class. If you do not implement this method, the subclass uses a Jacobian matrix calculated by
numerical differentiation.

Examples

Customize Motion Model Used with insEKF

Customize a 1-D constant velocity motion model used with an insEKF object. Customize the motion
model by inheriting from the positioning.INSMotionModel interface class and implement the
modelstates and stateTranistion methods. You can also optionally implement the
stateTransitionJacobian method. These sections provide an overview of how the
ConstantVelocityMotion class implements the positioning.INSMotionModel methods, but
for more details on their implementation, see the attached ConstantVelocityMotion.m file.

Implement modelstates method

To model 1-D constant velocity motion, you need to return only the 1-D position and velocity state as a
structure. When you add a ConstantVelocityMotion object to an insEKF filter object, the filter
adds the Position and Velocity components to the state vector of the filter.

Implement stateTransition method

The stateTransition method returns the derivatives of the state defined by the motion model as a
structure. The derivative of the Position is the Velocity, and the derivative of the Velocity is 0.

Implement stateTransitionJacobian method

The stateTransitionJacobian method returns the partial derivatives of stateTransition
method, with respect to the state vector of the filter, as a structure. All the partial derivatives are 0,
except the partial derivative of the derivative of the Position component, which is the Velocity,
with respect to the Velocity state, is 1.
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Create and add inherited object

Create a ConstantVelocityMotion object.

cvModel = ConstantVelocityMotion

cvModel = 
  ConstantVelocityMotion with no properties.

Create an insEKF object with the created cvModel object.

filter = insEKF(insAccelerometer,cvModel)

filter = 
  insEKF with properties:

                   State: [5x1 double]
         StateCovariance: [5x5 double]
    AdditiveProcessNoise: [5x5 double]
             MotionModel: [1x1 ConstantVelocityMotion]
                 Sensors: {[1x1 insAccelerometer]}
             SensorNames: {'Accelerometer'}
          ReferenceFrame: 'NED'

The filter state contains the Position and Velocity components.

stateinfo(filter)

ans = struct with fields:
              Position: 1
              Velocity: 2
    Accelerometer_Bias: [3 4 5]

Show customized ConstantVelocityMotion class

type ConstantVelocityMotion.m

classdef ConstantVelocityMotion < positioning.INSMotionModel
% CONSTANTVELOCITYMOTION Constant velocity motion in 1-D

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function m = modelstates(~,~)
            % Return the state of motion model (added to the state of the
            % filter) as a structure.
            % Since the motion is 1-D constant velocity motion,
            % retrun only 1-D position and velocity state.  
            m = struct('Position',0,'Velocity',0); 
        end
        function sdot = stateTransition(~,filter,~, varargin)
            % Return the derivative of each state with respect to time as a
            % structure.

            % Deriviative of position = velocity.
            % Deriviative of velocity = 0 because this model assumes constant
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            % velocity.

            % Find the current estimated velocity
            currentVelocityEstimate = stateparts(filter,'Velocity');

            % Return the derivatives
            sdot = struct( ...
                'Position',currentVelocityEstimate, ...
                'Velocity',0); 
        end
        function dfdx = stateTransitionJacobian(~,filter,~,varargin)
            % Return the Jacobian of the stateTransition method with
            % respect to the state vector. The output is a structure with the
            % same fields as stateTransition but the value of each field is a
            % vector containing the derivative of that state relative to
            % all other states.

            % First, figure out the number of state components in the filter
            % and the corresponding indices
            N = numel(filter.State);  
            idx = stateinfo(filter);  

            % Compute the N partial derivatives of Position with respect to
            % the N states. The partial derivative of the derivative of the
            % Position stateTransition function with respect to Velocity is
            % just 1. All others are 0.
            dpdx = zeros(1,N);  
            dpdx(1,idx.Velocity) =  1;
            
            % Compute the N partial derivatives of Velocity with respect to
            % the N states. In this case all the partial derivatives are 0.
            dvdx = zeros(1,N);

            % Return the partial derivatives as a structure.
            dfdx = struct('Position',dpdx,'Velocity',dvdx);
        end
    end
end

Input Arguments
model — Motion model used with INS filter
object inherited from positioning.INSMotionModel class

Motion model used with an INS filter, specified as an object inherited from the
positioning.INSMotionModel abstract class.

filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

dt — Filter time step
positive scalar

Filter time step, specified as a positive scalar.
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Data Types: single | double

varargin — Additional inputs
any data type

Additional inputs that are passed as the varargin inputs of the predict object function of the
insEKF object.

Output Arguments
jac — Jacobian matrix for state transition equation
S-by-N real-valued matrix

Jacobian matrix for the state transition equation, returned as an S-by-N real-valued matrix. S is the
number of fields in the returned structure of the modelstates method of the motion model, and N is
the dimension of the state maintained in the State property of the filter.

Version History
Introduced in R2022a

See Also
modelstates | stateTransition
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copy
Package: positioning

Create copy of motion model

Syntax
newModel=copy(model)

Description
newModel=copy(model) creates a copy of the motion model.

Note Implementing this method is optional for a subclass of the positioning.INSMotionModel
abstract class. You need to implement this method only when both of these conditions are true.

• You need to use the copy object function of the insEKF object.
• You want to copy at least one non-public property of the implemented motion model.

Examples

Implement copy Method of positioning.INSMotionModel

Use the copy method to copy a private property, PrivateProp.

classdef myModel < positioning.INSMotionModel
    properties (Access = private)
        PrivateProp % A private property 
    end
    % Implement the class as desired.
    methods
        function m = modelstates(~,~)  
            m = struct('Position',0,'Velocity',0); 
        end
    end
    % Add a public copy method to additionally copy the private property.
        function newObj = copy(obj)
            newObj = obj;
            newObj.PrivateProp = obj.PrivateProp;
        end
    end
end

Input Arguments
model — Motion model used with INS filter
object inherited from positioning.INSMotionModel class
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Motion model used with an INS filter, specified as an object inherited from the
positioning.INSMotionModel abstract class.

Output Arguments
newModel — Copy of motion model
object inherited from positioning.INSMotionModel class

Copy of the motion model, returned as an object inherited from positioning.INSMotionModel
class.

Version History
Introduced in R2022b
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positioning.INSSensorModel class
Package: positioning

Base class for defining sensor models used with insEKF

Description
The positioning.INSSensorModel class defines the base class for sensor models used with INS filters.
Derive from this class to define your own sensor model.

To define a new sensor:

• Inherit from this class and implement at least the measurement method.
• Optionally, if you want a higher fidelity simulation, you can implement the

measurementJacobian method that returns the Jacobian of the measurement function. If you do
not implement this method, the object calculates a Jacobian numerically with lower accuracy and
higher computation cost.

If the sensor model definition requires the use of the tracked state, you must additionally:

• Implement the sensorStates method to define the tracked state.
• Optionally, you can implement the stateTransition method if the state is not constant over

time.
• Optionally, you can implement the stateTransitionJacobian method (that returns the

Jacobian of the state transition function) for a higher fidelity simulation. If you do not implement
this method, the object calculates the Jacobian numerically with lower accuracy and higher
computation cost.

As an example of implementing this interface class, see the implementation details of
insAccelerometer by typing this in the Command Window:

edit insGyroscope

The positioning.INSSensorModel class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation

Syntax
sensor = positioning.INSSensorModel()
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Description

sensor = positioning.INSSensorModel() creates an INS sensor model object. This
constructor can only be called from a derived class.

Methods
Public Methods
measurement Sensor measurement from states
measurementJacobian Jacobian of measurement function
sensorStates Sensor states
stateTransition State transition of sensor states
stateTransitionJacobian Jacobian of sensor state transition function
copy Create copy of sensor model

Examples

Customize Sensor Model Used with insEKF

Customize a sensor model used with the insEKF object. The sensor measures the velocity state,
including a bias affected by random noise.

Customize the sensor model by inheriting from the positioning.INSSensorModel interface class
and implementing its methods. Note that only the measurement method is required for
implementation in the positioning.INSSensorModel interface class. These sections provide an
overview of how the BiasSensor class implements the positioning.INSSensorModel methods,
but for details on their implementation, see the details of the implementation are in the attached
BiasSensor.m file.

Implement sensorStates method

To model bias, the sensorStates method needs to return a state, Bias, as a structure. When you
add a BiasSensor object to an insEKF filter object, the filter adds the bias component to the state
vector of the filter.

Implement measurement method

The measurement is the velocity component of the filter state, including the bias. Therefore, return
the summation of the velocity component from the filter and the bias.

Implement measurementJacobian method

The measurementJacobian method returns the partial derivative of the measurement method with
respect to the state vector of the filter as a structure. All the partial derivatives are 0, except the
partial derivatives of the measurement with respect to the velocity and bias state components.

Implement stateTransition method

The stateTransiton method returns the derivative of the sensor state defined in the
sensorStates method. Assume the derivative of the bias is affected by a white noise with a
standard deviation of 0.01. Return the derivative as a structure. Note that this only showcases how
to set up the method, and does not correspond to any practical application.
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Implement stateTransitionJacobian method

Since the stateTransiton function does not depend on the state of the filter, the Jacobian matrix is
0.

Create and add inherited object

Create a BiasSensor object.

biSensor = BiasSensor

biSensor = 
  BiasSensor with no properties.

Create an insEKF object with the biSensor object.

filter = insEKF(biSensor,insMotionPose)

filter = 
  insEKF with properties:

                   State: [17x1 double]
         StateCovariance: [17x17 double]
    AdditiveProcessNoise: [17x17 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 BiasSensor]}
             SensorNames: {'BiasSensor'}
          ReferenceFrame: 'NED'

The filter state contains the bias component.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
           Position: [8 9 10]
           Velocity: [11 12 13]
       Acceleration: [14 15 16]
    BiasSensor_Bias: 17

Show customized BiasSensor class

type BiasSensor.m

classdef BiasSensor < positioning.INSSensorModel
%BIASSENSOR Sensor measuring velocity with bias

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function s = sensorstates(~,~)
            % Assume the sensor has a bias. Define a Bias state to enable
            % the filter to estimate the bias.
            s = struct('Bias',0);
        end        
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        function z = measurement(sensor,filter)
            % Measurement is the summation of the velocity measurement and
            % the bias.
            velocity = stateparts(filter,'Velocity');
            bias = stateparts(filter,sensor,'Bias');
            z = velocity + bias;
        end        
        function dzdx = measurementJacobian(sensor,filter)
            % Compute the Jacobian, which is the partial derivative of the 
            % measurement (velocity plus bias) with respect to the filter
            % state vector. 
            % Obtain the dimension of the filter state.
            N = numel(filter.State);  

            % The partial derviative of the Bias with respect to all the
            % states is zero, except the Bias state itself.
            dzdx = zeros(1,N); 

            % Obtain the index for the Bias state component in the filter.
            bidx = stateinfo(filter,sensor,'Bias'); 
            dzdx(:,bidx) = 1;

            % The partial derivative of the Velocity with respect to all the
            % states is zero, except the Velocity state itself.
            vidx = stateinfo(filter,'Velocity');
            dzdx(:,vidx) = 1;
        end
        function dBias = stateTransition(~,~,dt,~)
            % Assume the derivative of the bias is affected by a zero-mean 
            % white noise with a standard deviation of 0.01. 
            noise = 0.01*randn*dt;
            dBias = struct('Bias',noise);
        end
        function dBiasdx = stateTransitonJacobian(~,filter,~,~)
            % Since the stateTransiton function does not depend on the
            % state of the filter, the Jacobian is all zero.
            N = numel(filter.State);
            dBiasdx = zeros(1,N);
        end
    end
end

Version History
Introduced in R2022a

See Also
insEKF | insOptions
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measurement
Package: positioning

Sensor measurement from states

Syntax
z = measurement(sensor,filter)

Description
z = measurement(sensor,filter) returns the measurement z from the state maintained in the
filter object. You must implement this method when you define a sensor object based on the
positioning.INSSensorModel abstract class.

Examples

Customize Sensor Model Used with insEKF

Customize a sensor model used with the insEKF object. The sensor measures the velocity state,
including a bias affected by random noise.

Customize the sensor model by inheriting from the positioning.INSSensorModel interface class
and implementing its methods. Note that only the measurement method is required for
implementation in the positioning.INSSensorModel interface class. These sections provide an
overview of how the BiasSensor class implements the positioning.INSSensorModel methods,
but for details on their implementation, see the details of the implementation are in the attached
BiasSensor.m file.

Implement sensorStates method

To model bias, the sensorStates method needs to return a state, Bias, as a structure. When you
add a BiasSensor object to an insEKF filter object, the filter adds the bias component to the state
vector of the filter.

Implement measurement method

The measurement is the velocity component of the filter state, including the bias. Therefore, return
the summation of the velocity component from the filter and the bias.

Implement measurementJacobian method

The measurementJacobian method returns the partial derivative of the measurement method with
respect to the state vector of the filter as a structure. All the partial derivatives are 0, except the
partial derivatives of the measurement with respect to the velocity and bias state components.

Implement stateTransition method

The stateTransiton method returns the derivative of the sensor state defined in the
sensorStates method. Assume the derivative of the bias is affected by a white noise with a
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standard deviation of 0.01. Return the derivative as a structure. Note that this only showcases how
to set up the method, and does not correspond to any practical application.

Implement stateTransitionJacobian method

Since the stateTransiton function does not depend on the state of the filter, the Jacobian matrix is
0.

Create and add inherited object

Create a BiasSensor object.

biSensor = BiasSensor

biSensor = 
  BiasSensor with no properties.

Create an insEKF object with the biSensor object.

filter = insEKF(biSensor,insMotionPose)

filter = 
  insEKF with properties:

                   State: [17x1 double]
         StateCovariance: [17x17 double]
    AdditiveProcessNoise: [17x17 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 BiasSensor]}
             SensorNames: {'BiasSensor'}
          ReferenceFrame: 'NED'

The filter state contains the bias component.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
           Position: [8 9 10]
           Velocity: [11 12 13]
       Acceleration: [14 15 16]
    BiasSensor_Bias: 17

Show customized BiasSensor class

type BiasSensor.m

classdef BiasSensor < positioning.INSSensorModel
%BIASSENSOR Sensor measuring velocity with bias

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function s = sensorstates(~,~)
            % Assume the sensor has a bias. Define a Bias state to enable
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            % the filter to estimate the bias.
            s = struct('Bias',0);
        end        
        function z = measurement(sensor,filter)
            % Measurement is the summation of the velocity measurement and
            % the bias.
            velocity = stateparts(filter,'Velocity');
            bias = stateparts(filter,sensor,'Bias');
            z = velocity + bias;
        end        
        function dzdx = measurementJacobian(sensor,filter)
            % Compute the Jacobian, which is the partial derivative of the 
            % measurement (velocity plus bias) with respect to the filter
            % state vector. 
            % Obtain the dimension of the filter state.
            N = numel(filter.State);  

            % The partial derviative of the Bias with respect to all the
            % states is zero, except the Bias state itself.
            dzdx = zeros(1,N); 

            % Obtain the index for the Bias state component in the filter.
            bidx = stateinfo(filter,sensor,'Bias'); 
            dzdx(:,bidx) = 1;

            % The partial derivative of the Velocity with respect to all the
            % states is zero, except the Velocity state itself.
            vidx = stateinfo(filter,'Velocity');
            dzdx(:,vidx) = 1;
        end
        function dBias = stateTransition(~,~,dt,~)
            % Assume the derivative of the bias is affected by a zero-mean 
            % white noise with a standard deviation of 0.01. 
            noise = 0.01*randn*dt;
            dBias = struct('Bias',noise);
        end
        function dBiasdx = stateTransitonJacobian(~,filter,~,~)
            % Since the stateTransiton function does not depend on the
            % state of the filter, the Jacobian is all zero.
            N = numel(filter.State);
            dBiasdx = zeros(1,N);
        end
    end
end

Input Arguments
sensor — Sensor model used with INS filter
object inherited from positioning.INSSensorModel class

Sensor model used with an INS filter, specified as an object inherited from the
positioning.INSSensorModel abstract class.

filter — INS filter
insEKF object

INS filter, specified as an insEKF object.
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Output Arguments
z — Measurement
M-by-1 real-valued vector

Measurement, returned as an M-by-1 real-valued vector.

Version History
Introduced in R2022a

See Also
measurementJacobian | sensorStates | stateTransition | stateTransitionJacobian
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measurementJacobian
Package: positioning

Jacobian of measurement function

Syntax
jac = measurementJacobian(sensor,filter)

Description
jac = measurementJacobian(sensor,filter) returns the Jacobian matrix for the
measurement function of the sensor object, inherited from the positioning.INSSensorModel
abstract class.

Note Implementing this method is optional for a subclass of the positioning.INSSensorModel
abstract class. If you do not implement this method, the subclass uses a Jacobian matrix calculated by
numerical differentiation.

Examples

Customize Sensor Model Used with insEKF

Customize a sensor model used with the insEKF object. The sensor measures the velocity state,
including a bias affected by random noise.

Customize the sensor model by inheriting from the positioning.INSSensorModel interface class
and implementing its methods. Note that only the measurement method is required for
implementation in the positioning.INSSensorModel interface class. These sections provide an
overview of how the BiasSensor class implements the positioning.INSSensorModel methods,
but for details on their implementation, see the details of the implementation are in the attached
BiasSensor.m file.

Implement sensorStates method

To model bias, the sensorStates method needs to return a state, Bias, as a structure. When you
add a BiasSensor object to an insEKF filter object, the filter adds the bias component to the state
vector of the filter.

Implement measurement method

The measurement is the velocity component of the filter state, including the bias. Therefore, return
the summation of the velocity component from the filter and the bias.
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Implement measurementJacobian method

The measurementJacobian method returns the partial derivative of the measurement method with
respect to the state vector of the filter as a structure. All the partial derivatives are 0, except the
partial derivatives of the measurement with respect to the velocity and bias state components.

Implement stateTransition method

The stateTransiton method returns the derivative of the sensor state defined in the
sensorStates method. Assume the derivative of the bias is affected by a white noise with a
standard deviation of 0.01. Return the derivative as a structure. Note that this only showcases how
to set up the method, and does not correspond to any practical application.

Implement stateTransitionJacobian method

Since the stateTransiton function does not depend on the state of the filter, the Jacobian matrix is
0.

Create and add inherited object

Create a BiasSensor object.

biSensor = BiasSensor

biSensor = 
  BiasSensor with no properties.

Create an insEKF object with the biSensor object.

filter = insEKF(biSensor,insMotionPose)

filter = 
  insEKF with properties:

                   State: [17x1 double]
         StateCovariance: [17x17 double]
    AdditiveProcessNoise: [17x17 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 BiasSensor]}
             SensorNames: {'BiasSensor'}
          ReferenceFrame: 'NED'

The filter state contains the bias component.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
           Position: [8 9 10]
           Velocity: [11 12 13]
       Acceleration: [14 15 16]
    BiasSensor_Bias: 17
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Show customized BiasSensor class

type BiasSensor.m

classdef BiasSensor < positioning.INSSensorModel
%BIASSENSOR Sensor measuring velocity with bias

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function s = sensorstates(~,~)
            % Assume the sensor has a bias. Define a Bias state to enable
            % the filter to estimate the bias.
            s = struct('Bias',0);
        end        
        function z = measurement(sensor,filter)
            % Measurement is the summation of the velocity measurement and
            % the bias.
            velocity = stateparts(filter,'Velocity');
            bias = stateparts(filter,sensor,'Bias');
            z = velocity + bias;
        end        
        function dzdx = measurementJacobian(sensor,filter)
            % Compute the Jacobian, which is the partial derivative of the 
            % measurement (velocity plus bias) with respect to the filter
            % state vector. 
            % Obtain the dimension of the filter state.
            N = numel(filter.State);  

            % The partial derviative of the Bias with respect to all the
            % states is zero, except the Bias state itself.
            dzdx = zeros(1,N); 

            % Obtain the index for the Bias state component in the filter.
            bidx = stateinfo(filter,sensor,'Bias'); 
            dzdx(:,bidx) = 1;

            % The partial derivative of the Velocity with respect to all the
            % states is zero, except the Velocity state itself.
            vidx = stateinfo(filter,'Velocity');
            dzdx(:,vidx) = 1;
        end
        function dBias = stateTransition(~,~,dt,~)
            % Assume the derivative of the bias is affected by a zero-mean 
            % white noise with a standard deviation of 0.01. 
            noise = 0.01*randn*dt;
            dBias = struct('Bias',noise);
        end
        function dBiasdx = stateTransitonJacobian(~,filter,~,~)
            % Since the stateTransiton function does not depend on the
            % state of the filter, the Jacobian is all zero.
            N = numel(filter.State);
            dBiasdx = zeros(1,N);
        end
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    end
end

Input Arguments
sensor — Sensor model used with INS filter
object inherited from positioning.INSSensorModel class

Sensor model used with an INS filter, specified as an object inherited from the
positioning.INSSensorModel abstract class.

filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

Output Arguments
jac — Jacobian matrix for measurement equation
M-by-N real-valued matrix

Jacobian matrix for the measurement equation, returned as an M-by-N real-valued matrix. M is the
dimension of the sensor measurement, and N is the dimension of the state maintained in the State
property of the filter.

Version History
Introduced in R2022a

See Also
measurement | sensorStates | stateTransition | stateTransitionJacobian
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sensorStates
Package: positioning

Sensor states

Syntax
s = sensorStates(filter,options)

Description
s = sensorStates(filter,options) returns a structure that describes the states used by the
sensor model and tracked by the insEKF filter object.

Tip Implement this method only if you want to estimate sensor-specific states, such as biases, using
the filter.

Examples

Customize Sensor Model Used with insEKF

Customize a sensor model used with the insEKF object. The sensor measures the velocity state,
including a bias affected by random noise.

Customize the sensor model by inheriting from the positioning.INSSensorModel interface class
and implementing its methods. Note that only the measurement method is required for
implementation in the positioning.INSSensorModel interface class. These sections provide an
overview of how the BiasSensor class implements the positioning.INSSensorModel methods,
but for details on their implementation, see the details of the implementation are in the attached
BiasSensor.m file.

Implement sensorStates method

To model bias, the sensorStates method needs to return a state, Bias, as a structure. When you
add a BiasSensor object to an insEKF filter object, the filter adds the bias component to the state
vector of the filter.

Implement measurement method

The measurement is the velocity component of the filter state, including the bias. Therefore, return
the summation of the velocity component from the filter and the bias.

Implement measurementJacobian method

The measurementJacobian method returns the partial derivative of the measurement method with
respect to the state vector of the filter as a structure. All the partial derivatives are 0, except the
partial derivatives of the measurement with respect to the velocity and bias state components.
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Implement stateTransition method

The stateTransiton method returns the derivative of the sensor state defined in the
sensorStates method. Assume the derivative of the bias is affected by a white noise with a
standard deviation of 0.01. Return the derivative as a structure. Note that this only showcases how
to set up the method, and does not correspond to any practical application.

Implement stateTransitionJacobian method

Since the stateTransiton function does not depend on the state of the filter, the Jacobian matrix is
0.

Create and add inherited object

Create a BiasSensor object.

biSensor = BiasSensor

biSensor = 
  BiasSensor with no properties.

Create an insEKF object with the biSensor object.

filter = insEKF(biSensor,insMotionPose)

filter = 
  insEKF with properties:

                   State: [17x1 double]
         StateCovariance: [17x17 double]
    AdditiveProcessNoise: [17x17 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 BiasSensor]}
             SensorNames: {'BiasSensor'}
          ReferenceFrame: 'NED'

The filter state contains the bias component.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
           Position: [8 9 10]
           Velocity: [11 12 13]
       Acceleration: [14 15 16]
    BiasSensor_Bias: 17

Show customized BiasSensor class

type BiasSensor.m

classdef BiasSensor < positioning.INSSensorModel
%BIASSENSOR Sensor measuring velocity with bias

%   Copyright 2021 The MathWorks, Inc.    
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    methods 
        function s = sensorstates(~,~)
            % Assume the sensor has a bias. Define a Bias state to enable
            % the filter to estimate the bias.
            s = struct('Bias',0);
        end        
        function z = measurement(sensor,filter)
            % Measurement is the summation of the velocity measurement and
            % the bias.
            velocity = stateparts(filter,'Velocity');
            bias = stateparts(filter,sensor,'Bias');
            z = velocity + bias;
        end        
        function dzdx = measurementJacobian(sensor,filter)
            % Compute the Jacobian, which is the partial derivative of the 
            % measurement (velocity plus bias) with respect to the filter
            % state vector. 
            % Obtain the dimension of the filter state.
            N = numel(filter.State);  

            % The partial derviative of the Bias with respect to all the
            % states is zero, except the Bias state itself.
            dzdx = zeros(1,N); 

            % Obtain the index for the Bias state component in the filter.
            bidx = stateinfo(filter,sensor,'Bias'); 
            dzdx(:,bidx) = 1;

            % The partial derivative of the Velocity with respect to all the
            % states is zero, except the Velocity state itself.
            vidx = stateinfo(filter,'Velocity');
            dzdx(:,vidx) = 1;
        end
        function dBias = stateTransition(~,~,dt,~)
            % Assume the derivative of the bias is affected by a zero-mean 
            % white noise with a standard deviation of 0.01. 
            noise = 0.01*randn*dt;
            dBias = struct('Bias',noise);
        end
        function dBiasdx = stateTransitonJacobian(~,filter,~,~)
            % Since the stateTransiton function does not depend on the
            % state of the filter, the Jacobian is all zero.
            N = numel(filter.State);
            dBiasdx = zeros(1,N);
        end
    end
end

Input Arguments
filter — INS filter
insEKF object

INS filter, specified as an insEKF object.
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options — Options for INS filter
insOptions object

Options for the INS filter, specified as an insOptions object.

Output Arguments
s — State structure
structure

State structure, returned as a structure. The field names of the structure are the names of the states
that you want estimate. The filter uses the value of each field as the default value of the
corresponding state component, and uses the size of the value as the size of the corresponding state
component.

Tip You can use the stateparts object function of the insEKF filter object to access the states
saved in the filter.

Version History
Introduced in R2022a

See Also
measurement | measurementJacobian | stateTransition | stateTransitionJacobian
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stateTransition
Package: positioning

State transition of sensor states

Syntax
statedot = stateTransition(sensor,filter,dt,varargin)

Description
statedot = stateTransition(sensor,filter,dt,varargin) returns the derivatives of the
states of the sensor used in the INS filter.

Tip You only need to implement this method for the sensor object inherited from the
positioning.INSSensorModel abstract class if you both of these two conditions are true:

• You have implemented the sensorStates method of the sensor.
• The states of the sensor are time-varying.

Examples

Customize Sensor Model Used with insEKF

Customize a sensor model used with the insEKF object. The sensor measures the velocity state,
including a bias affected by random noise.

Customize the sensor model by inheriting from the positioning.INSSensorModel interface class
and implementing its methods. Note that only the measurement method is required for
implementation in the positioning.INSSensorModel interface class. These sections provide an
overview of how the BiasSensor class implements the positioning.INSSensorModel methods,
but for details on their implementation, see the details of the implementation are in the attached
BiasSensor.m file.

Implement sensorStates method

To model bias, the sensorStates method needs to return a state, Bias, as a structure. When you
add a BiasSensor object to an insEKF filter object, the filter adds the bias component to the state
vector of the filter.

Implement measurement method

The measurement is the velocity component of the filter state, including the bias. Therefore, return
the summation of the velocity component from the filter and the bias.
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Implement measurementJacobian method

The measurementJacobian method returns the partial derivative of the measurement method with
respect to the state vector of the filter as a structure. All the partial derivatives are 0, except the
partial derivatives of the measurement with respect to the velocity and bias state components.

Implement stateTransition method

The stateTransiton method returns the derivative of the sensor state defined in the
sensorStates method. Assume the derivative of the bias is affected by a white noise with a
standard deviation of 0.01. Return the derivative as a structure. Note that this only showcases how
to set up the method, and does not correspond to any practical application.

Implement stateTransitionJacobian method

Since the stateTransiton function does not depend on the state of the filter, the Jacobian matrix is
0.

Create and add inherited object

Create a BiasSensor object.

biSensor = BiasSensor

biSensor = 
  BiasSensor with no properties.

Create an insEKF object with the biSensor object.

filter = insEKF(biSensor,insMotionPose)

filter = 
  insEKF with properties:

                   State: [17x1 double]
         StateCovariance: [17x17 double]
    AdditiveProcessNoise: [17x17 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 BiasSensor]}
             SensorNames: {'BiasSensor'}
          ReferenceFrame: 'NED'

The filter state contains the bias component.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
           Position: [8 9 10]
           Velocity: [11 12 13]
       Acceleration: [14 15 16]
    BiasSensor_Bias: 17
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Show customized BiasSensor class

type BiasSensor.m

classdef BiasSensor < positioning.INSSensorModel
%BIASSENSOR Sensor measuring velocity with bias

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function s = sensorstates(~,~)
            % Assume the sensor has a bias. Define a Bias state to enable
            % the filter to estimate the bias.
            s = struct('Bias',0);
        end        
        function z = measurement(sensor,filter)
            % Measurement is the summation of the velocity measurement and
            % the bias.
            velocity = stateparts(filter,'Velocity');
            bias = stateparts(filter,sensor,'Bias');
            z = velocity + bias;
        end        
        function dzdx = measurementJacobian(sensor,filter)
            % Compute the Jacobian, which is the partial derivative of the 
            % measurement (velocity plus bias) with respect to the filter
            % state vector. 
            % Obtain the dimension of the filter state.
            N = numel(filter.State);  

            % The partial derviative of the Bias with respect to all the
            % states is zero, except the Bias state itself.
            dzdx = zeros(1,N); 

            % Obtain the index for the Bias state component in the filter.
            bidx = stateinfo(filter,sensor,'Bias'); 
            dzdx(:,bidx) = 1;

            % The partial derivative of the Velocity with respect to all the
            % states is zero, except the Velocity state itself.
            vidx = stateinfo(filter,'Velocity');
            dzdx(:,vidx) = 1;
        end
        function dBias = stateTransition(~,~,dt,~)
            % Assume the derivative of the bias is affected by a zero-mean 
            % white noise with a standard deviation of 0.01. 
            noise = 0.01*randn*dt;
            dBias = struct('Bias',noise);
        end
        function dBiasdx = stateTransitonJacobian(~,filter,~,~)
            % Since the stateTransiton function does not depend on the
            % state of the filter, the Jacobian is all zero.
            N = numel(filter.State);
            dBiasdx = zeros(1,N);
        end
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    end
end

Input Arguments
sensor — Sensor model used with INS filter
object inherited from positioning.INSSensorModel class

Sensor model used with an INS filter, specified as an object inherited from the
positioning.INSSensorModel abstract class.

filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

dt — Filter time step
positive scalar

Filter time step, specified as a positive scalar.
Data Types: single | double

varargin — Additional inputs
any data type

Additional inputs that are passed as the varargin inputs of the predict object function of the
insEKF object.

Output Arguments
statedot — Derivatives of sensor states
structure

Derivatives of the sensor states, returned as a structure. The field names must be exactly the same as
those of the sensorStates method of sensor. The field values are the corresponding time
derivatives of the sensor states.

Version History
Introduced in R2022a

See Also
measurement | measurementJacobian | sensorStates | stateTransitionJacobian
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stateTransitionJacobian
Package: positioning

Jacobian of sensor state transition function

Syntax
jac = stateTransitionJacobian(sensor,filter,dt,varargin)

Description
jac = stateTransitionJacobian(sensor,filter,dt,varargin) returns the Jacobian matrix
for the state transition function of the sensor object inherited from the
positioning.INSSensorModel abstract class.

Note Implementing this method is optional for a subclass of the positioning.INSSensorModel
abstract class. If you do not implement this method, the subclass uses a Jacobian matrix calculated by
numerical differentiation.

Examples

Customize Sensor Model Used with insEKF

Customize a sensor model used with the insEKF object. The sensor measures the velocity state,
including a bias affected by random noise.

Customize the sensor model by inheriting from the positioning.INSSensorModel interface class
and implementing its methods. Note that only the measurement method is required for
implementation in the positioning.INSSensorModel interface class. These sections provide an
overview of how the BiasSensor class implements the positioning.INSSensorModel methods,
but for details on their implementation, see the details of the implementation are in the attached
BiasSensor.m file.

Implement sensorStates method

To model bias, the sensorStates method needs to return a state, Bias, as a structure. When you
add a BiasSensor object to an insEKF filter object, the filter adds the bias component to the state
vector of the filter.

Implement measurement method

The measurement is the velocity component of the filter state, including the bias. Therefore, return
the summation of the velocity component from the filter and the bias.
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Implement measurementJacobian method

The measurementJacobian method returns the partial derivative of the measurement method with
respect to the state vector of the filter as a structure. All the partial derivatives are 0, except the
partial derivatives of the measurement with respect to the velocity and bias state components.

Implement stateTransition method

The stateTransiton method returns the derivative of the sensor state defined in the
sensorStates method. Assume the derivative of the bias is affected by a white noise with a
standard deviation of 0.01. Return the derivative as a structure. Note that this only showcases how
to set up the method, and does not correspond to any practical application.

Implement stateTransitionJacobian method

Since the stateTransiton function does not depend on the state of the filter, the Jacobian matrix is
0.

Create and add inherited object

Create a BiasSensor object.

biSensor = BiasSensor

biSensor = 
  BiasSensor with no properties.

Create an insEKF object with the biSensor object.

filter = insEKF(biSensor,insMotionPose)

filter = 
  insEKF with properties:

                   State: [17x1 double]
         StateCovariance: [17x17 double]
    AdditiveProcessNoise: [17x17 double]
             MotionModel: [1x1 insMotionPose]
                 Sensors: {[1x1 BiasSensor]}
             SensorNames: {'BiasSensor'}
          ReferenceFrame: 'NED'

The filter state contains the bias component.

stateinfo(filter)

ans = struct with fields:
        Orientation: [1 2 3 4]
    AngularVelocity: [5 6 7]
           Position: [8 9 10]
           Velocity: [11 12 13]
       Acceleration: [14 15 16]
    BiasSensor_Bias: 17
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Show customized BiasSensor class

type BiasSensor.m

classdef BiasSensor < positioning.INSSensorModel
%BIASSENSOR Sensor measuring velocity with bias

%   Copyright 2021 The MathWorks, Inc.    

    methods 
        function s = sensorstates(~,~)
            % Assume the sensor has a bias. Define a Bias state to enable
            % the filter to estimate the bias.
            s = struct('Bias',0);
        end        
        function z = measurement(sensor,filter)
            % Measurement is the summation of the velocity measurement and
            % the bias.
            velocity = stateparts(filter,'Velocity');
            bias = stateparts(filter,sensor,'Bias');
            z = velocity + bias;
        end        
        function dzdx = measurementJacobian(sensor,filter)
            % Compute the Jacobian, which is the partial derivative of the 
            % measurement (velocity plus bias) with respect to the filter
            % state vector. 
            % Obtain the dimension of the filter state.
            N = numel(filter.State);  

            % The partial derviative of the Bias with respect to all the
            % states is zero, except the Bias state itself.
            dzdx = zeros(1,N); 

            % Obtain the index for the Bias state component in the filter.
            bidx = stateinfo(filter,sensor,'Bias'); 
            dzdx(:,bidx) = 1;

            % The partial derivative of the Velocity with respect to all the
            % states is zero, except the Velocity state itself.
            vidx = stateinfo(filter,'Velocity');
            dzdx(:,vidx) = 1;
        end
        function dBias = stateTransition(~,~,dt,~)
            % Assume the derivative of the bias is affected by a zero-mean 
            % white noise with a standard deviation of 0.01. 
            noise = 0.01*randn*dt;
            dBias = struct('Bias',noise);
        end
        function dBiasdx = stateTransitonJacobian(~,filter,~,~)
            % Since the stateTransiton function does not depend on the
            % state of the filter, the Jacobian is all zero.
            N = numel(filter.State);
            dBiasdx = zeros(1,N);
        end
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    end
end

Input Arguments
sensor — Sensor model used with INS filter
object inherited from positioning.INSSensorModel class

Sensor model used with an INS filter, specified as an object inherited from the
positioning.INSSensorModel abstract class.

filter — INS filter
insEKF object

INS filter, specified as an insEKF object.

dt — Filter time step
positive scalar

Filter time step, specified as a positive scalar.
Data Types: single | double

varargin — Additional inputs
any data type

Additional inputs that are passed as the varargin inputs of the predict object function of the
insEKF object.

Output Arguments
jac — Jacobian matrix for state transition equation
S-by-N real-valued matrix

Jacobian matrix for the state transition equation, returned as an NS-by-N real-valued matrix. S is the
number of fields in the returned structure of the sensorState method of sensor, and N is the
dimension of the state maintained in the State property of the filter.

Version History
Introduced in R2022a

See Also
measurement | measurementJacobian | sensorStates | stateTransition
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copy
Package: positioning

Create copy of sensor model

Syntax
newSensor = copy(sensor)

Description
newSensor = copy(sensor) creates a copy of the sensor model.

Note Implementing this method is optional for a subclass of the positioning.INSSensorModel
abstract class. You need to implement this method only when both of these conditions are true.

• You need to use the copy object function of the insEKF object.
• You want to copy at least one non-public property of the implemented sensor model.

Examples

Implement copy Method of positioning.INSSensorModel

Use the copy method to copy a private property, PrivateProp.

classdef mySensor < positioning.INSSensorModel
    properties (Access = private)
        PrivateProp  % A private property 
    end
    % Implement the class as desired.
    methods
        function m = measurement(sensor, filt)
        % ....
        end
    end
    % Add a public copy method to additonally copy the private property.
        function newSensor = copy(obj)
            newSensor = obj;
            newSensor.PrivateProp = obj.PrivateProp;
        end
    end
end

Input Arguments
sensor — Sensor model used with INS filter
object inherited from positioning.INSSensorModel class
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Sensor model used with an INS filter, specified as an object inherited from the
positioning.INSSensorModel abstract class.

Output Arguments
newSensor — Copy of sensor model
object inherited from positioning.INSSensorModel class

Copy of the sensor model, returned as an object inherited from the positioning.INSSensorModel
abstract class.

Version History
Introduced in R2022b
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clone
Create deep clone of controllerTEB object

Syntax
controller2 = clone(controller1)

Description
controller2 = clone(controller1) creates a deep clone of the controllerTEB object
controller1.

Examples

Compute Velocity Commands and Optimal Trajectory for Differential-Drive Robot Using
Timed Elastic Band Algorithm

Set Up Parking Lot Environment

Create an occupancyMap object from a parking lot map and set the map resolution to 3 cells per
meter.

load parkingMap.mat;
resolution = 3;
map = occupancyMap(map,resolution);

Visualize the map. The map contains the floor plan of a parking lot with some parking slots already
occupied.

show(map)
title("Parking Lot Map")
hold on
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Set Up and Run Global Planner

Create a validatorOccupancyMap state validator using the stateSpaceSE2 definition. Specify the
map and the distance for interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2,Map=map);
validator.ValidationDistance = 0.1;

Create an RRT* path planner. Increase the maximum connection distance.

rrtstar = plannerRRTStar(validator.StateSpace,validator);
rrtstar.MaxConnectionDistance = 0.2;

Set the start and goal states.

start = [2 9 0];
goal = [27 18 -pi/2];

Plan a path with default settings.

 clone

3-3



rng(42,"twister") % Set random number generator seed for repeatable result.
route = plan(rrtstar,start,goal);
refpath = route.States;

RRT* uses a random orientation, which can cause unnecessary turns.

headingToNextPose = headingFromXY(refpath(:,1:2));

Align the orientation to the path, except for at the start and goal states.

refpath(2:end-1,3) = headingToNextPose(2:end-1);

Visualize the path.

plot(refpath(:,1),refpath(:,2),"r-",LineWidth=2)
hold off

Set Up and Run Local Planner

Create a local occupancyMap object with a width and height of 15 meters and the same resolution as
the global map.
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localmap = occupancyMap(15,15,map.Resolution);

Create a controllerTEB object by using the reference path generated by the global planner and the
local map.

teb = controllerTEB(refpath,localmap);

Specify the properties of the controllerTEB object.

teb.LookAheadTime = 10;         % sec
teb.ObstacleSafetyMargin = 0.4; % meters

% To generate time-optimal trajectories, specify a larger weight value,
% like 100, for the cost function, Time. To follow the reference path
% closely, keep the weight to a smaller value like 1e-3.
teb.CostWeights.Time = 100;

Create a deep clone of the controllerTEB object.

teb2 = clone(teb);

Initialize parameters.

curpose = refpath(1,:);
curvel = [0 0];
simtime = 0;
% Reducing timestep can lead to more accurate path tracking.
timestep = 0.1;
itr = 0;
goalReached = false;

Compute velocity commands and optimal trajectory.

while ~goalReached && simtime < 200
    % Update map to keep robot in the center of the map. Also update the
    % map with new information from the global map or sensor measurements.
    moveMapBy = curpose(1:2) - localmap.XLocalLimits(end)/2;
    localmap.move(moveMapBy,FillValue=0.5)
    syncWith(localmap,map)

    if mod(itr,10) == 0 % every 1 sec
        % Generate new vel commands with teb
        [velcmds,tstamps,curpath,info] = step(teb,curpose,curvel);
        goalReached = info.HasReachedGoal;
        feasibleDriveDuration = tstamps(info.LastFeasibleIdx);
        % If robot is far from goal and only less than third of trajectory
        % is feasible, then an option is to re-plan the path to follow to
        % reach the goal.
        if info.LastFeasibleIdx ~= height(tstamps) && ...
                feasibleDriveDuration < (teb.LookAheadTime/3)
            route = plan(rrtstar,curpose,[27 18 -pi/2]);
            refpath = route.States;
            headingToNextPose = headingFromXY(refpath(:,1:2));
            refpath(2:end-1,3) = headingToNextPose(2:end-1);
            teb.ReferencePath = refpath;
        end
        timestamps = tstamps + simtime;

        % Show the updated information input to or output
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        % from controllerTEB
        clf
        show(localmap)
        hold on
        plot(refpath(:,1),refpath(:,2),".-",Color="#EDB120", ...
             DisplayName="Reference Path")
        quiver(curpath(:,1),curpath(:,2), ...
               cos(curpath(:,3)),sin(curpath(:,3)), ...
               0.2,Color="#A2142F",DisplayName="Current Path")
        quiver(curpose(:,1),curpose(:,2), ...
               cos(curpose(:,3)),sin(curpose(:,3)), ...
               0.5,"o",MarkerSize=20,ShowArrowHead="off", ...
               Color="#0072BD",DisplayName="Start Pose")
    end

    simtime = simtime+timestep;
    % Compute the instantaneous velocity to be sent to the robot from the
    % series of timestamped commands generated by controllerTEB
    velcmd = velocityCommand(velcmds,timestamps,simtime);
    % Very basic robot model, should be replaced by simulator.
    statedot = [velcmd(1)*cos(curpose(3)) ...
                velcmd(1)*sin(curpose(3)) ...
                velcmd(2)];
    curpose = curpose + statedot*timestep;

    if exist("hndl","var")
        delete(hndl)
    end
    hndl = quiver(curpose(:,1),curpose(:,2), ...
                  cos(curpose(:,3)),sin(curpose(:,3)), ...
                  0.5,"o",MarkerSize=20,ShowArrowHead="off", ...
                  Color="#D95319",DisplayName="Current Robot Pose");
    itr = itr + 1;
    drawnow
end
legend
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Input Arguments
controller1 — TEB controller
controllerTEB object

TEB controller, specified as a controllerTEB object.

Output Arguments
controller2 — Clone of TEB controller
controllerTEB object

Clone of TEB controller, returned as a controllerTEB object.

Version History
Introduced in R2023a
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See Also
Objects
controllerTEB

Functions
step
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step
Compute velocity commands and optimal trajectory for subsequent time steps

Syntax
[velcmds,timestamps,optPath] = step(controller,curState,curVel)
[ ___ ,extraInfo] = step( ___ )

Description
[velcmds,timestamps,optPath] = step(controller,curState,curVel) computes the
linear and angular velocity commands velcmds, with their corresponding timestamps and
corresponding optimized path optPath, for the specified current pose curState and current
velocity curVel of a robot.

[ ___ ,extraInfo] = step( ___ ) returns extra information, extraInfo, to evaluate the solution,
in addition to all arguments from the previous syntax.

Examples

Compute Velocity Commands and Optimal Trajectory for Differential-Drive Robot Using
Timed Elastic Band Algorithm

Set Up Parking Lot Environment

Create an occupancyMap object from a parking lot map and set the map resolution to 3 cells per
meter.

load parkingMap.mat;
resolution = 3;
map = occupancyMap(map,resolution);

Visualize the map. The map contains the floor plan of a parking lot with some parking slots already
occupied.

show(map)
title("Parking Lot Map")
hold on
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Set Up and Run Global Planner

Create a validatorOccupancyMap state validator using the stateSpaceSE2 definition. Specify the
map and the distance for interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2,Map=map);
validator.ValidationDistance = 0.1;

Create an RRT* path planner. Increase the maximum connection distance.

rrtstar = plannerRRTStar(validator.StateSpace,validator);
rrtstar.MaxConnectionDistance = 0.2;

Set the start and goal states.

start = [2 9 0];
goal = [27 18 -pi/2];

Plan a path with default settings.
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rng(42,"twister") % Set random number generator seed for repeatable result.
route = plan(rrtstar,start,goal);
refpath = route.States;

RRT* uses a random orientation, which can cause unnecessary turns.

headingToNextPose = headingFromXY(refpath(:,1:2));

Align the orientation to the path, except for at the start and goal states.

refpath(2:end-1,3) = headingToNextPose(2:end-1);

Visualize the path.

plot(refpath(:,1),refpath(:,2),"r-",LineWidth=2)
hold off

Set Up and Run Local Planner

Create a local occupancyMap object with a width and height of 15 meters and the same resolution as
the global map.
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localmap = occupancyMap(15,15,map.Resolution);

Create a controllerTEB object by using the reference path generated by the global planner and the
local map.

teb = controllerTEB(refpath,localmap);

Specify the properties of the controllerTEB object.

teb.LookAheadTime = 10;         % sec
teb.ObstacleSafetyMargin = 0.4; % meters

% To generate time-optimal trajectories, specify a larger weight value,
% like 100, for the cost function, Time. To follow the reference path
% closely, keep the weight to a smaller value like 1e-3.
teb.CostWeights.Time = 100;

Create a deep clone of the controllerTEB object.

teb2 = clone(teb);

Initialize parameters.

curpose = refpath(1,:);
curvel = [0 0];
simtime = 0;
% Reducing timestep can lead to more accurate path tracking.
timestep = 0.1;
itr = 0;
goalReached = false;

Compute velocity commands and optimal trajectory.

while ~goalReached && simtime < 200
    % Update map to keep robot in the center of the map. Also update the
    % map with new information from the global map or sensor measurements.
    moveMapBy = curpose(1:2) - localmap.XLocalLimits(end)/2;
    localmap.move(moveMapBy,FillValue=0.5)
    syncWith(localmap,map)

    if mod(itr,10) == 0 % every 1 sec
        % Generate new vel commands with teb
        [velcmds,tstamps,curpath,info] = step(teb,curpose,curvel);
        goalReached = info.HasReachedGoal;
        feasibleDriveDuration = tstamps(info.LastFeasibleIdx);
        % If robot is far from goal and only less than third of trajectory
        % is feasible, then an option is to re-plan the path to follow to
        % reach the goal.
        if info.LastFeasibleIdx ~= height(tstamps) && ...
                feasibleDriveDuration < (teb.LookAheadTime/3)
            route = plan(rrtstar,curpose,[27 18 -pi/2]);
            refpath = route.States;
            headingToNextPose = headingFromXY(refpath(:,1:2));
            refpath(2:end-1,3) = headingToNextPose(2:end-1);
            teb.ReferencePath = refpath;
        end
        timestamps = tstamps + simtime;

        % Show the updated information input to or output
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        % from controllerTEB
        clf
        show(localmap)
        hold on
        plot(refpath(:,1),refpath(:,2),".-",Color="#EDB120", ...
             DisplayName="Reference Path")
        quiver(curpath(:,1),curpath(:,2), ...
               cos(curpath(:,3)),sin(curpath(:,3)), ...
               0.2,Color="#A2142F",DisplayName="Current Path")
        quiver(curpose(:,1),curpose(:,2), ...
               cos(curpose(:,3)),sin(curpose(:,3)), ...
               0.5,"o",MarkerSize=20,ShowArrowHead="off", ...
               Color="#0072BD",DisplayName="Start Pose")
    end

    simtime = simtime+timestep;
    % Compute the instantaneous velocity to be sent to the robot from the
    % series of timestamped commands generated by controllerTEB
    velcmd = velocityCommand(velcmds,timestamps,simtime);
    % Very basic robot model, should be replaced by simulator.
    statedot = [velcmd(1)*cos(curpose(3)) ...
                velcmd(1)*sin(curpose(3)) ...
                velcmd(2)];
    curpose = curpose + statedot*timestep;

    if exist("hndl","var")
        delete(hndl)
    end
    hndl = quiver(curpose(:,1),curpose(:,2), ...
                  cos(curpose(:,3)),sin(curpose(:,3)), ...
                  0.5,"o",MarkerSize=20,ShowArrowHead="off", ...
                  Color="#D95319",DisplayName="Current Robot Pose");
    itr = itr + 1;
    drawnow
end
legend
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Input Arguments
controller — TEB controller
controllerTEB object

TEB controller, specified as a controllerTEB object.

curState — Current pose of robot
three-element vector of form [x y theta]

Current pose of the robot, specified as a three-element vector of the form [x y theta]. x and y specify
the robot position in meters. theta specifies the robot orientation in radians.
Data Types: single | double

curVel — Current velocity of robot
two-element vector of form [v w]

3 Methods

3-14



Current velocity of the robot, specified as a two-element vector of the form [v w]. v specifies the
linear velocity of the robot in meters per second. w specifies the angular velocity of the robot in
radians per second.
Data Types: single | double

Output Arguments
velcmds — Velocity commands
N-by-2 matrix

Velocity commands, returned as an N-by-2 matrix. The first column is the linear velocity in meters per
second, and the second column is the angular velocity in radians per second.
Data Types: double

timestamps — Timestamps corresponding to velocity commands
N-element column vector

Timestamps corresponding to velocity commands, returned as an N-element column vector.
Data Types: double

optPath — Optimized path
N-by-3 matrix

Optimized path, returned as an N-by-3 matrix. Each row is of the form [x y theta], which defines the
xy-position and orientation angle theta at a point in the path.

N is affected by the ReferenceDeltaTime and LookAheadTime properties of controller. The
algorithm tries to keep the difference between any two consecutive timestamps close to
ReferenceDeltaTime. If the gap between a pair of consecutive timestamps is greater than
ReferenceDeltaTime, the function adds poses and timestamps to the path. If the gap is less than
ReferenceDeltaTime, the function removes poses and timestamps from the path. In addition, the
algorithm tries to keep the final value of timestamps close to LookAheadTime, so increasing
LookAheadTime increases N as well.
Data Types: double

extraInfo — Extra information
structure

Extra information, returned as a structure. The fields of the structure are:

Field Description
LastFeasibleIdx The index of the last collision-free pose in the

optPath.
DistanceFromStartPose Distance of each pose in optPath from the first

pose in optPath. The value of curState is
always the first pose in optPath.
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Field Description
HasReachedGoal Indicates whether the robot has successfully

reached the last pose in the ReferencePath within
a tolerance, and returns as true if successful.
Otherwise, this value returns false.

TrajectoryCost Cost of optimized trajectory for cost functions in
the Timed Elastic Band algorithm.

Note If the value of the LastFeasibleIdx field is 1, and the HasReachedGoal field is false, then
no successful set of velocity commands or trajectory has been generated. Generate a new reference
path to the goal to continue the robot motion.

Data Types: struct

Version History
Introduced in R2023a

See Also
Objects
controllerTEB

Functions
clone
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copy
Create deep copy of navGraph object

Syntax
graph2 = copy(graph1)

Description
graph2 = copy(graph1) creates a deep copy of a navGraph object.

Examples

Create navGraph Object with State and Link Tables

Load data for states and links.

load navGraphData.mat

Create state and link tables.

stateTable = table(data.states,data.names,data.numLanes, ...
    VariableNames=["StateVector","Name","Lanes"]);
linkTable = table(data.links,data.linkWt,data.curvature, ...
    VariableNames=["EndStates","Weight","Curvature"]);

Create a navGraph object from the state and link tables.

graphObj = navGraph(stateTable,linkTable);

Create a deep copy of the navGraph object.

graph2 = copy(graphObj)

graph2 = 
  navGraph with properties:

           States: [8x3 table]
            Links: [7x3 table]
    LinkWeightFcn: @nav.algs.distanceEuclidean

Visualize the navGraph object.

show(graphObj)

 copy
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Find the link IDs of two state pairs. The function returns the link ID for the state pair ["G","A"].
However, it returns 0 as the link ID for the state pair ["C","D"] as the link does not exist in the
navGraph object.

linkIDS = findlink(navGraphObj,["G","A"; "C","D"])

linkIDS = 2×1

     5
     0

Input Arguments
graph1 — Graph object
navGraph object

Graph object, specified as a navGraph object.
Example: graphcopy = copy(graph)

Output Arguments
graph2 — Copy of graph object
navGraph object
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Copy of a graph object, returned as a navGraph object.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navGraph

Functions
findlink | findstate | index2state | state2index | successors | show
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findlink
Find IDs of links

Syntax
linkIDS = findlink(graph,statePairs)

Description
linkIDS = findlink(graph,statePairs) finds the link IDs linkIDS of the state pairs
statePairs, if they exist in the navGraph object graph.

Examples

Create navGraph Object with State and Link Tables

Load data for states and links.

load navGraphData.mat

Create state and link tables.

stateTable = table(data.states,data.names,data.numLanes, ...
    VariableNames=["StateVector","Name","Lanes"]);
linkTable = table(data.links,data.linkWt,data.curvature, ...
    VariableNames=["EndStates","Weight","Curvature"]);

Create a navGraph object from the state and link tables.

graphObj = navGraph(stateTable,linkTable);

Create a deep copy of the navGraph object.

graph2 = copy(graphObj)

graph2 = 
  navGraph with properties:

           States: [8x3 table]
            Links: [7x3 table]
    LinkWeightFcn: @nav.algs.distanceEuclidean

Visualize the navGraph object.

show(graphObj)
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Find the link IDs of two state pairs. The function returns the link ID for the state pair ["G","A"].
However, it returns 0 as the link ID for the state pair ["C","D"] as the link does not exist in the
navGraph object.

linkIDS = findlink(navGraphObj,["G","A"; "C","D"])

linkIDS = 2×1

     5
     0

Input Arguments
graph — Graph object
navGraph object

Graph object, specified as a navGraph object.

statePairs — State pairs
N-by-2 string array | N-by-2 cell array of character vectors | N-by-2 matrix of positive integers

State pairs, specified as pairs of state names or pairs of state IDs.

 findlink
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Specify the pairs of state names as an N-by-2 string array or N-by-2 cell array of character vectors.
Specify the pairs of state IDs as an N-by-2 matrix of positive integers. N is the number of state pairs
specified.
Data Types: single | double | cell | char | string

Output Arguments
linkIDS — Link IDs
column vector of positive integers

Link IDs, returned as a column vector of positive integers. When the function does not find a specified
state pair, the value for the corresponding element in linkIDS is 0.
Data Types: double

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navGraph

Functions
findstate | index2state | state2index | successors | show | copy
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findstate
Find IDs of states

Syntax
stateIDS = findstate(graph,stateData)

Description
stateIDS = findstate(graph,stateData) finds the state IDs stateIDS of the states specified
by stateData, if they exist in the navGraph object graph.

The function returns stateIDS when all elements of a row of stateData are identical to elements of
a row in the States table.

Examples

Find Indices of States in navGraph Object

Load navGraph data for states and links.

load navGraphData.mat

Create a table to use to search for the state ID.

stateData = table([3 6 0.142170047601527; 1 1 1],["F"; "A"],[2; 2], ...
                  VariableNames={'StateVector','Name','Lanes'});

Find the indices of the states.

id = findstate(navGraphObj,stateData)

id = 2×1

     6
     0

The navGraph states table contains a state corresponding to the first state data, so the function
returns its index. However, the states table does not contain a state that corresponds to the second
state, so the function returns 0.

navGraphObj.States

ans=8×3 table
          StateVector          Name     Lanes
    _______________________    _____    _____

    8          2    0.72176    {'A'}      2  
    1          1    0.29188    {'B'}      2  
    7          7    0.91777    {'C'}      2  
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    8         10    0.71458    {'D'}      2  
    5          1    0.54254    {'E'}      2  
    3          6    0.14217    {'F'}      2  
    2          9    0.37334    {'G'}      3  
    8          7    0.67413    {'H'}      2  

stateIDS = state2index(navGraphObj,stateData.StateVector)

stateIDS = 2×1

     6
     0

Input Arguments
graph — Graph object
navGraph object

Graph object, specified as a navGraph object.

stateData — State data
column vector of character vectors | column vector of string scalars | cell array of character vectors |
matrix | table

State data, specified as the names of the states, the state vectors, or a states table.

Specify the names of the states as a column vector of character vectors, column vector of string
scalars, or cell array of character vectors.

Specify the state vectors as a matrix in which each row represents a state vector. The state vectors
must be of the same size as those in the StateVector column of the States table.

Specify the states table as a table that the same columns as the States table.
Data Types: single | double | cell | char | string | table

Output Arguments
stateIDS — State IDs
column vector of positive integers

State IDs, returned as a column vector of positive integers. When the function does not find a
specified state pair, the value for the corresponding element in stateIDS is 0
Data Types: double

Version History
Introduced in R2023a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navGraph

Functions
findlink | index2state | state2index | successors | show | copy
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index2state
Find state vectors of state indices

Syntax
states = index2state(graph,stateIDS)

Description
states = index2state(graph,stateIDS) finds the state vectors states for the queried state
indices stateIDS, if they exist in the navGraph object graph.

Examples

Find Successive State Indices and Costs in navGraph Object

Load navGraph data for states and links.

load navGraphData.mat

Visualize the navGraph object.

show(navGraphObj);
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Find successive state indices and costs based on a state name.

[succIDS,costs] = successors(navGraphObj,"G")

succIDS = 2×1

     1
     8

costs = 2×1

   38.7759
   13.9383

Find the state vectors of the successive states.

states = index2state(navGraphObj,succIDS)

states = 2×3

    8.0000    2.0000    0.7218
    8.0000    7.0000    0.6741
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Input Arguments
graph — Graph object
navGraph object

Graph object, specified as a navGraph object.

stateIDS — State indices
column vector of positive integers

State indices, specified as a column vector of positive integers.
Data Types: single | double

Output Arguments
states — State vectors
matrix

State vectors, returned as a matrix in which each row represents a state vector. The state vectors
must be of the same size as those in the StateVector column of the States table in the navGraph
object graph.
Data Types: double

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navGraph

Functions
findlink | findstate | state2index | successors | show | copy
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show
Plot graph representation

Syntax
show(graph)
show(graph,Parent=ax)
axHandle = show( ___ )

Description
show(graph) plots the graph representation.

show(graph,Parent=ax) specifies the axes on which to plot the graph representation.

axHandle = show( ___ ) returns the axes handle of the graph representation plot, in addition to
any combination of input arguments from previous syntaxes.

Examples

Create navGraph Object with State and Link Tables

Load data for states and links.

load navGraphData.mat

Create state and link tables.

stateTable = table(data.states,data.names,data.numLanes, ...
    VariableNames=["StateVector","Name","Lanes"]);
linkTable = table(data.links,data.linkWt,data.curvature, ...
    VariableNames=["EndStates","Weight","Curvature"]);

Create a navGraph object from the state and link tables.

graphObj = navGraph(stateTable,linkTable);

Create a deep copy of the navGraph object.

graph2 = copy(graphObj)

graph2 = 
  navGraph with properties:

           States: [8x3 table]
            Links: [7x3 table]
    LinkWeightFcn: @nav.algs.distanceEuclidean

Visualize the navGraph object.

show(graphObj)
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Find the link IDs of two state pairs. The function returns the link ID for the state pair ["G","A"].
However, it returns 0 as the link ID for the state pair ["C","D"] as the link does not exist in the
navGraph object.

linkIDS = findlink(navGraphObj,["G","A"; "C","D"])

linkIDS = 2×1

     5
     0

Input Arguments
graph — Graph object
navGraph object

Graph object, specified as a navGraph object.
Example: show(graph)
Example: axHandle = show(graph);

ax — Axes on which to plot graph representation
Axes object

Axes on which to plot the graph representation, specified as an Axes object.

3 Methods

3-30



Example: show(graph,Parent=ax)
Example: axHandle = show(graph,Parent=ax);

Output Arguments
axHandle — Axes handle of graph representation plot
Axes object

Axes handle of the graph representation plot, returned as an Axes object.

Version History
Introduced in R2023a

See Also
Objects
navGraph

Functions
findlink | findstate | index2state | state2index | successors | copy
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state2index
Find indices for queried state vectors

Syntax
stateIDS = state2index(graph,states)

Description
stateIDS = state2index(graph,states) finds the state indices stateIDS for the queried state
vectors states, if they exist in the navGraph object graph.

Examples

Find Indices of States in navGraph Object

Load navGraph data for states and links.

load navGraphData.mat

Create a table to use to search for the state ID.

stateData = table([3 6 0.142170047601527; 1 1 1],["F"; "A"],[2; 2], ...
                  VariableNames={'StateVector','Name','Lanes'});

Find the indices of the states.

id = findstate(navGraphObj,stateData)

id = 2×1

     6
     0

The navGraph states table contains a state corresponding to the first state data, so the function
returns its index. However, the states table does not contain a state that corresponds to the second
state, so the function returns 0.

navGraphObj.States

ans=8×3 table
          StateVector          Name     Lanes
    _______________________    _____    _____

    8          2    0.72176    {'A'}      2  
    1          1    0.29188    {'B'}      2  
    7          7    0.91777    {'C'}      2  
    8         10    0.71458    {'D'}      2  
    5          1    0.54254    {'E'}      2  
    3          6    0.14217    {'F'}      2  
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    2          9    0.37334    {'G'}      3  
    8          7    0.67413    {'H'}      2  

stateIDS = state2index(navGraphObj,stateData.StateVector)

stateIDS = 2×1

     6
     0

Input Arguments
graph — Graph object
navGraph object

Graph object, specified as a navGraph object.

states — State vectors
matrix

State vectors, specified as a matrix in which each row represents a state vector. The state vectors
must be of the same size as those in the StateVector column of the States table in the navGraph
object graph.
Data Types: single | double

Output Arguments
stateIDS — State indices
column vector of positive integers

State indices, returned as a column vector of positive integers. When the function does not find a
specified state vector, the value for the corresponding element in stateIDS is 0.
Data Types: double

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navGraph

 state2index
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Functions
findlink | findstate | index2state | successors | show | copy

3 Methods
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successors
Find successive state indices and costs

Syntax
[succIDS,costs] = successors(graph,currID)

Description
[succIDS,costs] = successors(graph,currID) finds the state indices succIDS and the cost
of all states costs that are connected to the specified state currID using the directed link.

Examples

Find Successive State Indices and Costs in navGraph Object

Load navGraph data for states and links.

load navGraphData.mat

Visualize the navGraph object.

show(navGraphObj);
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Find successive state indices and costs based on a state name.

[succIDS,costs] = successors(navGraphObj,"G")

succIDS = 2×1

     1
     8

costs = 2×1

   38.7759
   13.9383

Find the state vectors of the successive states.

states = index2state(navGraphObj,succIDS)

states = 2×3

    8.0000    2.0000    0.7218
    8.0000    7.0000    0.6741
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Input Arguments
graph — Graph object
navGraph object

Graph object, specified as a navGraph object.

currID — Current state
positive integer | string scalar | character vector

Current state, specified as a positive integer, representing a state index, or as a string scalar or
character vector representing a state name.
Data Types: double | char | string

Output Arguments
succIDS — Successive state indices
column vector of positive integers

Successive state indices, returned as a column vector of positive integers.
Data Types: double

costs — Cost of all successive states
numeric column vector

Cost of all successive states, returned as a numeric column vector of the same size as succIDS. The
function computes costs using the Weight or LinkWeightFcn property of the navGraph object
graph.
Data Types: double

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
navGraph

Functions
findlink | findstate | index2state | state2index | show | copy
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copy
Create deep copy of A* path planner object

Syntax
planner2 = copy(planner1)

Description
planner2 = copy(planner1) creates a deep copy of the plannerAStar object planner1.

Examples

Plan Shortest Path Between Two States in Graph Using A-Star Path Planner

Load the Queensland road network.

load("queenslandRoutes","places","routes")

Specify states, links, and weights for a navGraph object.

states = places.utm;               % UTM coordinates of cities
names = places.name;               % Names of cities
links = [routes.start routes.end]; % Adjacent cities
weights = routes.time;             % Travel time between adjacent cities

Create a navGraph object.

graphObj = navGraph(states,links,Weight=weights, ...
                    Name=names);

Create a graph-based A* path planner.

planner = plannerAStar(graphObj);

Create a deep copy of the plannerAStar object.

planner2 = copy(planner)

planner2 = 
  plannerAStar with properties:

    HeuristicCostFcn: @nav.algs.distanceManhattan
          TieBreaker: 0
               Graph: [1x1 navGraph]

Specify a heuristic function returns an estimated time to reach the goal.

planner.HeuristicCostFcn = @(state1,state2) ...
    sum(abs(state1-state2),2)/100;
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Define the start and goal cities.

start = "Hughenden";
goal = "Brisbane";

Find the shortest path using the graph-based A* algorithm.

[pathOutput,solutionInfo] = plan(planner,start,goal);

Visualize the results.

h = show(graphObj);
set(h,XData=graphObj.States.StateVector(:,1), ...
      YData=graphObj.States.StateVector(:,2))
pathStateIDs = solutionInfo.PathStateIDs;
highlight(h,pathStateIDs,EdgeColor="#EDB120",LineWidth=4)
highlight(h,pathStateIDs(1),NodeColor="#77AC30",MarkerSize=5)
highlight(h,pathStateIDs(end),NodeColor="#D95319",MarkerSize=5)

Input Arguments
planner1 — A* path planner
plannerAStar object

A* path planner, specified as a plannerAStar object.

 copy
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Output Arguments
planner2 — Copy of A* path planner
plannerAStar object

Copy of A* path planner, returned as a plannerAStar object.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
plannerAStar | plan
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plan
Find shortest path between two states in graph

Syntax
path = plan(planner,start,goal)
[path,solutionInfo] = plan( ___ )

Description
path = plan(planner,start,goal) finds the shortest path path between a specified start and
goal in the graph using the specified A* path planner planner.

[path,solutionInfo] = plan( ___ ) returns the solution information of the path planning
solutionInfo.

Examples

Plan Shortest Path Between Two States in Graph Using A-Star Path Planner

Load the Queensland road network.

load("queenslandRoutes","places","routes")

Specify states, links, and weights for a navGraph object.

states = places.utm;               % UTM coordinates of cities
names = places.name;               % Names of cities
links = [routes.start routes.end]; % Adjacent cities
weights = routes.time;             % Travel time between adjacent cities

Create a navGraph object.

graphObj = navGraph(states,links,Weight=weights, ...
                    Name=names);

Create a graph-based A* path planner.

planner = plannerAStar(graphObj);

Create a deep copy of the plannerAStar object.

planner2 = copy(planner)

planner2 = 
  plannerAStar with properties:

    HeuristicCostFcn: @nav.algs.distanceManhattan
          TieBreaker: 0
               Graph: [1x1 navGraph]
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Specify a heuristic function returns an estimated time to reach the goal.

planner.HeuristicCostFcn = @(state1,state2) ...
    sum(abs(state1-state2),2)/100;

Define the start and goal cities.

start = "Hughenden";
goal = "Brisbane";

Find the shortest path using the graph-based A* algorithm.

[pathOutput,solutionInfo] = plan(planner,start,goal);

Visualize the results.

h = show(graphObj);
set(h,XData=graphObj.States.StateVector(:,1), ...
      YData=graphObj.States.StateVector(:,2))
pathStateIDs = solutionInfo.PathStateIDs;
highlight(h,pathStateIDs,EdgeColor="#EDB120",LineWidth=4)
highlight(h,pathStateIDs(1),NodeColor="#77AC30",MarkerSize=5)
highlight(h,pathStateIDs(end),NodeColor="#D95319",MarkerSize=5)
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Input Arguments
planner — A* path planner
plannerAStar object

A* path planner, specified as a plannerAStar object.

start — Start state of path
positive integer | string scalar | character vector | numeric vector

Start state of the path, specified as a positive integer, string scalar, character vector, or numeric
vector.

• Positive integer — Specify the state ID of the start state. The state ID is the index of the state in
the navGraph object in the Graph property of planner.

• String scalar or character vector — Specify the name of the state.
• Numeric vector — Specify the coordinates of the state.

Example: 1
Example: "Brisbane"
Example: [1095.91458671447 6947.04365801860]
Data Types: single | double | char | string

goal — Goal state of path
positive integer | string scalar | character vector | numeric vector

Goal state of the path, specified as a positive integer, string scalar, character vector, or numeric
vector.

• Positive integer — Specify the state ID of the start state. The state ID is the index of the state in
the navGraph object in the Graph property of planner.

• String scalar or character vector — Specify the name of the state.
• Numeric vector — Specify the coordinates of the state.

Example: 5
Example: "Hughenden"
Example: [208.622393818849 7691.91766093269]
Data Types: single | double | char | string

Output Arguments
path — Shortest path between states
numeric matrix

Shortest path between states, returned as a numeric matrix.
Data Types: double

solutionInfo — Solution information
structure
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Solution information, returned as a structure. The fields of the structure are:

Field Description
IsPathFound Indicates whether a path has been found. Returns

true if a path has been found. Otherwise, returns
false.

PathStateIDs List of IDs of the states along the path found by
A*. By default, the IDs are the numeric indices of
the states in the graph object. If you specify
names for the states while constructing the graph
object, this field contains the names instead.

PathCost Total cost of the path. If no path is found, then
the cost is NaN.

ExploredStateIDs List of IDs of the states explored by A* during the
search. By default, the IDs are the numeric
indices of the states in the graph object. If you
specify names for the states while constructing
the graph object, this field contains the names
instead.

NumExploredStates Number of states explored during the search.
Equal to the length of the ExploredStateIDs
list.

Data Types: struct

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
plannerAStar | copy
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axang
Convert transformation or rotation into axis-angle rotations

Syntax
angles = axang(transformation)
angles = axang(rotation)

Description
angles = axang(transformation) converts the rotation of the transformation transformation
to the axis-angle rotations angles.

angles = axang(rotation) converts the rotation rotation to the axis-angle rotations angles.

Examples

Convert SE(3) Transformation to Axis-Angle Rotation

Create SE(3) transformation with no translation but with a rotation defined by an axis-angle rotation.
Define the axis-rotation with vector of [0.5 0.25 0.5] to be the axis and a pi/2 rotation about
that axis.

axa1 = [0.5 0.25 0.5 pi/2];
T = se3(axa1,"axang");

Plot the axis-angle and the transformation on the same axes.

plot3([0 axa1(1)],[0 axa1(2)],[0 axa1(3)],LineWidth=1)
hold on
plotTransforms(T,FrameAxisLabels="on")

Get the axis-angle rotation from the transformation. Note that the vector of the axis-angle rotation
has a different magnitude from the axis-angle rotation specified to the transformation but the defined
axis and rotation are the same.

axa2 = axang(T)

axa2 = 1×4

    0.6667    0.3333    0.6667    1.5708

Plot the new axis-angle rotation on the same axis.

plot3([0 axa2(1)],[0 axa2(2)],[0 axa2(3)])
legend(["Original Rotation Axis","New Rotation Axis"])
hold off
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Convert SO(3) Rotation to Axis-Angle Rotation

Create SO(3) transformation with a rotation defined by an axis-angle rotation. Define the axis-rotation
with vector of [0.5 0.25 0.5] to be the axis and a pi/2 rotation about that axis.

axa1 = [0.5 0.25 0.5 pi/2];
R = so3(axa1,"axang");

Plot the axis-angle and the transformation on the same axes.

plot3([0 axa1(1)],[0 axa1(2)],[0 axa1(3)],LineWidth=1)
hold on
plotTransforms([0 0 0],R,FrameAxisLabels="on")

Get the axis-angle rotation from the transformation. Note that the vector of the axis-angle rotation
has a different magnitude from the axis-angle rotation specified to the transformation but the defined
axis and rotation are the same.

axa2 = axang(R)

axa2 = 1×4

    0.6667    0.3333    0.6667    1.5708
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Plot the new axis-angle rotation on the same axis.

plot3([0 axa2(1)],[0 axa2(2)],[0 axa2(3)])
legend(["Original Rotation Axis","New Rotation Axis"])
hold off

Input Arguments
transformation — Transformation
se3 object | N-element array of se3 objects

Transformation, specified as an se3 object or as an N-element array of se3 objects. N is the total
number of transformations.

rotation — Rotation
so3 object | N-element array of so3 objects

Rotation, specified as an so3 object or as an N-element array of so3 objects. N is the total number of
rotations.

Output Arguments
angles — Axis-angle rotation angles
N-by-4 matrix
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Axis-angle rotation angles, specified as an N-by-4 matrix of N axis-angle rotations. The first three
elements of every row specify the rotation axes, and the last element defines the rotation angle, in
radians.

Version History
Introduced in R2023a

See Also
se3 | so3
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eul
Convert transformation or rotation into Euler angles

Syntax
angles = eul(transformation)
angles = eul(rotation)
angles = eul( ___ ,sequence)

Description
angles = eul(transformation) converts the rotation of the transformation transformation to
the Euler angles angles.

angles = eul(rotation) converts the rotation rotation to the Euler angles angles.

angles = eul( ___ ,sequence) specifies the sequence of the Euler-angle rotations sequence
using any of the input arguments in previous syntaxes. For example, a sequence of "ZYX" first rotates
the z-axis, followed by the y-axis and x-axis.

Examples

Convert SE(3) Transformation to Euler Angles

Create SE(3) transformation with no translation but with a rotation defined by a Euler angles.

eul1 = [pi/4 pi/3 pi/8]

eul1 = 1×3

    0.7854    1.0472    0.3927

T = se3(eul1,"eul")

T = se3
    0.3536   -0.4189    0.8364         0
    0.3536    0.8876    0.2952         0
   -0.8660    0.1913    0.4619         0
         0         0         0    1.0000

Get the Euler angles from the transformation.

eul2 = eul(T)

eul2 = 1×3

    0.7854    1.0472    0.3927
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Convert SO(3) Rotation to Euler Angles

Create SO(3) rotation defined by a Euler angles.

eul1 = [pi/4 pi/3 pi/8]

eul1 = 1×3

    0.7854    1.0472    0.3927

R = so3(eul1,"eul")

R = so3
    0.3536   -0.4189    0.8364
    0.3536    0.8876    0.2952
   -0.8660    0.1913    0.4619

Get the Euler angles from the transformation.

eul2 = eul(R)

eul2 = 1×3

    0.7854    1.0472    0.3927

Input Arguments
transformation — Transformation
se3 object | N-element array of se3 objects

Transformation, specified as an se3 object or as an N-element array of se3 objects. N is the total
number of transformations.

rotation — Rotation
so3 object | N-element array of so3 objects

Rotation, specified as an so3 object or as an N-element array of so3 objects. N is the total number of
rotations.

sequence — Axis-rotation sequence
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Axis-rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
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• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Each character indicates the corresponding axis. For example, if the sequence is "ZYX", then the
three specified Euler angles are interpreted in order as a rotation around the z-axis, a rotation around
the y-axis, and a rotation around the x-axis. When applying this rotation to a point, it will apply the
axis rotations in the order x, then y, then z.
Data Types: string | char

Output Arguments
angles — Euler angles
M-by-3 matrix

Euler angles, returned as an M-by-3 matrix of Euler rotation angles. Each row represents one Euler
angle set.

Version History
Introduced in R2023a

See Also
se3 | so3
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dist
Calculate distance between transformations

Syntax
distance = dist(transformation1,transformation2)
distance = dist(transformation1,transformation2,weights)
distance = dist(rotation1,rotation2)

Description
distance = dist(transformation1,transformation2) returns the distance distance
between the poses represented by transformation transformation1 and transformation
transformation2.

For the homogeneous transformation objects se2, and se3, the dist function calculates translational
and rotational distance independently and combines them in a weighted sum. Translational distance
is the Euclidean distance, and rotational distance is the angular difference between the rotation
quaternions of transformation1 and transformation2.

distance = dist(transformation1,transformation2,weights) specifies the weights
weights for the translational and rotational distances for calculating the weighted sum of two
homogeneous transformations.

distance = dist(rotation1,rotation2) returns the distance distance between the poses
represented by transformation rotation1 and transformation rotation2.

For the homogeneous transformation objects se2, and se3, the dist function calculates translational
and rotational distance independently and combines them in a weighted sum. Translational distance
is the Euclidean distance, and rotational distance is the angular difference between the rotation
quaternions of rotation1 and rotation2.

For rotation objects so2, and so3, the dist function calculates the rotational distance as the angular
difference between the rotation quaternions of rotation1 and rotation2.

Input Arguments
transformation1 — First transformation
se2 object | se3 object | N-element array of transformation objects

First transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformation1 as an array, each element must be of the same type.

Either transformation1 or transformation2 must be a scalar transformation object of the same
type. For example, if transformation1 is an array of se2 objects, transformation2 must be a
scalar se2 object.

transformation2 — Last transformation
se2 object | se3 object | N-element array of transformation objects
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Last transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformation2 as an array, each element must be of the same type.

Either transformation1 or transformation2 must be a scalar transformation object of the same
type. For example, if transformation1 is an array of se2 objects, transformation2 must be a
scalar se2 object.

rotation1 — First rotation
so2 object | so3 object | N-element array of rotation objects

First rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotation1 as an array, each
element must be of the same type.

Either rotation1 or rotation2 must be a scalar rotation object of the same type. For example, if
rotation1 is an array of so2 objects, rotation2 must be a scalar so2 object.

rotation2 — Last rotation
so2 object | so3 object | N-element array of rotation objects

Last rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotation2 as an array, each
element must be of the same type.

Either rotation1 or rotation2 must be a scalar rotation object of the same type. For example, if
rotation1 is an array of se2 objects, rotation2 must be a scalar se2 object.

weights — Weights of translation and rotation in distance sum
[1.0 0.1] (default) | two-element row vector

Weights of the translation and rotation in the distance sum, specified as a two-element row vector in
the form [WeightXYZ WeightQ]. WeightXYZ is the translational weight and WeightQ is the rotational
weight. Both weights must be nonnegative numeric values.
Data Types: single | double

Output Arguments
distance — Distance between transformations or rotations
nonnegative numeric scalar

Distance between transformations, returned as a nonnegative numeric scalar. The distance calculate
changes depending on the transformation object type of transformation1 and transformation2
or rotation1 and rotation2:

• se2 and se3 — The dist function calculates translational and rotational distance independently
and combines them in a weighted sum specified by the weights argument. The translational
distance is the Euclidean distance between transformation1 and transformation2. The
rotational distance is the angular difference between the rotations of transformation1 and
transformation2.

• so2 and so3 — The dist function calculates the rotational distance as the angular difference
between the rotations of rotation1 and rotation2.
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To calculate the rotational distance, the dist function converts the rotation matrix of
transformation1 and transformation2 or rotation1 and rotation2 into quaternion
objects and uses the quaternion dist function to calculate the angular distance.

Version History
Introduced in R2022b

See Also
Functions
normalize | interp | transform | plotTransforms

Objects
se2 | se3 | so2 | so3
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interp
Interpolate between transformations

Syntax
transformation0 = interp(transformation1,transformation2,points)
rotation0 = interp(rotation1,rotation2,points)
___  = interp( ___ ,transformation2,N)

Description
transformation0 = interp(transformation1,transformation2,points) interpolates at
normalized positions points between transformations transformation1 and transformation2.

The function interpolates rotations using a quaternion spherical linear interpolation, and linearly
interpolates translations.

rotation0 = interp(rotation1,rotation2,points) interpolates at normalized rotations
points between rotations rotation1 and rotation2.

The function interpolates rotations using a quaternion spherical linear interpolation

___  = interp( ___ ,transformation2,N) interpolates N steps between the specified
transformations or rotations.

Input Arguments
transformation1 — First transformation
se2 object | se3 object | N-element array of transformation objects

First transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformation1 as an array, each element must be of the same type.

Either transformation1 or transformation2 must be a scalar transformation object of the same
type. For example, if transformation1 is an array of se2 objects, transformation2 must be a
scalar se2 object.

transformation2 — Last transformation
se2 object | se3 object | N-element array of transformation objects

Last transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformation2 as an array, each element must be of the same type.

Either transformation1 or transformation2 must be a scalar transformation object of the same
type. For example, if transformation1 is an array of se2 objects, transformation2 must be a
scalar se2 object.
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rotation1 — First rotation
so2 object | so3 object | N-element array of rotation objects

First rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotation1 as an array, each
element must be of the same type.

Either rotation1 or rotation2 must be a scalar rotation object of the same type. For example, if
rotation1 is an array of so2 objects, rotation2 must be a scalar so2 object.

rotation2 — Last rotation
so2 object | so3 object | N-element array of rotation objects

Last rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotation2 as an array, each
element must be of the same type.

Either rotation1 or rotation2 must be a scalar rotation object of the same type. For example, if
rotation1 is an array of se2 objects, rotation2 must be a scalar se2 object.

points — Normalized positions
N-element row vector of values in range [0, 1]

Normalized positions, specified as an N-element row vector of values in the range [0, 1], where N is
the total number of interpolated positions. Normalized positions 0 and 1 correspond to the first and
last transformations or rotations, respectively.
Example: interp(tf1,tf2,0.5) interpolates a transformation halfway between tf1 and tf2.
Example: interp(r1,r2,0.5) interpolates a rotation halfway between r1 and r2.

N — Number of interpolated positions
positive integer

Number of interpolated positions, specified as a positive integer.
Example: interp(tf1,tf2,5) interpolates five transformations between transformations tf1 and
tf2.
Example: interp(r1,r2,7) interpolates seven rotations between rotations r1 and r2.

Output Arguments
transformation0 — Interpolated transformations
N-by-M matrix

Interpolated transformations, returned as an N-by-M matrix of the same transformation type as
transformation1 and transformation2, where N is the length of the longer argument between
transformation1 and transformation2, and M is the number of interpolated positions. Each row
represents an interpolated transformation between transformation1 and transformation2.

rotation0 — Interpolated rotations
N-by-M matrix

Interpolated rotations, returned as an N-by-M matrix of the same rotation type as rotation1 and
rotation2, where N is the length of the longer argument between rotation1 and rotation2, and
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M is the number of interpolated positions. Each row represents an interpolated transformation
between rotation1 and rotation2.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | normalize | transform | plotTransforms

Objects
se2 | se3 | so2 | so3
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mrdivide, /
Transformation or rotation right division

Syntax
transformationC = transformationA/transformationB
rotationC = rotationA/rotationB

Description
transformationC = transformationA/transformationB right divides transformation
transformationA by transformation transformationB and returns the quotient, transformation
transformationC. transformationC is the same value as
transformationA*inv(transformationB).

You can use division to compose a sequence of transformations, so that transformationC
represents a transformation where the inverse of transformationB is applied first, followed by
transformationA.

rotationC = rotationA/rotationB right divides transformation rotationA by transformation
rotationB and returns the quotient, transformation rotationC. rotationC is the same value as
rotationA*inv(rotationB).

Input Arguments
transformationA — First transformation
se2 object | se3 object | N-element array of transformation objects

First transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformationA as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

transformationB — Last transformation
se2 object | se3 object | N-element array of transformation objects

Last transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformationB as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

rotationA — First rotation
so2 object | so3 object | N-element array of rotation objects
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First rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotationA as an array, each
element must be of the same type.

Either rotationA or rotationB must be a scalar rotation object of the same type. For example, if
rotationA is an array of so2 objects, rotationB must be a scalar so2 object.

rotationB — Last rotation
so2 object | so3 object | N-element array of rotation objects

Last rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotationB as an array, each
element must be of the same type.

Either rotationA or rotationB must be a scalar rotation object of the same type. For example, if
rotationA is an array of se2 objects, rotationB must be a scalar se2 object.

Output Arguments
transformationC — Transformation quotient
se2 object | se3 object | N-element array of transformation objects

Transformation quotient, returned as a scalar se2 object, a scalar se3 object, or as an N-element
array of the same transformation type as transformationA and transformationB. N is the length
of the longer argument between transformationA and transformationB and each row
represents the quotient between transformationA and transformationB.

rotationC — Rotation quotient
so2 object | so3 object | N-element array of rotation objects

Rotation quotient, returned as a scalar so2 object, a scalar so3 object, or as an N-element array of
the same rotation type as rotationA and rotationB. N is the length of the longer argument
between rotationA and rotationB and each row represents the quotient between rotationA and
rotationB.

Version History
Introduced in R2022b

See Also
Functions
rdivide, ./ | mtimes, * | times, .*

Objects
se2 | se3 | so2 | so3
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mtimes, *
Transformation or rotation multiplication

Syntax
transformationC = transformationA*transformationB
rotationC = rotationA*rotationB

Description
transformationC = transformationA*transformationB performs transformation
multiplication between transformation transformationA and transformation transformationB
and returns the product, transformation transformationC.

You can use transformation multiplication to compose a sequence of transformations, so that
transformationC represents a transformation where transformationB is applied first, followed
by transformationA.

rotationC = rotationA*rotationB performs rotation multiplication between rotation
rotationA and rotation rotationB and returns the product, rotation rotationC.

You can use rotation multiplication to compose a sequence of rotations, so that rotationC
represents a rotation where rotationB is applied first, followed by rotationA.

Input Arguments
transformationA — First transformation
se2 object | se3 object | N-element array of transformation objects

First transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformationA as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

transformationB — Last transformation
se2 object | se3 object | N-element array of transformation objects

Last transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformationB as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

rotationA — First rotation
so2 object | so3 object | N-element array of rotation objects
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First rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotationA as an array, each
element must be of the same type.

Either rotationA or rotationB must be a scalar rotation object of the same type. For example, if
rotationA is an array of so2 objects, rotationB must be a scalar so2 object.

rotationB — Last rotation
so2 object | so3 object | N-element array of rotation objects

Last rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotationB as an array, each
element must be of the same type.

Either rotationA or rotationB must be a scalar rotation object of the same type. For example, if
rotationA is an array of se2 objects, rotationB must be a scalar se2 object.

Output Arguments
transformationC — Transformation product
se2 object | se3 object | N-element array of transformation objects

Transformation product, returned as a scalar se2 object, a scalar se3 object, or as an N-element
array of the same transformation type as transformationA and transformationB. N is the length
of the longer argument between transformationA and transformationB and each row
represents the product between transformationA and transformationB.

rotationC — Rotation product
so2 object | so3 object | N-element array of rotation objects

Rotation product, returned as a scalar so2 object, a scalar so3 object, or as an N-element array of
the same rotation type as rotationA and rotationB. N is the length of the longer argument
between rotationA and rotationB and each row represents the product between rotationA and
rotationB.

Version History
Introduced in R2022b

See Also
Functions
mrdivide, / | rdivide, ./ | times, .*

Objects
se2 | se3 | so2 | so3
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normalize
Normalize transformation or rotation matrix

Syntax
transformationN = normalize(transformation)
rotationN = normalize(rotation)
___  = normalize( ___ ,Method=normMethod)

Description
transformationN = normalize(transformation) normalizes the rotation of the
transformation transformation and returns a transformation, transformationN, that is
equivalent to transformation, but with normalized rotation.

rotationN = normalize(rotation) normalizes the rotation of the rotation rotation and
returns a rotation, rotationN, that is equivalent to rotation, but with normalized rotation.

Note The transformation and rotation objects do not automatically normalize their rotations. You
must use normalize each time you need to normalize a transformation or rotation. You may need to
do this if:

• You specified an unnormalized input transformation or rotation at the creation of the
transformation or rotation object.

• You performed many operations on the transformation or rotation objects such as mtimes, *,
which may cause the transformation or rotation to become unnormalized due to data type
precision.

___  = normalize( ___ ,Method=normMethod) specifies the normalization method normMethod
that the normalize function uses to normalize the specified transformation or rotation.

Input Arguments
transformation — Transformation
se2 object | se3 object | N-element array of transformation objects

Transformation, specified as a scalar se2 object, a scalar se3 object, or an N-element array of
transformation objects. N is the total number of transformations.

If you specify transformation as an array, each element must be of the same type.

rotation — Rotation
so2 object | so3 object | N-element array of rotation objects

Rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of rotation
objects. N is the total number of rotations.
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If you specify rotation as an array, each element must be of the same type.

normMethod — Normalization method
"quat" (default) | "cross" | "svd"

Normalization method, specified as one of these options:

• "quat" — Convert the rotation submatrix into a normalized quaternion and then convert the
normalized quaternion back to a transformation or rotation object. For more information, see the
normalize of the quaternion object.

• "cross" — Normalize the third column of the rotation submatrix and then determine the other
two columns through cross products.

• "svd" — Use singular value decomposition to find the closest orthonormal matrix by setting
singular values to 1. This solves the orthogonal Procrustes problem.

Data Types: char | string

Output Arguments
transformationN — Normalized transformation
se2 object | se3 object

Normalized transformation, returned as an se2 or se3 object.

rotationN — Normalized rotation
so2 object | so3 object

Normalized rotation, returned as an so2 or so3 object.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | transform | plotTransforms

Objects
se2 | se3 | so2 | so3 | quaternion
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plot
Draw transformation coordinate frame

Syntax
plot(T)
plot( ___ ,Name=Value)
AX = plot( ___ ,Name=Value)

Description
plot(T) draws a 3-D coordinate frame of transformation T with labeled axes. The x-axis is colored in
red, the y-axis in green, and the z-axis in blue.

plot( ___ ,Name=Value) specifies optional arguments using one or more name-value arguments.
For example, plot(T,AxisLabels="off") hides the xyz labels.

AX = plot( ___ ,Name=Value) returns the axis object, AX, containing the transformation plots.

Input Arguments
T — Transformation
SE3 object | SO3 object | M-element array of SE3 or SO3 objects

Transformation, specified as either an individual SE3 or SO3 object, or as an M-element array of
transformation objects. M is the total number of transformations. Ever transformation in T is plotted
if T is an M-element array.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plot(T,AxisLabels="off")

AxisLabels — Show axis labels
"on" (default) | "off"

Show axis labels, specified as "off" or "on".
Example: plot(T,AxisLabels="off")
Data Types: char | string

FrameLabel — Name of coordinate frame
"" (default) | string scalar | character vector
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Name of the coordinate frame, specified as a string scalar or character vector.
Example: plot(T,FrameLabel="TF1")
Data Types: char | string

Color — Use uniform color for coordinate frame
"off" (default) | "on"

Use uniform color for coordinate frame, specified as "off" or "on".
Example: plot(T,Color="on")
Data Types: char | string

Output Arguments
AX — Axes handle
Axes object

Axes handle, specified as an Axes object.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
interpolate | normalize | rotm | showdetails | tform | transformPoints | trvec

Objects
SE3 | SO3

 plot

3-65



quat
Convert transformation or rotation to numeric quaternion

Syntax
q = quat(transformation)
q = quat(rotation)

Description
q = quat(transformation) creates a quaternion q from the rotation of the transformation
transformation.

q = quat(rotation) creates a quaternion q from the rotation rotation.

Examples

Convert SE(3) Transformation to Numeric Quaternion

Create SE(3) transformation with zero translation and a rotation defined by a numeric quaternion.
Use the eul2quat function to create the numeric quaternion.

quat1 = eul2quat([0 0 deg2rad(30)])

quat1 = 1×4

    0.9659    0.2588         0         0

T = se3(quat1,"quat")

T = se3
    1.0000         0         0         0
         0    0.8660   -0.5000         0
         0    0.5000    0.8660         0
         0         0         0    1.0000

Convert the transformation back into a numeric quaternion.

quat2 = quat(T)

quat2 = 1×4

    0.9659    0.2588         0         0
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Convert SO(3) Rotation to Numeric Quaternion

Create SO(3) rotation defined by a numeric quaternion. Use the eul2quat function to create the
numeric quaternion.

quat1 = eul2quat([0 0 deg2rad(30)])

quat1 = 1×4

    0.9659    0.2588         0         0

R = so3(quat1,"quat")

R = so3
    1.0000         0         0
         0    0.8660   -0.5000
         0    0.5000    0.8660

Convert the rotation into a numeric quaternion.

quat2 = quat(R)

quat2 = 1×4

    0.9659    0.2588         0         0

Input Arguments
transformation — Transformation
se3 object | N-element array of se3 objects

Transformation, specified as an se3 object or as an N-element array of se3 objects. N is the total
number of transformations.

rotation — Rotation
so3 object | N-element array of so3 objects

Rotation, specified as an so3 object or as an N-element array of so3 objects. N is the total number of
rotations.

Output Arguments
q — Quaternion rotation angles
M-by-4 matrix

Quaternion rotation angles, returned as an M-by-4 matrix, where each row is of the form [qw qx qy
qz]. M is the total number of transformations or rotations specified.

Version History
Introduced in R2023a
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See Also
se3 | so3

3 Methods
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rdivide, ./
Element-wise transformation or rotation right division

Syntax
transformationC = transformationA./transformationB
rotationC = rotationA./rotationB

Description
transformationC = transformationA./transformationB divides transformations element-
by-element by dividing each element of transformation transformationA with the corresponding
element of transformation transformationB and returns the quotient, transformation
transformationC.

rotationC = rotationA./rotationB divides rotations element-by-element by dividing each
element of rotation rotationA with the corresponding element of rotation rotationB and returns
the quotient, rotation rotationC.

Input Arguments
transformationA — First transformation
se2 object | se3 object | N-element array of transformation objects

First transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformationA as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

transformationB — Last transformation
se2 object | se3 object | N-element array of transformation objects

Last transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformationB as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

rotationA — First rotation
so2 object | so3 object | N-element array of rotation objects

First rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotationA as an array, each
element must be of the same type.
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Either rotationA or rotationB must be a scalar rotation object of the same type. For example, if
rotationA is an array of so2 objects, rotationB must be a scalar so2 object.

rotationB — Last rotation
so2 object | so3 object | N-element array of rotation objects

Last rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotationB as an array, each
element must be of the same type.

Either rotationA or rotationB must be a scalar rotation object of the same type. For example, if
rotationA is an array of se2 objects, rotationB must be a scalar se2 object.

Output Arguments
transformationC — Transformation quotient
se2 object | se3 object | N-element array of transformation objects

Transformation quotient, returned as a scalar se2 object, a scalar se3 object, or as an N-element
array of the same transformation type as transformationA and transformationB. N is the length
of the longer argument between transformationA and transformationB and each row
represents the quotient between transformationA and transformationB.

rotationC — Rotation quotient
so2 object | so3 object | N-element array of rotation objects

Rotation quotient, returned as a scalar so2 object, a scalar so3 object, or as an N-element array of
the same rotation type as rotationA and rotationB. N is the length of the longer argument
between rotationA and rotationB and each row represents the quotient between rotationA and
rotationB.

Version History
Introduced in R2022b

See Also
Functions
mrdivide, / | mtimes, * | times, .*

Objects
se2 | se3 | so2 | so3
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rotm
Extract rotation matrix

Syntax
rotationMatrix = rotm(transformation)
rotationMatrix = rotm(rotation)

Description
rotationMatrix = rotm(transformation) returns the rotation matrix rotationMatrix from
the SE(2) or SE(3) transformation transformation.

rotationMatrix = rotm(rotation) returns the rotation matrix rotationMatrix from the
SO(2) or SO(3) rotation rotation.

Input Arguments
transformation — Transformation
se2 object | se3 object | N-element array of transformation objects

Transformation, specified as a scalar se2 object, a scalar se3 object, or an N-element array of
transformation objects. N is the total number of transformations.

If you specify transformation as an array, each element must be of the same type.

rotation — Rotation
so2 object | so3 object | N-element array of rotation objects

Rotation, specified as a scalar so2 object, a scalar so3 object, or an N-element array of rotation
objects. N is the total number of rotations.

If you specify rotation as an array, each element must be of the same type.

Output Arguments
rotationMatrix — Rotation matrix
2-by-2-by-N array | 3-by-3-by-N array

Rotation matrix, returned as a 2-by-2-by-N array for 2-D transformations or a 3-by-3-by-N array for 3-
D transformations. N is the total number of transformations.

Version History
Introduced in R2022b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | normalize | tform | transform | trvec | plotTransforms

Objects
se2 | se3 | so2 | so3
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showdetails
Display transformation in compact form

Syntax
showdetails(transformation)
showdetails(rotation)
showdetails( ___ Name=Value)

Description
showdetails(transformation) displays the translational and rotational components of the
transformation transformation on a single line. The rotation units are in degrees.

showdetails(rotation) displays the rotational components of the rotation rotation on a single
line.

showdetails( ___ Name=Value) specifies additional options using one or more name-value
arguments.

Input Arguments
transformation — Transformation
se2 object | se3 object | N-element array of transformation objects

Transformation, specified as a scalar se2 object, a scalar se3, or an N-element array of
transformation objects. N is the total number of transforms.

If you specify transformation as an array, each element must be of the same type. Additionally,
showdetails prints the details on a new line for each of the N transformations.

rotation — Rotation
so2 object | so3 object | N-element array of rotation objects

Rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of rotation
objects. N is the total number of rotations.

If you specify rotation as an array, each element must be of the same type. Additionally,
showdetails prints the details on a new line for each of the N rotations.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: showdetails(T,Sequence="ZYX")
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Sequence — Euler angle sequence order
"ZYX" (default) | "ZYZ" | "ZXY" | "ZXZ" | "YXY" | "YZX" | "YXZ" | "YZY" | "XYX" | "XYZ" | "XZX" |
"XZY"

Euler angle sequence order, specified as one of these string scalars:

• "ZYX" (default)
• "ZYZ"
• "ZXY"
• "ZXZ"
• "YXY"
• "YZX"
• "YXZ"
• "YZY"
• "XYX"
• "XYZ"
• "XZX"
• "XZY"

Each character indicates the corresponding axis. For example if the sequence is "ZYX", then the
printed order of rotation angles is z-axis, y-axis, and then the x-axis.

This parameter does not affect the output when transformation contains an se2 object or if
rotation contains an so2 object.
Example: showdetails(T,Sequence="ZYX")
Data Types: char | string

AngleUnit — Angle unit
"deg" (default) | "rad"

Angle unit, specified as "deg" for degrees, or "rad" for radians.
Example: showdetails(T,AngleUnit="rad")
Data Types: char | string

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | normalize | transform

3 Methods
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Objects
se2 | se3 | so2 | so3
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theta
Convert transformation or rotation to 2-D rotation angle

Syntax
angle = theta(transformation)
angle = theta(rotation)

Description
angle = theta(transformation) extracts the 2-D rotation angle angle from the transformation
transformation.

angle = theta(rotation) extracts the 2-D rotation angle angle from the rotation rotation.

Examples

Convert SE(2) Transformation to Angle

Create SE(2) transformation with a rotation defined by an angle pi/2.

angle1 = pi/2

angle1 = 1.5708

T = se2(angle1,"theta")

T = se2
    0.0000   -1.0000         0
    1.0000    0.0000         0
         0         0    1.0000

Get the rotation angle from the transformation.

angle2 = theta(T)

angle2 = 1.5708

Convert SO(2) Transformation to Angle

Create SO(2) rotation defined by an angle pi/2.

angle1 = pi/2

angle1 = 1.5708

R = so2(angle1,"theta")
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R = so2
    0.0000   -1.0000
    1.0000    0.0000

Get the rotation angle from the rotation.

angle2 = theta(R)

angle2 = 1.5708

Input Arguments
transformation — Transformation
se2 object | N-by-M array of se2 objects

Transformation, specified as an se2 object or as an N-by-M array of se2 objects. N is the total
number of transformations.

If transformation is a N-by-M array, the angle argument is the same size and contains an angle
for each of the se2 objects specified in the array.
Data Types: single | double

rotation — Rotation
so2 object | N-by-M array of so2 objects

Rotation, specified as an so2 object or as an N-by-M array of so2 objects. N is the total number of
rotations.

If rotation is a N-by-M array, the angle argument is the same size and contains an angle for each
of the so2 objects specified in the array.

Output Arguments
angle — Rotation angle
numeric scalar | N-by-M matrix

Rotation angle, returned as a numeric scalar for a scalar input and as an N-by-M matrix for an array
input. N and M are the dimensions of the input rotation or transformation argument. Each
element of the matrix is an angle, in radians, and each angle corresponds to a rotation or
transformation in the input at the same index location.

The rotation angle is counterclockwise positive when you look along the specified axis toward the
origin.
Data Types: single | double

Version History
Introduced in R2023a
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See Also
se2 | so2

3 Methods
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tform
Extract homogeneous transformation

Syntax
transformationMatrix = tform(transformation)
transformationMatrix = tform(rotation)

Description
transformationMatrix = tform(transformation) extracts the homogeneous transformation
matrix transformationMatrix that corresponds to the SE(2) or SE(3) transformation
transformation.

transformationMatrix = tform(rotation) creates a homogeneous transformation matrix
transformationMatrix, with zero translation, that corresponds to the SO(2) or SO(3) rotation
rotation.

Input Arguments
transformation — Transformation
se2 object | se3 object | N-element array of transformation objects

Transformation, specified as a scalar se2 object, a scalar se3 object, or an N-element array of
transformation objects. N is the total number of transformations.

If you specify transformation as an array, each element must be of the same type.

rotation — Rotation
so2 object | so3 object | N-element array of rotation objects

Rotation, specified as a scalar so2 object, a scalar so3 object, or an N-element array of rotation
objects. N is the total number of rotations.

If you specify rotation as an array, each element must be of the same type.

Output Arguments
transformationMatrix — Homogeneous transformation matrix
3-by-3-by-N array | 4-by-4-by-N array

Homogeneous transformation matrix, returned as a 3-by-3-by-N array for se2 and so2 objects, or a 4-
by-4-by-N array for se3 and so3 objects. N is the total number of transformations.

Version History
Introduced in R2022b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotm | trvec

Objects
se2 | se3 | so2 | so3

3 Methods
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times, .*
Element-wise transformation or rotation multiplication

Syntax
transformationC = transformationA.*transformationB
rotationC = rotationA.*rotationB

Description
transformationC = transformationA.*transformationB multiplies transformations element-
by-element by multiplying each element of transformation transformationA with the
corresponding element of transformation transformationB and returns the product,
transformation transformationC.

rotationC = rotationA.*rotationB multiplies rotations element-by-element by multiplying
each element of rotation rotationA with the corresponding element of rotation rotationB and
returns the product, rotation rotationC.

Input Arguments
transformationA — First transformation
se2 object | se3 object | N-element array of transformation objects

First transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformationA as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

transformationB — Last transformation
se2 object | se3 object | N-element array of transformation objects

Last transformation, specified as a scalar se2 object, a scalar se3 object, or as an N-element array of
transformation objects, where N is the total number of transformations. If you specify
transformationB as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

rotationA — First rotation
so2 object | so3 object | N-element array of rotation objects

First rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotationA as an array, each
element must be of the same type.
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Either rotationA or rotationB must be a scalar rotation object of the same type. For example, if
rotationA is an array of so2 objects, rotationB must be a scalar so2 object.

rotationB — Last rotation
so2 object | so3 object | N-element array of rotation objects

Last rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of
rotation objects, where N is the total number of rotations. If you specify rotationB as an array, each
element must be of the same type.

Either rotationA or rotationB must be a scalar rotation object of the same type. For example, if
rotationA is an array of se2 objects, rotationB must be a scalar se2 object.

Output Arguments
transformationC — Transformation product
se2 object | se3 object | N-element array of transformation objects

Transformation product, returned as a scalar se2 object, a scalar se3 object, or as an N-element
array of the same transformation type as transformationA and transformationB. N is the length
of the longer argument between transformationA and transformationB and each row
represents the product between transformationA and transformationB.

rotationC — Rotation product
so2 object | so3 object | N-element array of rotation objects

Rotation product, returned as a scalar so2 object, a scalar so3 object, or as an N-element array of
the same rotation type as rotationA and rotationB. N is the length of the longer argument
between rotationA and rotationB and each row represents the product between rotationA and
rotationB.

Version History
Introduced in R2022b

See Also
Functions
mrdivide, / | rdivide, ./ | mtimes, *

Objects
se2 | se3 | so2 | so3
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transform
Apply rigid body transformation to points

Syntax
tpoints = transform(transformation,points)
tpoints = transform(rotation,points)
tpoints = transform( ___ ,isCol=format)

Description
tpoints = transform(transformation,points) applies the rigid body transformation
transformation to the input points points, and returns the transformed points tpoints.

tpoints = transform(rotation,points) applies the rotation rotation to the input points
points, and returns the transformed points tpoints.

tpoints = transform( ___ ,isCol=format) sets the expected format of the input points
points to be either column-wise or row-wise by using the logical flag format in addition to the input
arguments from the previous syntax.

Input Arguments
transformation — Transformation
se2 object | se3 object | N-element array of transformation objects

Transformation, specified as a scalar se2 object, a scalar se3 object, or an N-element array of
transformation objects. N is the total number of transformations.

If you specify transformation as an array, each element must be of the same type.

rotation — Rotation
so2 object | so3 object | N-element array of rotation objects

Rotation, specified as a scalar so2 object, a scalar so3 object, or as an N-element array of rotation
objects. N is the total number of rotations.

If you specify rotation as an array, each element must be of the same type.

points — Points to transform
N-by-D-by-M array | D-by-N-by-M array

Points to transform, specified as an N-by-D-by-M array, where:

• D is the dimension of the transformation, defined as 2 for 2-D transformations and 3 for 3-D
transformations.

• N is the total number of input points to transform.
• M is the total number of transforms to perform on each point.
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For 2-D transformations and rotations, each row specifies a point in the form [X Y]. For 3-D
transformations and rotations, each row specifies a point in the form [X Y Z].

If you specify format as true, then you must specify points as a D-by-N-by-M array, where each
column specifies a point.
Data Types: single | double

format — Point format
false or 0 (default) | true or 1

Point format, specified as a logical 0 (false) or 1 (true). If you specify this argument as true, you
must specify the points in points as columns. Otherwise, specify points as rows.
Example: isCol=true
Data Types: logical

Output Arguments
tpoints — Transformed points
N-by-D-by-M array | D-by-N-by-M array

Transformed points, returned as an N-by-D-by-M array, where:

• D is the dimension of the transformation, defined as 2 for 2-D transformations and rotations and 3
for 3-D transformations or rotations.

• N is the total number of input points to transform.
• M is the total number of transforms to perform on each point.

For 2-D transformations and rotations, each row specifies a point in the form [X Y]. For 3-D
transformations and rotations, each row specifies a point in the form [X Y Z].

If you specify format as true, tpoints is returned as a D-by-N-by-M array, where each column
specifies a point.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | normalize | rotm | tform | trvec | plotTransforms

Objects
se2 | se3 | so2 | so3
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trvec
Extract translation vector

Syntax
translationVector = trvec(transformation)

Description
translationVector = trvec(transformation) extracts the translation vector
translationVector of the SE(2) or SE(3) transformation transformation.

Input Arguments
transformation — Transformation
se2 object | se3 object | N-element array of transformation objects

Transformation, specified as a scalar se2 object, a scalar se3 object, or an N-element array of
transformation objects. N is the total number of transformations.

If you specify transformation as an array, each element must be of the same type.

Output Arguments
translationVector — Translation vector
N-by-2 matrix | N-by-3 matrix

Translation vector, returned as an N-by-2 matrix for se2 objects or an N-by-3 matrix for se3 objects.
N is the total number of transformations or rotations, and each row is a translation vector in the form
[X Y] for 2-D transformations or [X Y Z] for 3-D transformations.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | normalize | rotm | tform | transform | plotTransforms

Objects
se2 | se3
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xytheta
Convert transformation or rotation to compact 2-D pose representation

Syntax
pose = xytheta(transformation)
pose = xytheta(rotation)

Description
pose = xytheta(transformation) converts a transformation transformation to a compact 2-
D pose representation pose.

pose = xytheta(rotation) converts a rotation rotation to a compact 2-D pose representation
pose with no translation.

Examples

Convert SE(2) Transformation to 2-D Compact Pose

Create SE(2) transformation with an xy-position of [2 3] and a rotation defined by an angle pi/2.

pose1 = [2 3 pi/2];
T = se2(pose1,"xytheta")

T = se2
    0.0000   -1.0000    2.0000
    1.0000    0.0000    3.0000
         0         0    1.0000

Convert the transformation back into a compact pose.

pose2 = xytheta(T)

pose2 = 1×3

    2.0000    3.0000    1.5708

Convert SO(2) Rotation to 2-D Compact Pose

Create SO(2) rotation defined by an angle pi/2.

angle = pi/2

angle = 1.5708

R = so2(angle,"theta")

3 Methods

3-86



R = so2
    0.0000   -1.0000
    1.0000    0.0000

Convert the transformation back into a compact pose.

pose = xytheta(R)

pose = 1×3

         0         0    1.5708

Input Arguments
transformation — Transformation
se2 object | N-element array of se2 objects

Transformation, specified as an se2 object or as an N-element array of se2 objects. N is the total
number of transformations.
Data Types: single | double

rotation — Rotation
so2 object | N-element array of so2 objects

Rotation, specified as an so2 object or as an N-element array of so2 objects. N is the total number of
rotations.

Output Arguments
pose — 2-D compact pose
N-by-3 matrix

2-D compact pose, returned as an N-by-3 matrix, where each row is of the form [x y theta]. N is the
total number of transformations specified. x and y are the xy-position and theta is the rotation about
the z-axis.

Version History
Introduced in R2023a

See Also
se2 | so2
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xyzquat
Convert transformation or rotation to compact 3-D pose representation

Syntax
pose = xyzquat(transformation)
pose = xyzquat(rotation)

Description
pose = xyzquat(transformation) converts a transformation transformation to a compact 3-
D pose representation pose.

pose = xyzquat(rotation) converts a rotation rotation to a compact 3-D pose representation
pose with no translation.

Examples

Convert SE(3) Transformation to 3-D Compact Pose

Create SE(3) transformation with an xyz-position of [2 3 1] and a rotation defined by a numeric
quaternion. Use the eul2quat function to create the numeric quaternion.

trvec = [2 3 1];
quat1 = eul2quat([0 0 deg2rad(30)]);
pose1 = [trvec quat1]

pose1 = 1×7

    2.0000    3.0000    1.0000    0.9659    0.2588         0         0

T = se3(pose1,"xyzquat")

T = se3
    1.0000         0         0    2.0000
         0    0.8660   -0.5000    3.0000
         0    0.5000    0.8660    1.0000
         0         0         0    1.0000

Convert the transformation back into a compact pose.

pose2 = xyzquat(T)

pose2 = 1×7

    2.0000    3.0000    1.0000    0.9659    0.2588         0         0

3 Methods

3-88



Convert SO(3) Rotation to 3-D Compact Pose

Create SO(3) rotation defined by a numeric quaternion. Use the eul2quat function to create the
numeric quaternion.

quat1 = eul2quat([0 0 deg2rad(30)])

quat1 = 1×4

    0.9659    0.2588         0         0

R = so3(quat1,"quat")

R = so3
    1.0000         0         0
         0    0.8660   -0.5000
         0    0.5000    0.8660

Convert the rotation into a 3-D compact pose.

pose1 = xyzquat(R)

pose1 = 1×7

         0         0         0    0.9659    0.2588         0         0

Input Arguments
transformation — Transformation
se3 object | N-element array of se3 objects

Transformation, specified as an se3 object or as an N-element array of se3 objects. N is the total
number of transformations.

rotation — Rotation
so3 object | N-element array of so3 objects

Rotation, specified as an so3 object or as an N-element array of so3 objects. N is the total number of
rotations.

Output Arguments
pose — 3-D compact pose
M-by-3 matrix

3-D compact pose, returned as an M-by-3 matrix, where each row is of the form [x y z qx qy qz qw]. M
is the total number of transformations specified. x, y, z comprise the xyz-position and qw, qx, qy, and
qz are the quaternion rotations in w, x, y, and z, respectively.

Version History
Introduced in R2023a
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See Also
se3 | so3

3 Methods
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addPlanner
Add path planner for benchmarking

Syntax
addPlanner(plannerBM,planFcn)
addPlanner(plannerBM,planFcn,initializationFcn)
addPlanner( ___ ,Name=Value)

Description
addPlanner(plannerBM,planFcn) adds the plan function of a planner as a function handle
planFcn to the plannerBenchmark object.

addPlanner(plannerBM,planFcn,initializationFcn) also adds the initialization function of a
planner as a function handle initializationFcn to the plannerBenchmark object.

addPlanner( ___ ,Name=Value) specifies options using one or more name-value arguments in
addition to any combination of input arguments from previous syntaxes.

Examples

Benchmark 2-D Path Planners

Create an occupancy map from an example map.

load("exampleMaps.mat","simpleMap");
map = occupancyMap(simpleMap);

Create a state validator with stateSpaceSE2 using the map.

sv = validatorOccupancyMap(stateSpaceSE2,Map=map);

Specify the start and goal states.

start = [5 8 pi/2];
goal = [7 18 pi/2];

Create a plannerBenchmark object.

pbo = plannerBenchmark(sv,start,goal);

Define the function handles for the initialization functions of the planners.

plannerHAFcn = @(sv)plannerHybridAStar(sv);
plannerRRTSFcn = @(sv)plannerRRTStar(sv.StateSpace,sv);

Define the function handle for the plan function, which is common for both planners.

plnFcn = @(initOut,s,g)plan(initOut,s,g);

Add the path planners for benchmarking.
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addPlanner(pbo,plnFcn,plannerHAFcn);
addPlanner(pbo,plnFcn,plannerRRTSFcn,PlannerName="ppRRTStar");

Set the rng for repetitive results.

rng('default')

Run the path planners for the number of times specified in runCount to collect metrics.

runCount = 5;
runPlanner(pbo,runCount)

Initializing plannerHAFcn_plnFcn ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using plannerHAFcn_plnFcn.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.
Initializing ppRRTStar ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using ppRRTStar.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.

Access path length metric for all the runs on the environment.

[pLenSummary,pLenData] = metric(pbo,"pathLength")

pLenSummary=2×4 table
                            Mean     Median    StdDev     sampleSize
                           ______    ______    _______    __________

    plannerHAFcn_plnFcn    10.349    10.349          0        5     
    ppRRTStar               12.84      12.9    0.67112        5     

pLenData=2×5 table
                            Run1      Run2      Run3      Run4      Run5 
                           ______    ______    ______    ______    ______

    plannerHAFcn_plnFcn    10.349    10.349    10.349    10.349    10.349
    ppRRTStar                13.8      12.9      12.2        12      13.3

Visualize all the metrics.

show(pbo)

3 Methods

3-92



Closely inspect the clearance metric.

figure
show(pbo,"clearance")
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Input Arguments
plannerBM — Path planner benchmark
plannerBenchmark object

Path planner benchmark, specified as a plannerBenchmark object.

planFcn — Plan function of path planner
function handle

Plan function of path planner, specified as a function handle.

The function handle should be of the form, @(initOut,start,goal)planFcn(...), where
initOut is the output of the initialization function.

If the initializationFcn input is not specified, the function handle should be
@(env,start,goal)planFcn(...), where env is the Environment property of
plannerBenchmark object.

The first output of planFcn must be either a navPath object, m-by-2, or m-by-3 matrix.
Data Types: function_handle

initializationFcn — Initialization function of path planner
function handle
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Initialization function of path planner, specified as a function handle.

The function handle should be of the form, @(env)initializationFcn(...), where env is the
Environment property of plannerBenchmark object.

The output of initializationFcn is the first input to the planFcn function handle.
Data Types: function_handle

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addPlanner(pbo,plnFcn,plannerRRTSFcn,PlannerName="ppRRTStar")

PlannerName — Name of planner
character vector | string scalar

Name of planner, specified as character vector or string scalar.

The default planner name depends on one of the following,

• If workspace variable name of initializationFcn and planFcn are initVar and planVar,
respectively, the default planner name will be "initVar_planVar".

• If the optional initializationFcn input is not specified then the default planner name will be
"planVar".

• If the function handles are specified as anonymous functions directly inside the addPlanner
function, the default planner name will be "CustomInitFcn_CustomPlanFcn".

• If the optional initializationFcn input is not specified and the planFcn function handle is
specified as an anonymous function directly then the default planner name will be
"CustomPlanFcn".

Data Types: char | string

NumPlanOutput — Number of expected output from plan function
1 (default) | positive scalar

Number of expected output from plan function, specified as a positive scalar.
Data Types: single | double

Version History
Introduced in R2022a

See Also
Objects
plannerBenchmark
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Functions
copy | metric | report | runPlanner | show

3 Methods
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copy
Create deep copy of plannerBenchmark object

Syntax
plannerBM2 = copy(plannerBM1)

Description
plannerBM2 = copy(plannerBM1) creates a deep copy of the plannerBenchmark object with
the same properties.

Examples

Create Copy of plannerBenchmark Object

Create an occupancy map from an example map.

load("exampleMaps.mat","simpleMap");
map = occupancyMap(simpleMap);

Specify the start and goal states.

start = [5 8 pi/2];
goal = [7 18 pi/2];

Create a plannerBenchmark object using the map.

pbo = plannerBenchmark(map,start,goal)

pbo = 
  plannerBenchmark with properties:

      Environment: [1x1 occupancyMap]
            Start: [5 8 1.5708]
             Goal: [7 18 1.5708]
    PlannerOutput: [1x1 struct]

Create a copy of plannerBenchmark object.

pboNew = copy(pbo)

pboNew = 
  plannerBenchmark with properties:

      Environment: [1x1 occupancyMap]
            Start: [5 8 1.5708]
             Goal: [7 18 1.5708]
    PlannerOutput: [1x1 struct]

 copy

3-97



Input Arguments
plannerBM1 — Path planner benchmark
plannerBenchmark object

Path planner benchmark, specified as a plannerBenchmark object.

Output Arguments
plannerBM2 — Copy of path planner benchmark
plannerBenchmark object

Copy of path planner benchmark, returned as a plannerBenchmark object.

Version History
Introduced in R2022a

See Also
Objects
plannerBenchmark

Functions
addPlanner | metric | report | runPlanner | show

3 Methods
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metric
Return path planner metrics

Syntax
metricSummary = metric(plannerBM)
metricSummary = metric(plannerBM,metricName)
[metricSummary,metricData] = metric(plannerBM)
[metricSummary,metricData] = metric(plannerBM,metricName)

Description
metricSummary = metric(plannerBM) returns the summary of all the path planner metrics as a
table.

metricSummary = metric(plannerBM,metricName) returns the summary of a specific metric.

[metricSummary,metricData] = metric(plannerBM) returns the metricData table with the
metric values across each run for all metrics and metricSummary table with the summary of all
metrics.

[metricSummary,metricData] = metric(plannerBM,metricName) returns the summary and
the values of a specific metric.

Examples

Benchmark 2-D Path Planners

Create an occupancy map from an example map.

load("exampleMaps.mat","simpleMap");
map = occupancyMap(simpleMap);

Create a state validator with stateSpaceSE2 using the map.

sv = validatorOccupancyMap(stateSpaceSE2,Map=map);

Specify the start and goal states.

start = [5 8 pi/2];
goal = [7 18 pi/2];

Create a plannerBenchmark object.

pbo = plannerBenchmark(sv,start,goal);

Define the function handles for the initialization functions of the planners.

plannerHAFcn = @(sv)plannerHybridAStar(sv);
plannerRRTSFcn = @(sv)plannerRRTStar(sv.StateSpace,sv);
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Define the function handle for the plan function, which is common for both planners.

plnFcn = @(initOut,s,g)plan(initOut,s,g);

Add the path planners for benchmarking.

addPlanner(pbo,plnFcn,plannerHAFcn);
addPlanner(pbo,plnFcn,plannerRRTSFcn,PlannerName="ppRRTStar");

Set the rng for repetitive results.

rng('default')

Run the path planners for the number of times specified in runCount to collect metrics.

runCount = 5;
runPlanner(pbo,runCount)

Initializing plannerHAFcn_plnFcn ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using plannerHAFcn_plnFcn.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.
Initializing ppRRTStar ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using ppRRTStar.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.

Access path length metric for all the runs on the environment.

[pLenSummary,pLenData] = metric(pbo,"pathLength")

pLenSummary=2×4 table
                            Mean     Median    StdDev     sampleSize
                           ______    ______    _______    __________

    plannerHAFcn_plnFcn    10.349    10.349          0        5     
    ppRRTStar               12.84      12.9    0.67112        5     

pLenData=2×5 table
                            Run1      Run2      Run3      Run4      Run5 
                           ______    ______    ______    ______    ______

    plannerHAFcn_plnFcn    10.349    10.349    10.349    10.349    10.349
    ppRRTStar                13.8      12.9      12.2        12      13.3

Visualize all the metrics.

show(pbo)
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Closely inspect the clearance metric.

figure
show(pbo,"clearance")
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Input Arguments
plannerBM — Path planner benchmark
plannerBenchmark object

Path planner benchmark, specified as a plannerBenchmark object.

metricName — Metric name
"clearance" | "executionTime" | "initializationTime" | "isPathValid" | "pathLength"
| "smoothness"

Metric name, specified as "clearance", "executionTime", "initializationTime",
"isPathValid", "pathLength", or "smoothness".
Data Types: char | string

Output Arguments
metricSummary — Metric summary
table

Metric summary, returned as table. The summary includes mean, median, standard deviation, and
sample size for metrics of numeric type. For the metrics of logical type, the summary includes the
TrueCount, FalseCount, and SuccessRate. TrueCount is the number of times the metric value is
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true. FalseCount is the number of times the metric value is false. SuccessRate is the ratio of
TrueCount to total runs of planner expressed in percentage.
Data Types: table

metricData — Metric value
table

Metric value, returned as table. The table contains the metric values across each run for all metrics.
Data Types: table

Tips
• If the metric value can not be computed due to empty states in path output or error during plan

function execution, NaN will be displayed for corresponding values in metric data tables. The show
function will not display any value for metrics with NaN value.

• If the path output is navPath, metrics are calculated using the state space in navPath.
• If the path output is a m-by-2 matrix, state space is assumed as stateSpaceSE2 with theta as 0

for all poses.
• If the path output is a m-by-3 matrix, the third column in the path output is assumed as theta and

subsequently stateSpaceSE2 is assumed as the state space.
• If environment is validatorOccupancyMap, the metric isPathValid is computed using the
specified environment.

• If environment is occupancyMap or binaryOccupancyMap, default validatorOccupancyMap
is created using the specified environment as Map and state space is derived as above.

• The value of ValidationDistance property is assumed as 0.1*(1/resolution of map).

Version History
Introduced in R2022a

See Also
Objects
plannerBenchmark

Functions
addPlanner | copy | report | runPlanner | show
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report
Create benchmark report

Syntax
report(plannerBM)
report(plannerBM,filename)
report(plannerBM,filename,Name=Value)

Description
report(plannerBM) creates and opens a benchmark report as a live script (.mlx) in the MATLAB
editor. The function saves the report in the current working directory with the default file name.

Note The report function also exports the input plannerBenchmark object to a MAT file and
places the file in a folder called plannerBenchmark, located in the same directory as the saved
report.

report(plannerBM,filename) specifies the name and location filename of the saved report.

report(plannerBM,filename,Name=Value) specifies options using one or more name-value
arguments. For example, report(plannerBM,"reportFile",Open=false) creates a benchmark
report file named reportFile.mlx and saves it in the current working directory, but does not open
the report in the MATLAB editor.

Examples

Generate Benchmark Report for 2-D Path Planners

Create an occupancy map from an example map.

load("exampleMaps.mat","simpleMap");
map = occupancyMap(simpleMap);

Create a state validator in the SE(2) state space using the map.

sv = validatorOccupancyMap(stateSpaceSE2,Map=map);

Specify the start and goal states.

start = [5 8 pi/2];
goal = [7 18 pi/2];

Create a plannerBenchmark object.

pbo = plannerBenchmark(sv,start,goal);

Define the function handles for the initialization functions of the planners.
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plannerHAFcn = @(sv)plannerHybridAStar(sv);
plannerRRTSFcn = @(sv)plannerRRTStar(sv.StateSpace,sv);

Define the function handle for the plan function, which is shared by both planners.

plnFcn = @(initOut,s,g)plan(initOut,s,g);

Add the path planners for benchmarking to the plannerBenchmark object.

addPlanner(pbo,plnFcn,plannerHAFcn);
addPlanner(pbo,plnFcn,plannerRRTSFcn,PlannerName="ppRRTStar");

Configure the random number generator to ensure a repeatable result.

rng("default")

Run the path planners five times each to collect metrics.

runCount = 5;
runPlanner(pbo,runCount)

Initializing plannerHAFcn_plnFcn ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using plannerHAFcn_plnFcn.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.
Initializing ppRRTStar ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using ppRRTStar.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.

Generate a benchmark report file named reportFile.mlx that contains the clearance and
smoothness metrics. The function opens the report in the MATLAB editor.

report(pbo,"reportFile",Metric=["clearance","smoothness"])

Run the reportFile.mlx to visualize the benchmark results of the specified 2-D path planners for
each specified metric.

Input Arguments
plannerBM — Path planner benchmark
plannerBenchmark object

Path planner benchmark, specified as a plannerBenchmark object.

filename — Name of report file
"report.mlx" (default) | string scalar | character vector
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Name of the report file, specified as string scalar or character vector. The file name can include an
absolute path, relative path, or no path. Specifying the .mlx extension is optional.
Example: "reportFile"
Example: "reportFile.mlx"
Example: "mydir/reportFile"
Example: "mydir/reportFile.mlx"
Example: "C:/mydir/reportFile"
Example: "C:/mydir/reportFile.mlx"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: report(plannerBM,"reportFile",Open=false) creates a benchmark report file
named reportFile.mlx in the current directory, but does not open the report in the MATLAB
editor.

Metric — Metrics to include in report
["clearance","executionTime","initializationTime","isPathValid","pathLength",
"smoothness"] (default) | string scalar | character vector | string array | cell array of character
vectors

Metrics to include in the report, specified as a string scalar, character vector, string array, or cell
array of character vectors of supported metrics. The supported metrics are:

• "clearance"
• "executionTime"
• "initializationTime"
• "isPathValid"
• "pathLength"
• "smoothness"

Example: Metric="clearance"
Example: Metric='clearance'
Example: Metric=["clearance","executionTime"]
Example: Metric={'clearance','executionTime'}
Data Types: char | string | cell

Exclude — Content sections to exclude from report
"None" (default) | string scalar | character vector | string array | cell array of character vectors

Content sections to exclude from the report, specified as a string scalar, character vector, string
array, or a cell array of character vectors of supported contents of exclusion. The supported contents
of exclusion are:
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• "PathVisualization"
• "DetailedTable"

Specifying "PathVisualization" excludes the Visualize Path on Map section from the report.
Specifying "DetailedTable" excludes the metric tables containing the metric results for the
planners from the individual planning executions.
Example: Exclude="PathVisualization"
Example: Exclude='PathVisualization'
Example: Exclude=["PathVisualization","DetailedTable"]
Example: Exclude={'PathVisualization','DetailedTable'}
Data Types: char | string | cell

Open — Report opens in editor
true or 1 (default) | false or 0

Report opens in the editor, specified as a logical 1 (true) or 0 (false). When you specify this
argument as true, the function opens the report in the MATLAB editor. Otherwise, it does not open
the report in the editor.
Example: Open=false
Data Types: logical

Version History
Introduced in R2022b

See Also
Objects
plannerBenchmark

Functions
addPlanner | copy | runPlanner | show | metric
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runPlanner
Run path planners

Syntax
runPlanner(plannerBM)
runPlanner(plannerBM,runCount)
runPlanner( ___ ,Verbose=Value)

Description
runPlanner(plannerBM) runs all the path planners once.

runPlanner(plannerBM,runCount) specifies the number of times to run all the path planners.
The function collects outputs of initialization function and plan function. The function also calculates
the metric, executionTime for the plan function and the metric, initializationTime for the
initialization function.

runPlanner( ___ ,Verbose=Value) specifies verbose which display function progress. Value of
verbose is specified as "on" or "off". The default value of verbose is "on".

Examples

Benchmark 2-D Path Planners

Create an occupancy map from an example map.

load("exampleMaps.mat","simpleMap");
map = occupancyMap(simpleMap);

Create a state validator with stateSpaceSE2 using the map.

sv = validatorOccupancyMap(stateSpaceSE2,Map=map);

Specify the start and goal states.

start = [5 8 pi/2];
goal = [7 18 pi/2];

Create a plannerBenchmark object.

pbo = plannerBenchmark(sv,start,goal);

Define the function handles for the initialization functions of the planners.

plannerHAFcn = @(sv)plannerHybridAStar(sv);
plannerRRTSFcn = @(sv)plannerRRTStar(sv.StateSpace,sv);

Define the function handle for the plan function, which is common for both planners.

plnFcn = @(initOut,s,g)plan(initOut,s,g);
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Add the path planners for benchmarking.

addPlanner(pbo,plnFcn,plannerHAFcn);
addPlanner(pbo,plnFcn,plannerRRTSFcn,PlannerName="ppRRTStar");

Set the rng for repetitive results.

rng('default')

Run the path planners for the number of times specified in runCount to collect metrics.

runCount = 5;
runPlanner(pbo,runCount)

Initializing plannerHAFcn_plnFcn ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using plannerHAFcn_plnFcn.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.
Initializing ppRRTStar ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using ppRRTStar.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.

Access path length metric for all the runs on the environment.

[pLenSummary,pLenData] = metric(pbo,"pathLength")

pLenSummary=2×4 table
                            Mean     Median    StdDev     sampleSize
                           ______    ______    _______    __________

    plannerHAFcn_plnFcn    10.349    10.349          0        5     
    ppRRTStar               12.84      12.9    0.67112        5     

pLenData=2×5 table
                            Run1      Run2      Run3      Run4      Run5 
                           ______    ______    ______    ______    ______

    plannerHAFcn_plnFcn    10.349    10.349    10.349    10.349    10.349
    ppRRTStar                13.8      12.9      12.2        12      13.3

Visualize all the metrics.

show(pbo)
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Closely inspect the clearance metric.

figure
show(pbo,"clearance")
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Input Arguments
plannerBM — Path planner benchmark
plannerBenchmark object

Path planner benchmark, specified as a plannerBenchmark object.

runCount — Number of times of execution of plan functions
1 (default) | positive scalar

Number of times of execution of plan functions, specified as a positive scalar.
Data Types: single | double

Version History
Introduced in R2022a

See Also
Objects
plannerBenchmark

 runPlanner

3-111



Functions
addPlanner | copy | metric | report | show
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show
Visualize path planner metrics

Syntax
show(plannerBM)
axHandle = show(plannerBM)
[ ___ ] = show(plannerBM,metricName)

Description
show(plannerBM) visualizes all the path planner metrics in a figure as box plots and bar graphs.

axHandle = show(plannerBM) returns the axes handle of the figure used to plot all the metrics.

[ ___ ] = show(plannerBM,metricName) visualizes a specific metric.

Examples

Benchmark 2-D Path Planners

Create an occupancy map from an example map.

load("exampleMaps.mat","simpleMap");
map = occupancyMap(simpleMap);

Create a state validator with stateSpaceSE2 using the map.

sv = validatorOccupancyMap(stateSpaceSE2,Map=map);

Specify the start and goal states.

start = [5 8 pi/2];
goal = [7 18 pi/2];

Create a plannerBenchmark object.

pbo = plannerBenchmark(sv,start,goal);

Define the function handles for the initialization functions of the planners.

plannerHAFcn = @(sv)plannerHybridAStar(sv);
plannerRRTSFcn = @(sv)plannerRRTStar(sv.StateSpace,sv);

Define the function handle for the plan function, which is common for both planners.

plnFcn = @(initOut,s,g)plan(initOut,s,g);

Add the path planners for benchmarking.

addPlanner(pbo,plnFcn,plannerHAFcn);
addPlanner(pbo,plnFcn,plannerRRTSFcn,PlannerName="ppRRTStar");
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Set the rng for repetitive results.

rng('default')

Run the path planners for the number of times specified in runCount to collect metrics.

runCount = 5;
runPlanner(pbo,runCount)

Initializing plannerHAFcn_plnFcn ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using plannerHAFcn_plnFcn.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.
Initializing ppRRTStar ...
Done.
Planning a path from the start pose (5 8 1.5708) to the goal pose (7 18 1.5708) using ppRRTStar.
Executing run 1.
Executing run 2.
Executing run 3.
Executing run 4.
Executing run 5.

Access path length metric for all the runs on the environment.

[pLenSummary,pLenData] = metric(pbo,"pathLength")

pLenSummary=2×4 table
                            Mean     Median    StdDev     sampleSize
                           ______    ______    _______    __________

    plannerHAFcn_plnFcn    10.349    10.349          0        5     
    ppRRTStar               12.84      12.9    0.67112        5     

pLenData=2×5 table
                            Run1      Run2      Run3      Run4      Run5 
                           ______    ______    ______    ______    ______

    plannerHAFcn_plnFcn    10.349    10.349    10.349    10.349    10.349
    ppRRTStar                13.8      12.9      12.2        12      13.3

Visualize all the metrics.

show(pbo)
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Closely inspect the clearance metric.

figure
show(pbo,"clearance")
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Input Arguments
plannerBM — Path planner benchmark
plannerBenchmark object

Path planner benchmark, specified as a plannerBenchmark object.

metricName — Metric name
"clearance" | "executionTime" | "initializationTime" | "isPathValid" | "pathLength"
| "smoothness"

Metric name, specified as "clearance", "executionTime", "initializationTime",
"isPathValid", "pathLength", or "smoothness".
Data Types: char | string

Output Arguments
axHandle — Axes used to plot metrics
axes object | uiaxes object

Axes used to plot path, returned as either an axes or uiaxes object.
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Version History
Introduced in R2022a

See Also
Objects
plannerBenchmark

Functions
addPlanner | copy | metric | report | runPlanner
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copy
Create deep copy of plannerPRM object

Syntax
planner2 = copy(planner1)

Description
planner2 = copy(planner1) creates a deep copy of the plannerPRM object with the same
properties.

Examples

Create Copy of plannerPRM Object

Create an occupancy map from an example map and set the map resolution as 10 cells/meter.

map = load("exampleMaps.mat").simpleMap;
map = occupancyMap(map,10);

Create a state space and update the state space bounds to be the same as the map limits.

ss = stateSpaceSE2;
ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create a state validator with stateSpaceSE2 using the map and set the validation distance.

sv = validatorOccupancyMap(ss,Map=map);
sv.ValidationDistance = 0.01;

Create a plannerPRM object.

planner = plannerPRM(ss,sv)

planner = 
  plannerPRM with properties:

               StateSpace: [1x1 stateSpaceSE2]
           StateValidator: [1x1 validatorOccupancyMap]
    MaxConnectionDistance: Inf
              MaxNumNodes: 50

Create a copy of the plannerPRM object.

plannerNew = copy(planner)

plannerNew = 
  plannerPRM with properties:

               StateSpace: [1x1 stateSpaceSE2]
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           StateValidator: [1x1 validatorOccupancyMap]
    MaxConnectionDistance: Inf
              MaxNumNodes: 50

Input Arguments
planner1 — Path planner
plannerPRM object

Path planner, specified as a plannerPRM object.

Output Arguments
planner2 — Copy of path planner
plannerPRM object

Copy of path planner, returned as a plannerPRM object.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
plannerPRM

Functions
graphData | plan
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graphData
Retrieve graph as digraph object

Syntax
graph = graphData(planner)

Description
graph = graphData(planner) retrieves graph as a digraph object. The digraph object is
created when the plannerPRM object is created with default or user specified values for the
MaxNumNodes and MaxConnectionDistance properties.

Examples

Retrieve Graph from Probabilistic Roadmap Path Planner

Load an example map into the workspace, and use it to create an occupancy map with a resolution of
10 cells/meter.

load("exampleMaps.mat","simpleMap");
map = occupancyMap(simpleMap,10);

Create a state space object and update the state space bounds to match the map limits.

ss = stateSpaceSE2;
ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create a state validator for the occupancy map using the state space object and set the validation
distance.

sv = validatorOccupancyMap(ss,Map=map);
sv.ValidationDistance = 0.01;

Create a probabilistic roadmap path planner object.

planner = plannerPRM(ss,sv);

Retrieve the network graph as a digraph object.

graph = graphData(planner);

Extract the nodes and edges from the graph.

edges = table2array(graph.Edges);
nodes = table2array(graph.Nodes);

Plot the map and graph.

show(sv.Map)
hold on
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plot(nodes(:,1),nodes(:,2),"*",Color=[0 0 1],LineWidth=2)
for i = 1:size(edges,1)
    % Samples states at distance 0.02 meters.
    states = interpolate(ss,nodes(edges(i,1),:), ...
                         nodes(edges(i,2),:),0:0.02:1);
    plot(states(:,1),states(:,2),Color=[0 0 1])
end

Input Arguments
planner — Path planner
plannerPRM object

Path planner, specified as a plannerPRM object.

Output Arguments
graph — Graph data
digraph object

Graph data, returned as a digraph object.
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Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
plannerPRM | digraph

Functions
copy | plan
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plan
Plan path between start and goal states on roadmap

Syntax
path = plan(planner,startState,goalState)
[path,solutionInfo] = plan(planner,startState,goalState)

Description
path = plan(planner,startState,goalState) returns an obstacle-free path as a navPath
object between the start state and the goal state within a roadmap that contains a network graph of
connected nodes.

[path,solutionInfo] = plan(planner,startState,goalState) also returns
solutionInfo as a structure that contains the solution information of the path planning.

Examples

Plan Obstacle-Free Path Using Probabilistic Roadmap Path Planner

Create an occupancy map from an example map and set the map resolution as 10 cells/meter.

map = load("exampleMaps.mat").simpleMap;
map = occupancyMap(map,10);

Create a state space and update the state space bounds to be the same as the map limits.

ss = stateSpaceSE2;
ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create a state validator with stateSpaceSE2 using the map and set the validation distance.

sv = validatorOccupancyMap(ss,Map=map);
sv.ValidationDistance = 0.01;

Create a plannerPRM object.

planner = plannerPRM(ss,sv);

Retrieve graph as a digraph object.

graph = graphData(planner);

Extract nodes and edges from graph.

edges = table2array(graph.Edges);
nodes = table2array(graph.Nodes);

Specify the start and goal states.
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start = [0.5 0.5 0];
goal = [2.5 0.2 0];

Plot map and graph.

show(sv.Map)
hold on
plot(nodes(:,1),nodes(:,2),"*","Color","b","LineWidth",2)
for i = 1:size(edges,1)
    % Samples states at distance 0.02 meters.
    states = interpolate(ss,nodes(edges(i,1),:), ...
                         nodes(edges(i,2),:),0:0.02:1);
    plot(states(:,1),states(:,2),"Color","b")
end
plot(start(1),start(2),"*","Color","g","LineWidth",3)
plot(goal(1),goal(2),"*","Color","r","LineWidth",3)

Plan a path with default settings. Set the rng seed for repeatability.

rng(100,"twister");
[pthObj, solnInfo] = plan(planner,start,goal);

Visualize the results.

if solnInfo.IsPathFound
    interpolate(pthObj,1000);
    plot(pthObj.States(:,1),pthObj.States(:,2), ...
         "Color",[0.85 0.325 0.098],"LineWidth",2)
else
    disp("Path not found")
end
hold off
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Plan Path Through 3-D Occupancy Map Using Probabilistic Roadmap Planner

Load a 3-D occupancy map of a city block into the workspace. Specify the threshold to consider cells
as obstacle-free.

mapData = load("dMapCityBlock.mat");
omap = mapData.omap;
omap.FreeThreshold = 0.5;

Inflate the occupancy map to add a buffer zone for safe operation around the obstacles.

inflate(omap,1)

Create an SE(3) state space object with bounds for state variables.

ss = stateSpaceSE3([0 220;0 220;0 100;inf inf;inf inf;inf inf;inf inf]);

Create a 3-D occupancy map state validator using the created state space. Assign the occupancy map
to the state validator object. Specify the sampling distance interval.

sv = validatorOccupancyMap3D(ss, ...
     Map = omap, ...
     ValidationDistance = 0.1);

Create a probabilistic roadmap path planner with increased maximum connection distance.
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planner = plannerPRM(ss,sv);

Specify start and goal poses.

start = [40 180 25 0.7 0.2 0 0.1];
goal = [150 33 35 0.3 0 0.1 0.6];

Configure the random number generator for repeatable result.

rng(1,"twister");

Plan the path.

[pthObj,solnInfo] = plan(planner,start,goal);

Visualize the planned path.

show(omap)
axis equal
view([-10 55])
hold on
% Start state
scatter3(start(1,1),start(1,2),start(1,3),"g","filled")
% Goal state
scatter3(goal(1,1),goal(1,2),goal(1,3),"r","filled")
% Path
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3), ...
      "r-",LineWidth=2)
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Input Arguments
planner — Path planner
plannerPRM object

Path planner, specified as a plannerPRM object.

startState — Start state of the path
N-element real-valued row vector

Start state of the path, specified as an N-element real-valued row vector. N is the dimension of the
state space.
Example: [1 1 pi/6]
Data Types: single | double

goalState — Goal state of the path
N-element real-valued row vector
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Goal state of the path, specified as an N-element real-valued row vector. N is the dimension of the
state space.
Example: [2 2 pi/3]
Data Types: single | double

Output Arguments
path — Planned path information
navPath object

Planned path information, returned as a navPath object.

solutionInfo — Solution information
structure

Solution information, returned as a structure. The structure contains the field:

Field Description
IsPathFound Indicates whether a path is found. It returns as 1

if a path is found. Otherwise, it returns 0.

Data Types: struct

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
plannerPRM | navPath

Functions
copy | graphData
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AHRS
Orientation from accelerometer, gyroscope, and magnetometer readings

Libraries:
Navigation Toolbox / Multisensor Positioning / Navigation Filters
Sensor Fusion and Tracking Toolbox / Multisensor Positioning / Navigation
Filters

Description
The AHRS Simulink® block fuses accelerometer, magnetometer, and gyroscope sensor data to
estimate device orientation.

Ports
Input

Accel — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix of real scalar

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix of
real scalars. N is the number of samples, and the three columns of Accel represent the [x y z]
measurements, respectively.
Data Types: single | double

Gyro — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix of real scalar

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix of
real scalars. N is the number of samples, and the three columns of Gyro represent the [x y z]
measurements, respectively.
Data Types: single | double

Mag — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix of real scalar

Magnetometer readings in the sensor body coordinate system in µT, specified as an N-by-3 matrix of
real scalars. N is the number of samples, and the three columns of magReadings represent the [x y
z] measurements, respectively.
Data Types: single | double

Output

Orientation — Orientation of sensor body frame relative to navigation frame
M-by-4 array of scalar | 3-by-3-by-M-element rotation matrix

Orientation of the sensor body frame relative to the navigation frame, return as an M-by-4 array of
scalars or a 3-by-3-by-M array of rotation matrices. Each row the of the N-by-4 array is assumed to be
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the four elements of a quaternion. The number of input samples, N, and the Decimation Factor
parameter determine the output size M.
Data Types: single | double

Angular Velocity — Angular velocity in sensor body coordinate system (rad/s)
M-by-3 array of real scalar (default)

Angular velocity with gyroscope bias removed in the sensor body coordinate system in rad/s, returned
as an M-by-3 array of real scalars. The number of input samples, N, and the Decimation Factor
parameter determine the output size M.
Data Types: single | double

Parameters
Main

Reference frame — Navigation reference frame

NED (default) | ENU

Navigation reference frame, specified as NED (North-East-Down) or ENU (East-North-Up).

Decimation factor — Decimation factor

1 (default) | positive integer

Decimation factor by which to reduce the input sensor data rate, specified as a positive integer.

The number of rows of the inputs –– Accel, Gyro , and Mag –– must be a multiple of the decimation
factor.
Data Types: single | double

Initial process noise — Initial process noise

ahrsfilter.defaultProcessNoise (default) | 12-by-12 matrix of real scalar

Initial process noise, specified as a 12-by-12 matrix of real scalars. The default value,
ahrsfilter.defaultProcessNoise, is a 12-by-12 diagonal matrix as:

  Columns 1 through 6

   0.000006092348396                   0                   0                   0                   0                   0
                   0   0.000006092348396                   0                   0                   0                   0
                   0                   0   0.000006092348396                   0                   0                   0
                   0                   0                   0   0.000076154354947                   0                   0
                   0                   0                   0                   0   0.000076154354947                   0
                   0                   0                   0                   0                   0   0.000076154354947
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
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  Columns 7 through 12

                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
   0.009623610000000                   0                   0                   0                   0                   0
                   0   0.009623610000000                   0                   0                   0                   0
                   0                   0   0.009623610000000                   0                   0                   0
                   0                   0                   0   0.600000000000000                   0                   0
                   0                   0                   0                   0   0.600000000000000                   0
                   0                   0                   0                   0                   0   0.600000000000000

Data Types: single | double

Orientation format — Orientation output format

'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix':

• 'quaternion' –– Output is an M-by-4 array of real scalars. Each row of the array represents the
four components of a quaternion.

• 'Rotation matrix' –– Output is a 3-by-3-by-M rotation matrix.

The output size M depends on the input dimension N and the Decimation Factor parameter.
Data Types: char | string

Simulate using — Type of simulation to run

Interpreted Execution (default) | Code Generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Measurement Noise

Accelerometer noise ((m/s2)2) — Variance of accelerometer signal noise ((m/s2)2)

0.0001924722 (default) | positive real scalar

Variance of accelerometer signal noise in (m/s2)2, specified as a positive real scalar.
Data Types: single | double

Gyroscope noise ((rad/s)2) — Variance of gyroscope signal noise ((rad/s)2)

9.1385e-5 (default) | positive real scalar

Variance of gyroscope signal noise in (rad/s)2, specified as a positive real scalar.
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Data Types: single | double

Magnetometer noise (μT2) — Variance of magnetometer signal noise (μT2)

0.1 (default) | positive real scalar

Variance of magnetometer signal noise in μT2, specified as a positive real scalar.
Data Types: single | double

Gyroscope drift noise (rad/s) — Variance of gyroscope offset drift ((rad/s)2)

3.0462e-13 (default) | positive real scalar

Variance of gyroscope offset drift in (rad/s)2, specified as a positive real scalar.
Data Types: single | double

Environmental Noise

Linear acceleration noise ((m/s2)2) — Variance of linear acceleration noise (m/s2)2

0.0096236100000000012 (default) | positive real scalar

Variance of linear acceleration noise in (m/s2)2, specified as a positive real scalar. Linear acceleration
is modeled as a lowpass-filtered white noise process.
Data Types: single | double

Magnetic disturbance noise (μT2) — Variance of magnetic disturbance noise ((μT)2)

0.5 (default) | real finite positive scalar

Variance of magnetic disturbance noise in μT2, specified as a real finite positive scalar.
Data Types: single | double

Linear acceleration decay factor — Decay factor for linear acceleration drift

0.5 (default) | scalar in the range [0,1)

Decay factor for linear acceleration drift, specified as a scalar in the range [0,1). If linear acceleration
changes quickly, set this parameter to a lower value. If linear acceleration changes slowly, set this
parameter to a higher value. Linear acceleration drift is modeled as a lowpass-filtered white noise
process.
Data Types: single | double

Magnetic disturbance decay factor — Decay factor for magnetic disturbance

0.5 (default) | positive scalar in the range [0,1]

Decay factor for magnetic disturbance, specified as a positive scalar in the range [0,1]. Magnetic
disturbance is modeled as a first order Markov process.
Data Types: single | double
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Magnetic field strength (μT) — Magnetic field strength (μT)

50 (default) | real positive scalar

Magnetic field strength in μT, specified as a real positive scalar. The magnetic field strength is an
estimate of the magnetic field strength of the Earth at the current location.
Data Types: single | double

Algorithms
Note: The following algorithm only applies to an NED reference frame.

The AHRS block uses the nine-axis Kalman filter structure described in [1]. The algorithm attempts to
track the errors in orientation, gyroscope offset, linear acceleration, and magnetic disturbance to
output the final orientation and angular velocity. Instead of tracking the orientation directly, the
indirect Kalman filter models the error process, x, with a recursive update:

xk =

θk
bk
ak
dk

= Fk

θk− 1
bk− 1
ak− 1
dk− 1

+ wk

where xk is a 12-by-1 vector consisting of:

• θk –– 3-by-1 orientation error vector, in degrees, at time k
• bk –– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time k
• ak –– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time k
• dk –– 3-by-1 magnetic disturbance error vector measured in the sensor frame, in µT, at time k

and where wk is a 12-by-1 additive noise vector, and Fk is the state transition model.

Because xk is defined as the error process, the a priori estimate is always zero, and therefore the
state transition model, Fk, is zero. This insight results in the following reduction of the standard
Kalman equations:

Standard Kalman equations:

xk
− = Fkxk− 1

+

Pk
− = FkPk− 1

+ Fk
T + Qk

yk = zk− Hkxk
−

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = xk

− + Kkyk

Pk
+ = Pk−− KkHkPk

−

Kalman equations used in this algorithm:
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xk
− = 0

Pk
− = Qk

yk = zk

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = Kkyk

Pk
+ = Pk−− KkHkPk

−

where:

• xk
− –– predicted (a priori) state estimate; the error process

• Pk
− –– predicted (a priori) estimate covariance

• yk –– innovation
• Sk –– innovation covariance
• Kk –– Kalman gain
• xk

+ –– updated (a posteriori) state estimate
• Pk

+ –– updated (a posteriori) estimate covariance

k represents the iteration, the superscript + represents an a posteriori estimate, and the superscript −
represents an a priori estimate.

The graphic and following steps describe a single frame-based iteration through the algorithm.

Before the first iteration, the accelReadings, gyroReadings, and magReadings inputs are
chunked into DecimationFactor-by-3 frames. For each chunk, the algorithm uses the most current
accelerometer and magnetometer readings corresponding to the chunk of gyroscope readings.

Detailed Overview

Walk through the algorithm for an explanation of each stage of the detailed overview.

 AHRS

4-7



Model

The algorithm models acceleration and angular change as linear processes.

Predict Orientation

The orientation for the current frame is predicted by first estimating the angular change from the
previous frame:

ΔφN × 3 =
gyroReadingsN × 3− gyroOf f set1 × 3

f s
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where N is the decimation factor specified by the Decimation factor and fs is the sample rate.

The angular change is converted into quaternions using the rotvec quaternion construction
syntax:

ΔQN × 1 = quaternion(ΔφN × 3, ′rotvec′)

The previous orientation estimate is updated by rotating it by ΔQ:

q1 × 1
− = q1 × 1

+ ∏
n = 1

N
ΔQn

During the first iteration, the orientation estimate, q−, is initialized by ecompass.

Estimate Gravity from Orientation

The gravity vector is interpreted as the third column of the quaternion, q−, in rotation matrix form:

g1 × 3 = rPrior(: , 3) T

Estimate Gravity from Acceleration

A second gravity vector estimation is made by subtracting the decayed linear acceleration estimate of
the previous iteration from the accelerometer readings:

gAccel1 × 3 = accelReadings1 × 3− linAccelprior1 × 3

Estimate Earth's Magnetic Vector

Earth's magnetic vector is estimated by rotating the magnetic vector estimate from the previous
iteration by the a priori orientation estimate, in rotation matrix form:

mGyro1 × 3 = rPrior mT T

Error Model

The error model combines two differences:

• The difference between the gravity estimate from the accelerometer readings and the gravity
estimate from the gyroscope readings: zg = g− gAccel

• The difference between the magnetic vector estimate from the gyroscope readings and the
magnetic vector estimate from the magnetometer:zm = mGyro−magReadings
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Magnetometer Correct

The magnetometer correct estimates the error in the magnetic vector estimate and detects magnetic
jamming.

Magnetometer Disturbance Error

The magnetic disturbance error is calculated by matrix multiplication of the Kalman gain associated
with the magnetic vector with the error signal:

mError3 × 1 = K(10:12, : )3 × 6 z1 × 6
T T

The Kalman gain, K, is the Kalman gain calculated in the current iteration.

Magnetic Jamming Detection

Magnetic jamming is determined by verifying that the power of the detected magnetic disturbance is
less than or equal to four times the power of the expected magnetic field strength:

tf =
true
false

if
else

∑ mError 2 > 4 ExpectedMagneticFieldStrength 2

ExpectedMagneticFieldStrength is a property of ahrsfilter.

Kalman Equations

The Kalman equations use the gravity estimate derived from the gyroscope readings, g, the magnetic
vector estimate derived from the gyroscope readings, mGyro, and the observation of the error
process, z, to update the Kalman gain and intermediary covariance matrices. The Kalman gain is
applied to the error signal, z, to output an a posteriori error estimate, x+.
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Observation Model

The observation model maps the 1-by-3 observed states, g and mGyro, into the 6-by-12 true state, H.

The observation model is constructed as:

H3 × 9 =

0 gz −gy 0 −κgz κgy 1 0 0 0 0 0
−gz 0 gx κgz 0 −κgx 0 1 0 0 0 0
gy −gx 0 −κgy κgx 0 0 0 1 0 0 0
0 mz −my 0 −κmz −κmy 0 0 0 −1 0 0
−mz 0 mx κmz 0 −κmx 0 0 0 0 −1 0
my −mx 0 −κmy κmx 0 0 0 0 0 0 −1

where gx, gy, and gz are the x-, y-, and z-elements of the gravity vector estimated from the a priori
orientation, respectively. mx, my, and mz are the x-, y-, and z-elements of the magnetic vector
estimated from the a priori orientation, respectively. κ is a constant determined by the Sample rate
and Decimation factor properties: κ = Decimation factor/Sample rate.

Innovation Covariance

The innovation covariance is a 6-by-6 matrix used to track the variability in the measurements. The
innovation covariance matrix is calculated as:

S6x6 = R6x6 + H6x12 P12x12
− H6x12

T

where
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• H is the observation model matrix
• P− is the predicted (a priori) estimate of the covariance of the observation model calculated in the

previous iteration
• R is the covariance of the observation model noise, calculated as:

R6 × 6 =

accelnoise 0 0 0 0 0
0 accelnoise 0 0 0 0
0 0 accelnoise 0 0 0
0 0 0 magnoise 0 0
0 0 0 0 magnoise 0
0 0 0 0 0 magnoise

where

accelnoise = AccelerometerNoise + LinearAccelerationNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

and

magnoise = MagnetometerNoise + MagneticDisturbanceNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

Update Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the state.

The error estimate covariance matrix is updated as:

P12 × 12
+ = P12 × 12

− − K12 × 6 H6 × 12 P12 × 12
−

where K is the Kalman gain, H is the measurement matrix, and P− is the error estimate covariance
calculated during the previous iteration.

Predict Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the state. The a
priori error estimate covariance, P−, is set to the process noise covariance, Q, determined during the
previous iteration. Q is calculated as a function of the a posteriori error estimate covariance, P+.
When calculating Q, it is assumed that the cross-correlation terms are negligible compared to the
autocorrelation terms, and are set to zero:
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Q =

P+(1) + κ2 P+(40) + β + η 0 0 −κ P+(40) + β 0 0 0 0 0 0 0 0

0 P+(14) + κ2 P+(53) + β + η 0 0 −κ P+(53) + β 0 0 0 0 0 0 0

0 0 P+(27) + κ2 P+(66) + β + η 0 0 −κ P+(66) + β 0 0 0 0 0 0

−κ P+(40) + β 0 0 P+(40) + β 0 0 0 0 0 0 0 0

0 −κ P+(53) + β 0 0 P+(53) + β 0 0 0 0 0 0 0

0 0 −κ P+(66) + β 0 0 P+(66) + β 0 0 0 0 0 0

0 0 0 0 0 0 ν2P+(79) + ξ 0 0 0 0 0

0 0 0 0 0 0 0 ν2P+(92) + ξ 0 0 0 0

0 0 0 0 0 0 0 0 ν2P+(105) + ξ 0 0 0

0 0 0 0 0 0 0 0 0 σ2P+(118) + γ 0 0

0 0 0 0 0 0 0 0 0 0 σ2P+(131) + γ 0

0 0 0 0 0 0 0 0 0 0 0 σ2P+(144) + γ
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where

• P+ –– is the updated (a posteriori) error estimate covariance
• κ –– Decimation factor divided by sample rate.
• β –– Gyroscope drift noise.
• η –– Gyroscope noise.
• ν –– Linear acceleration decay factor.
• ξ –– Linear acceleration noise.
• σ –– Magnetic disturbance decay factor.
• γ –– Magnetic disturbance noise.

Kalman Gain

The Kalman gain matrix is a 12-by-6 matrix used to weight the innovation. In this algorithm, the
innovation is interpreted as the error process, z.

The Kalman gain matrix is constructed as:

K12 × 6 = P12 × 12
− H6 × 12

T S6 × 6
T −1

where

• P− –– predicted error covariance
• H –– observation model
• S –– innovation covariance

Update a Posteriori Error

The a posterior error estimate is determined by combining the Kalman gain matrix with the error in
the gravity vector and magnetic vector estimations:

x12 × 1 = K12 × 6 (z1 × 6)T

If magnetic jamming is detected in the current iteration, the magnetic vector error signal is ignored,
and the a posterior error estimate is calculated as:

x9 × 1 = K(1:9, 1:3 (zg)T
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Correct

Estimate Orientation

The orientation estimate is updated by multiplying the previous estimation by the error:

q+ = q− θ+

Estimate Linear Acceleration

The linear acceleration estimation is updated by decaying the linear acceleration estimation from the
previous iteration and subtracting the error:

linAccelPrior = (linAccelPriork− 1)ν− b+

where

• ν –– Linear acceleration decay factor

Estimate Gyroscope Offset

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from the
gyroscope offset from the previous iteration:

gyroOf f set = gyroOf f setk− 1− a+

Compute Angular Velocity

To estimate angular velocity, the frame of gyroReadings are averaged and the gyroscope offset
computed in the previous iteration is subtracted:

angularVelocity1 × 3 = ∑gyroReadingsN × 3
N − gyroOf f set1 × 3

where N is the decimation factor specified by the DecimationFactor property.

The gyroscope offset estimation is initialized to zeros for the first iteration.
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Update Magnetic Vector

If magnetic jamming was not detected in the current iteration, the magnetic vector estimate, m, is
updated using the a posteriori magnetic disturbance error and the a posteriori orientation.

The magnetic disturbance error is converted to the navigation frame:

mErrorNED1 × 3 = rPost3 × 3
T(mError1 × 3)T T

The magnetic disturbance error in the navigation frame is subtracted from the previous magnetic
vector estimate and then interpreted as inclination:

Μ = m−mErrorNED

inclination = atan2(Μ(3), Μ(1))

The inclination is converted to a constrained magnetic vector estimate for the next iteration:

m(1) = ExpectedMagneticFieldStrength cos(inclination)
m(2) = 0
m(3) = ExpectedMagneticFieldStrength sin(inclination)

Version History
Introduced in R2020a

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/

tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten, and P.H. Veltink. "Compensation of Magnetic
Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation."
IEEE Transactions on Neural Systems and Rehabilitation Engineering. Vol. 13. Issue 3, 2005,
pp. 395-405.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ahrsfilter | ecompass | imufilter | imuSensor | gpsSensor
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Complementary Filter
Estimate orientation using complementary filter

Libraries:
Sensor Fusion and Tracking Toolbox / Multisensor Positioning / Navigation
Filters
Navigation Toolbox / Multisensor Positioning / Navigation Filters

Description
The Complementary Filter Simulink block fuses accelerometer, magnetometer, and gyroscope sensor
data to estimate device orientation.

Ports
Input

Accel — Accelerometer readings in sensor body coordinate system (m/s2)
matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix of
real numbers. N is the number of samples, and the each row is of the form [x y z].
Data Types: single | double

Gyro — Gyroscope readings in sensor body coordinate system (rad/s)
matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix of
real numbers. N is the number of samples, and the each row is of the form [x y z].
Data Types: single | double

Mag — Magnetometer readings in sensor body coordinate system (µT)
matrix

Magnetometer readings in the sensor body coordinate system in µT, specified as an N-by-3 matrix of
real numbers. N is the number of samples, and the each row is of the form [x y z].
Dependencies

To enable this input port, select the Enable Magnetometer input parameter.
Data Types: single | double

Output

Orientation — Orientation of sensor body frame relative to navigation frame
matrix | array

Orientation of the sensor body frame relative to the navigation frame, returned as an M-by-4 matrix
of real numbers or a 3-by-3-by-M array. Each row of the M-by-4 matrix represents the four
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components of a quaternion. Each page of the 3-by-3-by-M array represents a 3-by-3 rotation
matrix.

The number of input samples, N, determines the output size, M.

The output format depends on the value of the Orientation format parameter.
Data Types: single | double

Angular Velocity — Angular velocity in sensor body coordinate system (rad/s)
matrix

Angular velocity, with gyroscope bias removed, in the sensor body coordinate system in rad/s,
returned as an M-by-3 matrix of real numbers.

The number of input samples, N, determines the output size, M.
Data Types: single | double

Parameters
Reference frame — Navigation reference frame

NED (default) | ENU

Specify the navigation reference frame as NED (North-East-Down) or ENU (East-North-Up).

Orientation format — Orientation output format

quaternion (default) | Rotation matrix

Specify the format in which to output Orientation as quaternion or Rotation matrix:

• quaternion — Orientation outputs an M-by-4 matrix of real numbers. Each row of the matrix
represents the four components of a quaternion.

• Rotation matrix — Orientation outputs a 3-by-3-by-M array, in which each page of the array
is a 3-by-3 rotation matrix.

The number of input samples, N, determines the output size, M.

Accelerometer gain — Accelerometer gain

0.01 (default) | real scalar in range [0, 1]

Specify the accelerometer gain as a real scalar in the range [0, 1]. The gain determines how much the
block trust the accelerometer measurement over the gyroscope measurement for orientation
estimation.
Example: 0.02
Data Types: single | double

Enable Magnetometer input — Accept magnetometer readings input

on (default) | off
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Select this parameter to enable input of magnetometer readings at the Mag port.

Magnetometer gain — Magnetometer gain

0.01 (default) | real scalar in range [0, 1]

Specify the magnetometer gain as a real scalar in the range [0, 1]. The gain determines how much
the block trust the magnetometer measurement over the gyroscope measurement for orientation
estimation.
Example: 0.02
Data Types: single | double

Simulate using — Type of simulation to run

Interpreted Execution (default) | Code Generation

Select the type of simulation to run from these options:

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time, but has a slower simulation speed than Code generation. In this mode,
you can debug the source code of the block.

• Code generation — Simulate the model using generated C code. The first time you run a
simulation in this mode, Simulink generates C code for the block. Simulink reuses the C code for
subsequent simulations, as long as the model does not change. This option requires additional
startup time, but the speed of subsequent simulations is comparable to Interpreted
execution.

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
complementaryFilter

Blocks
AHRS
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Coordinate Transformation Conversion
Convert to a specified coordinate transformation representation

Libraries:
Robotics System Toolbox / Utilities
Navigation Toolbox / Utilities
ROS Toolbox / Utilities
UAV Toolbox / Utilities

Description
The Coordinate Transformation Conversion block converts a coordinate transformation from the input
representation to a specified output representation. The input and output representations use the
following forms:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

Ports
Input

Input transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Input transformation, specified as a coordinate transformation. The following representations are
supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.
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To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
3-element column vector

Translation vector, specified as a 3-element column vector, [x y z], which corresponds to a
translation in the x, y, and z axes respectively. This port can be used to input or output the translation
information separately from the rotation vector.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port. Enable the port by clicking Show TrVec input/
output port.

Output Arguments

Output transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Output transformation, returned as a coordinate transformation with the specified representation.
The following representations are supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
three-element column vector

Translation vector, returned as a three-element column vector, [x y z], which corresponds to a
translation in the x, y, and z axes respectively. This port can be used to input or output the translation
information separately from the rotation vector.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port. Enable the port by clicking Show TrVec input/
output port.
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Parameters
Representation — Input or output representation
Axis-Angle | Euler Angles | Homogeneous Transformation | Rotation Matrix |
Translation Vector | Quaternion

Select the representation for both the input and output port for the block. If you are using a
transformation with only orientation information, you can also select the Show TrVec input/
output port when converting to or from a homogeneous transformation.

Axis rotation sequence — Order of Euler angle axis rotations
ZYX (default) | ZYZ | XYZ

Order of the Euler angle axis rotations, specified as ZYX, ZYZ, or XYZ. The order of the angles in the
input or output port Eul must match this rotation sequence. The default order ZYX specifies an
orientation by:

• Rotating about the initial z-axis
• Rotating about the intermediate y-axis
• Rotating about the second intermediate x-axis

Dependencies

You must select Euler Angles for the Representation input or output parameter. The axis
rotation sequence only applies to Euler angle rotations.

Show TrVec input/output port — Toggle TrVec port
off (default) | on

Toggle the TrVec input or output port when you want to specify or receive a separate translation
vector for position information along with an orientation representation.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2017b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
axang2quat | eul2tform | trvec2tform
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IMU
IMU simulation model

Libraries:
Sensor Fusion and Tracking Toolbox / Multisensor Positioning / Sensor
Models
Navigation Toolbox / Multisensor Positioning / Sensor Models

Description
The IMU Simulink block models receiving data from an inertial measurement unit (IMU) composed of
accelerometer, gyroscope, and magnetometer sensors. You can specify the reference frame of the
block inputs as the NED (North-East-Down) or ENU (East-North-Up) frame by using the Reference
Frame parameter.

Ports
Input

Linear Acceleration — Acceleration of IMU in local navigation coordinate system (m/s2)
N-by-3 matrix of real scalar

Acceleration of the IMU in the local navigation coordinate system, specified as an N-by-3 matrix of
real scalars in meters per second squared. N is the number of samples in the current frame. Do not
include the gravitational acceleration in this input since the sensor models gravitational acceleration
by default.

To specify the orientation of the IMU sensor body frame with respect to the local navigation frame,
use the Orientation input port.
Data Types: single | double

Angular Velocity — Angular velocity of IMU in local navigation coordinate system (rad/s)
N-by-3 matrix of real scalar

Angular velocity of the IMU sensor body frame in the local navigation coordinate system, specified as
an N-by-3 matrix of scalars in radians per second. N is the number of samples in the current frame.
To specify the orientation of the IMU sensor body frame with respect to the local navigation frame,
use the Orientation input port.
Data Types: single | double

Orientation — Orientation of IMU in local navigation coordinate system
N-by-4 array of real scalar | 3-by-3-by-N-element rotation matrix

Orientation of the IMU sensor body frame with respect to the local navigation coordinate system,
specified as an N-by-4 array of real scalars or a 3-by-3-by-N rotation matrix. Each row the of the N-
by-4 array is assumed to be the four elements of a quaternion. N is the number of samples in the
current frame.
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Data Types: single | double

Output

Accel — Accelerometer measurement of IMU in sensor body coordinate system (m/s2)
N-by-3 matrix of real scalar

Accelerometer measurement of the IMU in the sensor body coordinate system, returned as an N-by-3
matrix of real scalars in meters per second squared. N is the number of samples in the current frame.
Data Types: single | double

Gyro — Gyroscope measurement of IMU in sensor body coordinate system (rad/s)
N-by-3 matrix of real scalar

Gyroscope measurement of the IMU in the sensor body coordinate system, returned as an N-by-3
matrix of real scalars in radians per second. N is the number of samples in the current frame.
Data Types: single | double

Mag — Magnetometer measurement of IMU in sensor body coordinate system (μT)
N-by-3 matrix of real scalar

Magnetometer measurement of the IMU in the sensor body coordinate system, returned as an N-by-3
matrix of real scalars in microtesla. N is the number of samples in the current frame.
Data Types: single | double

Parameters
Parameters

Reference frame — Navigation reference frame

NED (default) | ENU

Navigation reference frame, specified as NED (North-East-Down) or ENU (East-North-Up).

Note

• If you choose the NED reference frame, specify the sensor inputs in the NED reference frame.
Additionally, the sensor models the gravitational acceleration as [0 0 9.81] m/s2.

• If you choose the ENU reference frame, specify the sensor inputs in the ENU reference frame.
Additionally, the sensor models the gravitational acceleration as [0 0 −9.81] m/s2.

Temperature (oC) — Operating temperature of IMU (oC)

25 (default) | real scalar

Operating temperature of the IMU in degrees Celsius, specified as a real scalar.

When the block calculates temperature scale factors and environmental drift noises, 25 oC is used as
the nominal temperature.
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Data Types: single | double

Magnetic field (NED) — Magnetic field vector expressed in NED navigation frame (μT)

[27.5550, -2.4169, -16.0849] (default) | 1-by-3 vector of scalar

Magnetic field vector expressed in the NED navigation frame, specified as a 1-by-3 vector of scalars.

The default magnetic field corresponds to the magnetic field at latitude zero, longitude zero, and
altitude zero.
Dependencies

To enable this parameter, set Reference frame to NED.
Data Types: single | double

MagneticField (ENU) — Magnetic field vector expressed in ENU navigation frame (μT)

[-2.4169, 27.5550, 16.0849] (default) | 1-by-3 vector of scalar

Magnetic field vector expressed in the ENU navigation frame, specified as a 1-by-3 vector of scalars.

The default magnetic field corresponds to the magnetic field at latitude zero, longitude zero, and
altitude zero.
Dependencies

To enable this parameter, set Reference frame to ENU.
Data Types: single | double

Seed — Initial seed for randomization

67 (default) | nonnegative integer

Initial seed of a random number generator algorithm, specified as a nonnegative integer.
Data Types: single | double

Simulate using — Type of simulation to run

Interpreted Execution (default) | Code Generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C code. The first time that you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations if the model does not change. This option requires additional startup time.

Accelerometer

Maximum readings (m/s2) — Maximum sensor reading (m/s2)

inf (default) | real positive scalar

Maximum sensor reading in m/s2, specified as a real positive scalar.
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Data Types: single | double

Resolution ((m/s2)/LSB) — Resolution of sensor measurements ((m/s2)/LSB)

0 (default) | real nonnegative scalar

Resolution of sensor measurements in (m/s2)/LSB, specified as a real nonnegative scalar.
Data Types: single | double

Constant offset bias (m/s2) — Constant sensor offset bias (m/s2)

[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in m/s2, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Axis skew (%) — Sensor axes skew (%)

diag([100 100 100]) (default) | scalar in the range [0,100] | 3-element row vector in the range
[0,100] | 3-by-3 matrix in the range [0,100]

Sensor axes skew in percentage, specified as a scalar, a 3-element row vector, or a 3-by-3 matrix with
values ranging from 0 to 100. The diagonal elements of the matrix account for the misalignment
effects for each axes. The off-diagonal elements account for the cross-axes misalignment effects. The
measured state vmeasure is obtained from the true state vtrue via the misalignment matrix as:

vmeasure = 1
100Mvtrue = 1

100

m11 m12 m13
m21 m22 m23
m31 m32 m33

vtrue

• If you specify the property as a scalar, then all the off-diagonal elements of the matrix take the
value of the specified scalar and all the diagonal elements are 100.

• If you specify the property as a vector [a b c], then m21 = m31 = a, m12 = m32 = b, and m13 = m23 =
c. All the diagonal elements are 100.

Data Types: single | double

Velocity random walk (m/s2/√Hz) — Velocity random walk (m/s2/√Hz)

[0 0 0] (default) | real scalar | real 3-element row vector

Velocity random walk in (m/s2/√Hz), specified as a real scalar or 3-element row vector. This property
corresponds to the power spectral density of sensor noise. Any scalar input is converted into a real 3-
element row vector where each element has the input scalar value.
Data Types: single | double

Bias Instability (m/s2) — Instability of the bias offset (m/s2)

[0 0 0] (default) | real scalar | real 3-element row vector
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Instability of the bias offset in m/s2, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Acceleration random walk ((m/s2)(√Hz)) — Acceleration random walk ((m/s2)(√Hz))

[0 0 0] (default) | real scalar | real 3-element row vector

Acceleration random walk of sensor in (m/s2)(√Hz), specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

Bias from temperature ((m/s2)/℃) — Sensor bias from temperature ((m/s2)/℃)

[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (m/s2)/℃, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

Temperature scale factor (%/℃) — Scale factor error from temperature (%/℃)

[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector
with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

Gyroscope

Maximum readings (rad/s) — Maximum sensor reading (rad/s)

inf (default) | real positive scalar

Maximum sensor reading in rad/s, specified as a real positive scalar.
Data Types: single | double

Resolution ((rad/s)/LSB) — Resolution of sensor measurements ((rad/s)/LSB)

0 (default) | real nonnegative scalar

Resolution of sensor measurements in (rad/s)/LSB, specified as a real nonnegative scalar.
Data Types: single | double

Constant offset bias (rad/s) — Constant sensor offset bias (rad/s)

[0 0 0] (default) | real scalar | real 3-element row vector
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Constant sensor offset bias in rad/s, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Axis skew (%) — Sensor axes skew (%)

diag([100 100 100]) (default) | scalar in the range [0,100] | 3-element row vector in the range
[0,100] | 3-by-3 matrix in the range [0,100]

Sensor axes skew in percentage, specified as a scalar, a 3-element row vector, or a 3-by-3 matrix with
values ranging from 0 to 100. The diagonal elements of the matrix account for the misalignment
effects for each axes. The off-diagonal elements account for the cross-axes misalignment effects. The
measured state vmeasure is obtained from the true state vtrue via the misalignment matrix as:

vmeasure = 1
100Mvtrue = 1

100

m11 m12 m13
m21 m22 m23
m31 m32 m33

vtrue

• If you specify the property as a scalar, then all the off-diagonal elements of the matrix take the
value of the specified scalar and all the diagonal elements are 100.

• If you specify the property as a vector [a b c], then m21 = m31 = a, m12 = m32 = b, and m13 = m23 =
c. All the diagonal elements are 100.

Data Types: single | double

Bias from acceleration ((rad/s)/(m/s2) — Sensor bias from linear acceleration (rad/s)/(m/s2)

[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from linear acceleration in (rad/s)/(m/s2), specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

Angle random walk ((rad/s)/(√Hz)) — Angle random walk ((rad/s)/(√Hz))

[0 0 0] (default) | real scalar | real 3-element row vector

Angle random walk of sensor in (rad/s)/(√Hz), specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

Bias Instability (rad/s) — Instability of the bias offset (rad/s)

[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in rad/s, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double
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Rate random walk ((rad/s)(√Hz)) — Integrated white noise of sensor ((rad/s)(√Hz))

[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (rad/s)(√Hz), specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

Bias from temperature ((rad/s)/℃) — Sensor bias from temperature ((rad/s)/℃)

[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (rad/s)/℃, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

Temperature scale factor (%/℃) — Scale factor error from temperature (%/℃)

[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector
with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

Magnetometer

Maximum readings (μT) — Maximum sensor reading (μT)

inf (default) | real positive scalar

Maximum sensor reading in μT, specified as a real positive scalar.
Data Types: single | double

Resolution ((μT)/LSB) — Resolution of sensor measurements ((μT)/LSB)

0 (default) | real nonnegative scalar

Resolution of sensor measurements in (μT)/LSB, specified as a real nonnegative scalar.
Data Types: single | double

Constant offset bias (μT) — Constant sensor offset bias (μT)

[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in μT, specified as a real scalar or 3-element row vector. Any scalar input
is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double
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Axis skew (%) — Sensor axes skew (%)

diag([100 100 100]) (default) | scalar in the range [0,100] | 3-element row vector in the range
[0,100] | 3-by-3 matrix in the range [0,100]

Sensor axes skew in percentage, specified as a scalar, a 3-element row vector, or a 3-by-3 matrix with
values ranging from 0 to 100. The diagonal elements of the matrix account for the misalignment
effects for each axes. The off-diagonal elements account for the cross-axes misalignment effects. The
measured state vmeasure is obtained from the true state vtrue via the misalignment matrix as:

vmeasure = 1
100Mvtrue = 1

100

m11 m12 m13
m21 m22 m23
m31 m32 m33

vtrue

• If you specify the property as a scalar, then all the off-diagonal elements of the matrix take the
value of the specified scalar and all the diagonal elements are 100.

• If you specify the property as a vector [a b c], then m21 = m31 = a, m12 = m32 = b, and m13 = m23 =
c. All the diagonal elements are 100.

White noise PSD (μT/√Hz) — Power spectral density of sensor noise (μT/√Hz)

[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in μT/√Hz, specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

Bias Instability (μT) — Instability of the bias offset (μT)

[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in μT, specified as a real scalar or 3-element row vector. Any scalar input
is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Random walk ((μT)*√Hz) — Integrated white noise of sensor ((μT)*√Hz)

[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (μT)*√Hz, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

Bias from temperature (μT/℃) — Sensor bias from temperature (μT/℃)

[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in μT/℃, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
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Data Types: single | double

Temperature scale factor (%/℃) — Scale factor error from temperature (%/℃)

[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector
with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

Algorithms
Accelerometer

The following algorithm description assumes an NED navigation frame. The accelerometer model
uses the ground-truth orientation and acceleration inputs and the imuSensor and accelparams
properties to model accelerometer readings.
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Obtain Total Acceleration

To obtain the total acceleration (totalAcc), the acceleration is preprocessed by negating and adding
the gravity constant vector (g= [0; 0; 9.8] m/s2 assuming an NED frame) as:

totalAcc = − acceleration + g

The acceleration term is negated to obtain zero total acceleration readings when the
accelerometer is in a free fall. The acceleration term is also known as the specific force.

Convert to Sensor Frame

Then the total acceleration is converted from the local navigation frame to the sensor frame using:

a = orientation totalAcc T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model, which adds axes
misalignment and bias:

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of accelparams, and α1, α2, and α3 are given by the first, second,
and third elements of the AxesMisalignment property of accelparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1(k) = 1
2β1(k− 1) + (BiasInstability)w(k)

where k is the discrete time step index, BiasInstability is a property of accelparams, w is white
noise that follows a normal distribution of mean 0 and variance of 1. The discrete time step size is the
reciprocal of the SampleRate property.

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where w is white noise that follows a normal distribution of mean 0 and variance of 1, SampleRate is
an imuSensor property, and NoiseDensity is an accelparams property.
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Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β2(k) = β2(k− 1) + w(k) RandomWalk
SampleRate

2

where k is the discrete time step index, RandomWalk is a property of accelparams, SampleRate is a
property of imuSensor, w is white noise that follows a normal distribution of mean 0 and variance of
1. The discrete time step size is the reciprocal of the SampleRate property.

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

where Temperature is a property of imuSensor, and TemperatureBias is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

accelReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of accelparams.

Gyroscope

The following algorithm description assumes an NED navigation frame. The gyroscope model uses
the ground-truth orientation, acceleration, and angular velocity inputs, and the imuSensor and
gyroparams properties to model accelerometer readings.
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Convert to Sensor Frame

The ground-truth angular velocity is converted from the local frame to the sensor frame using the
ground-truth orientation:

a = orientation angularVelocity T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.
Bulk Model

The ground-truth angular velocity in the sensor frame, a, passes through the bulk model, which adds
axes misalignment and bias:

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias
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where ConstantBias is a property of gyroparams, and α1, α2, and α3 are given by the first, second,
and third elements of the AxesMisalignment property of gyroparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1(k) = 1
2β1(k− 1) + (BiasInstability)w(k)

where k is the discrete time step index, BiasInstability is a property of gyroparams, w is white noise
that follows a normal distribution of mean 0 and variance of 1. The discrete time step size is the
reciprocal of the SampleRate property.

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where w is white noise that follows a normal distribution of mean 0 and variance of 1, SampleRate is
an imuSensor property, and NoiseDensity is an gyroparams property.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β2(k) = β2(k− 1) + w(k) RandomWalk
SampleRate

2

where k is the discrete time step index, RandomWalk is a property of gyroparams, SampleRate is a
property of imuSensor, and w is white noise that follows a normal distribution of mean 0 and
variance of 1. The discrete time step size is the reciprocal of the SampleRate property.

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

where Temperature is a property of imuSensor, and TemperatureBias is a property of gyroparams.
The constant 25 corresponds to a standard temperature.

Acceleration Bias Drift

The acceleration bias drift is modeled by multiplying the acceleration input and acceleration bias:

Δa = acceleration * AccelerationBias

where AccelerationBias is a property of gyroparams.
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Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
gyroparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

gyroReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of gyroparams.

Magnetometer

The following algorithm description assumes an NED navigation frame. The magnetometer model
uses the ground-truth orientation and acceleration inputs, and the imuSensor and magparams
properties to model magnetometer readings.
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Convert to Sensor Frame

The ground-truth acceleration is converted from the local frame to the sensor frame using the
ground-truth orientation:

a = orientation totalAcc T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model, which adds axes
misalignment and bias:
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b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of magparams, and α1, α2, and α3 are given by the first, second, and
third elements of the AxesMisalignment property of magparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1(k) = 1
2β1(k− 1) + (BiasInstability)w(k)

where k is the discrete time step index, BiasInstability is a property of magparams, w is white noise
that follows a normal distribution of mean 0 and variance of 1. The discrete time step size is the
reciprocal of the SampleRate property.

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where w is white noise that follows a normal distribution of mean 0 and variance of 1, SampleRate is
an imuSensor property, and NoiseDensity is an magparams property.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β2(k) = β2(k− 1) + w(k) RandomWalk
SampleRate

2

where k is the discrete time step index, RandomWalk is a property of magparams, SampleRate is a
property of imuSensor, w is white noise that follows a normal distribution of mean 0 and variance of
1. The discrete time step size is the reciprocal of the SampleRate property.

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

where Temperature is a property of imuSensor, and TemperatureBias is a property of magparams.
The constant 25 corresponds to a standard temperature.
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Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
magparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

magReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of magparams.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Classes
accelparams | gyroparams | magparams

Objects
imuSensor | gpsSensor

Topics
“Model IMU, GPS, and INS/GPS”
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INS
Simulate INS sensor

Libraries:
Navigation Toolbox / Multisensor Positioning / Sensor Models
Automated Driving Toolbox / Driving Scenario and Sensor Modeling
Sensor Fusion and Tracking Toolbox / Multisensor Positioning / Sensor
Models
UAV Toolbox / UAV Scenario and Sensor Modeling

Description
The block simulates an INS sensor, which outputs noise-corrupted position, velocity, and orientation
based on the corresponding inputs. The block can also optionally output acceleration and angular
velocity based on the corresponding inputs. To change the level of noise present in the output, you
can vary the roll, pitch, yaw, position, velocity, acceleration, and angular velocity accuracies. The
accuracy is defined as the standard deviation of the noise.

Ports
Input

Position — Position of INS sensor
N-by-3 real-valued matrix

Position of the INS sensor relative to the navigation frame, in meters, specified as an N-by-3 real-
valued matrix. N is the number of samples.
Data Types: single | double

Velocity — Velocity of INS sensor
N-by-3 real-valued matrix of scalar

Velocity of the INS sensor relative to the navigation frame, in meters per second, specified as an N-
by-3 real-valued matrix. N is the number of samples.
Data Types: single | double

Orientation — Orientation of INS sensor
3-by-3-by-N real-valued array | N-by-4 real-valued matrix | N-by-3 matrix of Euler angles

Orientation of the INS sensor relative to the navigation frame, specified as one of these formats:

• A 3-by-3-by-N real-valued array, where each page of the array (3-by-3 matrix) is a rotation matrix.
• An N-by-4 real-valued matrix, where each row of the matrix is the four elements of a quaternion.
• An N-by-3 matrix of Euler angles, where each row of the matrix is the three Euler angles

corresponding to the z-y-x rotation convention.

N is the number of samples.
Data Types: single | double
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Acceleration — Acceleration of INS sensor
N-by-3 real-valued matrix

Acceleration of the INS sensor relative to the navigation frame, in meters per second squared,
specified as an N-by-3 real-valued matrix. N is the number of samples.
Dependencies

To enable this input port, select Use acceleration and angular velocity.
Data Types: single | double

AngularVelocity — Angular velocity of INS sensor
N-by-3 real-valued matrix

Angular velocity of the INS sensor relative to the navigation frame, in degrees per second, specified
as an N-by-3 real-valued matrix. N is the number of samples.
Dependencies

To enable this input port, select Use acceleration and angular velocity.
Data Types: single | double

HasGNSSFix — Enable GNSS fix
N-by-1 logical vector

Enable GNNS fix, specified as an N-by-1 logical vector. N is the number of samples. Specify this input
as false to simulate the loss of a GNSS receiver fix. When a GNSS receiver fix is lost, position
measurements drift at a rate specified by the Position error factor parameter.
Dependencies

To enable this input port, select Enable HasGNSSFix port.
Data Types: single | double

Output

Position — Position of INS sensor
N-by-3 real-valued matrix

Position of the INS sensor relative to the navigation frame, in meters, returned as an N-by-3 real-
valued matrix. N is the number of samples in the input.
Data Types: single | double

Velocity — Velocity of INS sensor
N-by-3 real-valued matrix

Velocity of the INS sensor relative to the navigation frame, in meters per second, returned as an N-
by-3 real-valued matrix. N is the number of samples in the input.
Data Types: single | double

Orientation — Orientation of INS sensor
3-by-3-by-N real-valued array | N-by-4 real-valued matrix

Orientation of the INS sensor relative to the navigation frame, returned as one of the formats:
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• A 3-by-3-by-N real-valued array, where each page of the array (3-by-3 matrix) is a rotation matrix.
• An N-by-4 real-valued matrix, where each row of the matrix is the four elements of a quaternion.
• An N-by-3 matrix of Euler angles, where each row of the matrix is the three Euler angles

corresponding to the z-y-x rotation convention.

N is the number of samples in the input.
Data Types: single | double

Acceleration — Acceleration of INS sensor
N-by-3 real-valued matrix

Acceleration of the INS sensor relative to the navigation frame, in meters per second squared,
returned as an N-by-3 real-valued matrix. N is the number of samples.

Dependencies

To enable this output port, select Use acceleration and angular velocity.
Data Types: single | double

AngularVelocity — Angular velocity of INS sensor
N-by-3 real-valued matrix

Angular velocity of the INS sensor relative to the navigation frame, in degrees per second, returned
as an N-by-3 real-valued matrix. N is the number of samples.

Dependencies

To enable this output port, select Use acceleration and angular velocity.
Data Types: single | double

Parameters
Mounting location (m) — Location of sensor on platform (m)

[0 0 0] (default) | three-element real-valued vector of form [x y z]

Location of the sensor on the platform, in meters, specified as a three-element real-valued vector of
the form [x y z]. The vector defines the offset of the sensor origin from the origin of the platform.
Data Types: single | double

Roll (X-axis) accuracy (deg) — Accuracy of roll measurement (deg)

0.2 (default) | nonnegative real scalar

Accuracy of the roll measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

Roll is defined as rotation around the x-axis of the sensor body. Roll noise is modeled as white process
noise with standard deviation equal to the specified Roll accuracy in degrees.
Data Types: single | double
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Pitch (Y-axis) accuracy (deg) — Accuracy of pitch measurement (deg)

0.2 (default) | nonnegative real scalar

Accuracy of the pitch measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

Pitch is defined as rotation around the y-axis of the sensor body. Pitch noise is modeled as white
process noise with standard deviation equal to the specified Pitch accuracy in degrees.
Data Types: single | double

Yaw (Z-axis) accuracy (deg) — Accuracy of yaw measurement (deg)

1 (default) | nonnegative real scalar

Accuracy of the yaw measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

Yaw is defined as rotation around the z-axis of the sensor body. Yaw noise is modeled as white process
noise with standard deviation equal to the specified Yaw accuracy in degrees.
Data Types: single | double

Position accuracy (m) — Accuracy of position measurement (m)

1 (default) | nonnegative real scalar | 1-by-3 vector of nonnegative values

Accuracy of the position measurement of the sensor body in meters, specified as a nonnegative real
scalar or a 1-by-3 vector of nonnegative values. If you specify the parameter as a scalar value, then
the block sets the accuracy of all three position components to this value.

Position noise is modeled as white process noise with a standard deviation equal to the specified
Position accuracy in meters.
Data Types: single | double

Velocity accuracy (m/s) — Accuracy of velocity measurement (m/s)

0.05 (default) | nonnegative real scalar

Accuracy of the velocity measurement of the sensor body in meters per second, specified as a
nonnegative real scalar.

Velocity noise is modeled as white process noise with a standard deviation equal to the specified
Velocity accuracy in meters per second.
Data Types: single | double

Use acceleration and angular velocity — Use acceleration and angular velocity

off (default) | on

Select this check box to enable the block inputs of acceleration and angular velocity through the
Acceleration and AngularVelocity input ports, respectively. Meanwhile, the block outputs the
acceleration and angular velocity measurements through the Acceleration and AngularVelocity
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output ports, respectively. Additionally, selecting this parameter enables you to specify the
Acceleration accuracy and Angular velocity accuracy parameters.

Acceleration accuracy (m/s2) — Accuracy of acceleration measurement (m/s2)

0 (default) | nonnegative real scalar

Accuracy of the acceleration measurement of the sensor body in meters, specified as a nonnegative
real scalar.

Acceleration noise is modeled as white process noise with a standard deviation equal to the specified
Acceleration accuracy in meters per second squared.

Dependencies

To enable this parameter, select Use acceleration and angular velocity.
Data Types: single | double

Angular velocity accuracy (deg/s) — Accuracy of angular velocity measurement (deg/s)

0 (default) | nonnegative real scalar

Accuracy of the angular velocity measurement of the sensor body in meters, specified as a
nonnegative real scalar.

Angular velocity noise is modeled as white process noise with a standard deviation equal to the
specified Angular velocity accuracy in degrees per second.

Dependencies

To enable this parameter, select Use acceleration and angular velocity.
Data Types: single | double

Enable HasGNSSFix port — Enable HasGNSSFix input port

off (default) | on

Select this check box to enable the HasGNSSFix input port. When the HasGNSSFix input is
specified as false, position measurements drift at a rate specified by the Position error factor
parameter.

Position error factor — Position error factor (m)

[0 0 0] (default) | nonnegative scalar | 1-by-3 real-valued vector

Position error factor without GNSS fix, specified as a scalar or a 1-by-3 real-valued vector. If you
specify the parameter as a scalar value, then the block sets the position error factors of all three
position components to this value.

When the HasGNSSFix input is specified as false, the position error grows at a quadratic rate due
to constant bias in the accelerometer. The position error for a position component E(t) can be
expressed as E(t) = 1/2αt2, where α is the position error factor for the corresponding component and
t is the time since the GNSS fix is lost. The computed E(t) values for the x, y, and z components are
added to the corresponding position components of the Position output.

 INS

4-45



Dependencies

To enable this parameter, select Enable HasGNSSFix port.
Data Types: double

Seed — Initial seed for randomization

67 (default) | nonnegative integer

Initial seed of a random number generator algorithm, specified as a nonnegative integer.
Data Types: single | double

Simulate using — Type of simulation to run

Code Generation (default) | Interpreted Execution

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C code. The first time that you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations if the model does not change. This option requires additional startup time.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
IMU | insSensor

Topics
“Model IMU, GPS, and INS/GPS”
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GPS
Simulate GPS sensor readings with noise

Libraries:
UAV Toolbox / UAV Scenario and Sensor Modeling
Navigation Toolbox / Multisensor Positioning / Sensor Models
Sensor Fusion and Tracking Toolbox / Multisensor Positioning / Sensor
Models

Description
The block outputs noise-corrupted GPS measurements based on the input position and velocity in the
local coordinate frame or geodetic frame. It uses the WGS84 earth model to convert local coordinates
to latitude-longitude-altitude LLA coordinates.

Ports
Input

Position — Position of GPS receiver in navigation coordinate system
matrix

Specify the input position of the GPS receiver in the navigation coordinate system as a real, finite N-
by-3 matrix. N is the number of samples in the current frame. The format of the matrix rows differs
depending on the value of the Position input format parameter.

• If the value of the Position input format parameter is Local, specify each row of the Position
as Cartesian coordinates in meters with respect to the local navigation reference frame, specified
by the Reference frame parameter, with the origin specified by the Reference location
parameter.

• If the value of the Position input format parameter is Geodetic, specify each row of the
Position input as geodetic coordinates of the form [latitude longitude altitude]. The
values of latitude and longitude are in degrees. Altitude is the height above the WGS84
ellipsoid model in meters.

Data Types: single | double

Velocity — Velocity in local navigation coordinate system (m/s)
matrix

Specify the input velocity of the GPS receiver in the navigation coordinate system in meters per
second as a real, finite N-by-3 matrix. N is the number of samples in the current frame. The format of
the matrix rows differs depending on the value of the Position input format parameter.

• If the value of the Position input format parameter is Local, specify each row of the Velocity
with respect to the local navigation reference frame (NED or ENU), specified by the Reference
frame parameter, with the origin specified by the Reference location parameter.
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• If the value of the Position input format parameter is Geodetic, specify each row of the
Velocity with respect to the navigation reference frame (NED or ENU), specified by the
Reference frame parameter, with the origin specified by Position.

Data Types: single | double

Output

LLA — Position in LLA coordinate system
matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA) coordinate system,
returned as a real, finite N-by-3 array. Latitude and longitude are in degrees with North and East
being positive. Altitude is in meters.

N is the number of samples in the current frame.
Data Types: single | double

Velocity — Velocity in local navigation coordinate system (m/s)
matrix

Velocity of the GPS receiver in the local navigation coordinate system in meters per second, returned
as a real, finite N-by-3 matrix. N is the number of samples in the current frame. The format of the
matrix rows differs depending on the value of the Position input format parameter.

• If the value of the Position input format parameter is Local, the Velocity output is with respect
to the local navigation reference frame (NED or ENU), specified by the Reference frame
parameter, with the origin specified by the Reference location parameter.

• If the value of the Position input format parameter is Geodetic, the Velocity output is with
respect to the navigation reference frame (NED or ENU), specified by the Reference frame
parameter, with the origin specified by LLA.

Data Types: single | double

Groundspeed — Magnitude of horizontal velocity in local navigation coordinate system (m/s)
vector

Magnitude of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
meters per second, returned as a real, finite N-element column vector.

N is the number of samples in the current frame.
Data Types: single | double

Course — Direction of horizontal velocity in local navigation coordinate system (°)
vector

Direction of the horizontal velocity of the GPS receiver in the local navigation coordinate system, in
degrees, returned as a real, finite N-element column vector of values from 0 to 360. North
corresponds to 0 degrees and East corresponds to 90 degrees.

N is the number of samples in the current frame.
Data Types: single | double
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Parameters
Reference frame — Reference frame
NED (default) | ENU

Specify the reference frame as NED (North-East-Down) or ENU(East-North-Up).

Position input format — Position coordinate input format
Local (default) | Geodetic

Specify the position coordinate input format as Local or Geodetic.

• If you set this parameter to Local, then the input to the Position port must be in the form of
Cartesian coordinates with respect to the local navigation frame, specified by the Reference
Frame parameter, with the origin fixed and defined by the Reference location parameter. The
input to the Velocity input port must also be with respect to this local navigation frame.

• If you set this parameter to Geodetic, then the input to the Position port must be geodetic
coordinates in [latitude longitude altitude]. The input to the Velocity input port must
also be with respect to the navigation frame specified by the Reference frame parameter, with
the origin corresponding to the Position port.

Reference location — Origin of local navigation reference frame
[0,0,0] (default) | three-element vector

Specify the origin of the local reference frame as a three-element row vector in geodetic coordinates
[latitude longitude altitude], where altitude is the height above the reference ellipsoid
model WGS84. The reference location values are in degrees, degrees, and meters, respectively. The
degree format is decimal degrees (DD).

Dependencies

To enable this parameter, set the Position input format parameter to Local.

Horizontal position accuracy — Horizontal position accuracy (m)
1.6 (default) | nonnegative real scaler

Specify horizontal position accuracy as a nonnegative real scalar in meters. The horizontal position
accuracy specifies the standard deviation of the noise in the horizontal position measurement.
Increasing this value adds noise to the measurement, decreasing its accuracy.

Tunable: Yes

Vertical position accuracy — Vertical position accuracy (m)
3 (default) | nonnegative real scaler

Specify vertical position accuracy as a nonnegative real scalar in meters. The vertical position
accuracy specifies the standard deviation of the noise in the vertical position measurement.
Increasing this value adds noise to the measurement, decreasing its accuracy.

Tunable: Yes

Velocity accuracy — Velocity accuracy (m/s)
0.1 (default) | nonnegative real scalar
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Specify velocity accuracy per second as a nonnegative real scalar in meters. The velocity accuracy
specifies the standard deviation of the noise in the velocity measurement. Increasing this value adds
noise to the measurement, decreasing its accuracy.

Tunable: Yes

Decay factor — Global position noise decay factor
0.999 (default) | scalar in range [0, 1]

Specify the global position noise decay factor as a numeric scalar in the range [0, 1]. A decay factor
of 0 models the global position noise as a white noise process. A decay factor of 1 models the global
position noise as a random walk process.

Tunable: Yes

Seed — Initial seed
67 (default) | nonnegative integer

Specify the initial seed of an mt19937ar random number generator algorithm as a nonnegative
integer.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Select the type of simulation to run from these options:

• Interpreted execution — Simulate the model using the MATLAB interpreter. For more
information, see “Simulation Modes”.

• Code generation — Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
gpsSensor

Topics
“Model IMU, GPS, and INS/GPS”
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Pure Pursuit
Linear and angular velocity control commands

Libraries:
Robotics System Toolbox / Mobile Robot Algorithms
Navigation Toolbox / Control Algorithms

Description
The Pure Pursuit block computes linear and angular velocity commands for following a path using a
set of waypoints and the current pose of a differential drive vehicle. The block takes updated poses to
update velocity commands for the vehicle to follow a path along a desired set of waypoints. Use the
Max angular velocity and Desired linear velocity parameters to update the velocities based on the
performance of the vehicle.

The Lookahead distance parameter computes a look-ahead point on the path, which is an
instantaneous local goal for the vehicle. The angular velocity command is computed based on this
point. Changing Lookahead distance has a significant impact on the performance of the algorithm.
A higher look-ahead distance results in a smoother trajectory for the vehicle, but can cause the
vehicle to cut corners along the path. Too low of a look-ahead distance can result in oscillations in
tracking the path, causing unstable behavior. For more information on the pure pursuit algorithm, see
“Pure Pursuit Controller”.

Input/Output Ports
Input

Pose — Current vehicle pose
[x y theta] vector

Current vehicle pose, specified as an [x y theta] vector, which corresponds to the x-y position and
orientation angle, theta. Positive angles are measured counterclockwise from the positive x-axis.

Waypoints — Waypoints
[ ] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of waypoints. You can
generate the waypoints using path planners like mobileRobotPRM or specify them as an array in
Simulink.

Output

LinVel — Linear velocity
scalar in meters per second

Linear velocity, returned as a scalar in meters per second.
Data Types: double
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AngVel — Angular velocity
scalar in radians per second

Angular velocity, returned as a scalar in radians per second.
Data Types: double

TargetDir — Target direction for vehicle
scalar in radians

Target direction for the vehicle, returned as a scalar in radians. The forward direction of the vehicle
is considered zero radians, with positive angles measured counterclockwise. This output can be used
as the input to the TargetDir port for the Vector Field Histogram block.

Dependencies

To enable this port, select the Show TargetDir output port parameter.

Parameters
Desired linear velocity (m/s) — Linear velocity
0.1 (default) | scalar

Desired linear velocity, specified as a scalar in meters per second. The controller assumes that the
vehicle drives at a constant linear velocity and that the computed angular velocity is independent of
the linear velocity.

Maximum angular velocity (rad/s) — Angular velocity
1.0 (default) | scalar

Maximum angular velocity, specified as a scalar in radians per second. The controller saturates the
absolute angular velocity output at the given value.

Lookahead distance (m) — Look-ahead distance
1.0 (default) | scalar

Look-ahead distance, specified as a scalar in meters. The look-ahead distance changes the response
of the controller. A vehicle with a higher look-ahead distance produces smooth paths but takes larger
turns at corners. A vehicle with a smaller look-ahead distance follows the path closely and takes
sharp turns, but oscillate along the path. For more information on the effects of look-ahead distance,
see “Pure Pursuit Controller”.

Show TargetDir output port — Target direction indicator
off (default) | on

Select this parameter to enable the TargetDir out port. This port gives the target direction as an
angle in radians from the forward position, with positive angles measured counterclockwise.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.
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• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Vector Field Histogram

Classes
binaryOccupancyMap | occupancyMap | controllerVFH

Topics
“Plan Path for a Differential Drive Robot in Simulink” (Robotics System Toolbox)
“Path Following with Obstacle Avoidance in Simulink®”
“Pure Pursuit Controller”
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Vector Field Histogram
Avoid obstacles using vector field histogram

Libraries:
Navigation Toolbox / Control Algorithms

Description
The Vector Field Histogram (VFH) block enables your vehicle to avoid obstacles based on range
sensor data. Given a range sensor reading in terms of ranges and angles, and a target direction to
drive toward, the VFH controller computes an obstacle-free steering direction.

For more information on the algorithm details, see “Vector Field Histogram” on page 4-56 under
Algorithms.

Limitations
• The Ranges and Angles inputs are limited to 4000 elements when generating code for models

that use this block.

Input/Output Ports
Input

Ranges — Range values from scan data
vector of scalars

Range values from scan data, specified as a vector of scalars in meters. These range values are
distances from a sensor at specified angles. The vector must be the same length as the corresponding
Angles vector.

Angles — Angle values from scan data
vector of scalars

Angle values from scan data, specified as a vector of scalars in radians. These angle values are the
specific angles of the specified ranges. The vector must be the same length as the corresponding
Ranges vector.

TargetDir — Target direction for vehicle
scalar

Target direction for the vehicle, specified as a scalar in radians. The forward direction of the vehicle
is considered zero radians, with positive angles measured counterclockwise. You can use the
TargetDir output from the Pure Pursuit block when generating controls from a set of waypoints.
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Output

SteerDir — Steering direction for vehicle
scalar

Steering direction for the vehicle, specified as a scalar in radians. This obstacle-free direction is
calculated based on the VFH+ algorithm. The forward direction of the vehicle is considered zero
radians, with positive angles measured counterclockwise.

Parameters
Main

Number of angular sectors — Number of bins used to create the histograms
180 (default) | scalar

Number of bins used to create the histograms, specified as a scalar. This parameter is nontunable.
You can set this parameter only when the object is initialized.

Range distance limits (m) — Limits for range readings
[0.05 2] (default) | two-element vector of scalars

Limits for range readings in meters, specified as a two-element vector of scalars. The range readings
input are only considered if they fall within the distance limits. Use the lower distance limit to ignore
false positives from poor sensor performance at lower ranges. Use the upper limit to ignore obstacles
that are too far away from the vehicle.

Histogram thresholds — Thresholds for computing binary histogram
[3 10] (default) | two-element vector of scalars

Thresholds for computing binary histogram, specified as a two-element vector of scalars. The
algorithm uses these thresholds to compute the binary histogram from the polar obstacle density.
Polar obstacle density values higher than the upper threshold are represented as occupied space (1)
in the binary histogram. Values smaller than the lower threshold are represented as free space (0).
Values that fall between the limits are set to the values of a previous computed binary histogram if
one exists from previous iterations. If a previous histogram does not exist, the value is set as free
space (0).

vehicle radius (m) — Radius of the vehicle
0.1 (default) | scalar

Radius of the vehicle, specified as a scalar in meters. This dimension defines the smallest circle that
can circumscribe your vehicle. The vehicle radius is used to account for vehicle size when computing
the obstacle-free direction.

Safety distance (m) — Safety distance around the vehicle
0.1 (default) | scalar

Safety distance left around the vehicle position in addiction to vehicle radius, specified as a scalar in
meters. The vehicle radius and safety distance are used to compute the obstacle-free direction.

Minimum turning radius (m) — Minimum turning radius at current speed
0.1 (default) | scalar

Minimum turning radius for the vehicle moving at its current speed, specified as a scalar in meters.
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Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

Tunable: No

Cost Function Weights

Target direction weight — Cost function weight for target direction
5 (default) | scalar

Cost function weight for moving toward the target direction, specified as a scalar. To follow a target
direction, set this weight to be higher than the sum of Current direction weight and Previous
direction weight. To ignore the target direction cost, set this weight to 0.

Current direction weight — Cost function weight for current direction
2 (default) | scalar

Cost function weight for moving the vehicle in the current heading direction, specified as a scalar.
Higher values of this weight produce efficient paths. To ignore the current direction cost, set this
weight to 0.

Previous direction weight — Cost function weight for previous direction
2 (default) | scalar

Cost function weight for moving in the previously selected steering direction, specified as a scalar.
Higher values of this weight produce smoother paths. To ignore the previous direction cost, set this
weight to 0.

Algorithms
Vector Field Histogram

The block uses the VFH+ algorithm to compute the obstacle-free direction. First, the algorithm takes
the ranges and angles from range sensor data and builds a polar histogram for obstacle locations.
Then, it uses the input histogram thresholds to calculate a binary histogram that indicates occupied
and free directions. Finally, the algorithm computes a masked histogram, which is computed from the
binary histogram based on the minimum turning radius of the vehicle.

The algorithm selects multiple steering directions based on the open space and possible driving
directions. A cost function, with weights corresponding to the previous, current, and target
directions, calculates the cost of different possible directions. The algorithm then returns an obstacle-
free direction with minimal cost. Using the obstacle-free direction, you can input commands to move
your vehicle in that direction.
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To use this block for your own application and environment, you must tune the algorithm parameters.
Parameter values depend on the type of vehicle, the range sensor, and the hardware you use. For
more information on the VFH algorithm, see controllerVFH.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Pure Pursuit | Publish | Subscribe

Classes
controllerVFH

Topics
“Vector Field Histogram”
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SLAM Map Builder
Build 2-D grid maps using lidar-based SLAM

Description
The SLAM Map Builder app loads recorded lidar scans and odometry sensor data to build a 2-D
occupancy grid using simultaneous localization and mapping (SLAM) algorithms. Incremental scan
matching aligns and overlays scans to build the map. Loop closure detection adjusts for drift of the
vehicle odometry by detecting previously visited locations and adjusting the overall map. Sometimes,
the scan matching algorithm and loop closure detection require manual adjustment. Use the app to
manually align scans and modify loop closures to improve the overall map accuracy. You can also tune
the SLAM algorithm settings to improve the automatic map building.
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To use the app:

To load rosbag log files, select Import > Import from rosbag. Select the
rosbag file and click Open. This opens the Import tab. For more information,
see Import and Filter a rosbag on page 5-13.

To load data from the workspace, Import > Import from workspace. Select
your Scans and Poses variables using the drop downs provided. You can also
specify the variables in the slamMapBuilder function. See Programmatic Use
on page 5-12.
Use SLAM Settings to adjust the SLAM algorithm settings. Default values are
provided, but your specific sensors and data may require tuning of these
settings. The most important value to tune is the Loop Closure Threshold. For
more information, see Tune SLAM Settings on page 5-13.

Click Build to begin the SLAM map building process. The building process
aligns scans in the map using incremental scan matching, identifies loop
closures when visiting previous locations, and adjusts poses. Click Pause at any
time during the map building process to manually align incremental scans or
modify loop closures.
Click Incremental Match to modify the relative pose of the currently selected
frame and align the scan with the previous scan. Click Loop Closure to modify
or ignore the detected loop closure for the current frame. Use the slider on the
bottom to scroll back to areas where scan matching or loop closures are not
accurate. You can modify any number of scans or loop closures. For more
information, see Modify Increment Scans and Loop Closures on page 5-14.
After modifying your map, click Sync to update all the poses in the scan map.
The two options under Sync are Sync, which searches for new loop closures, or
Sync Fast, which skips loop closure searching and just updates the scan map.
For more information, see Sync the Map on page 5-15.

When you are satisfied with how the map looks, click Export to
OccupancyGrid to either export the map to an m-file or save the map in the
workspace. The map is output as a 2-D probabilistic occupancy grid in an
occupancyMap object.

You can open existing app sessions you have saved using Open Session. When
you are in the Map Builder tab, you can save your progress to an m-file using
Save Session.
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Open the SLAM Map Builder App
• MATLAB Toolstrip: In the Apps tab, under ROBOTICS AND AUTONOMOUS SYSTEMS, click

 SLAM Map Builder.
• MATLAB Command Window: Enter slamMapBuilder

Examples
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Build and Tune a Map Using Lidar Scans with SLAM

The SLAM Map Builder app helps you build an occupancy grid from lidar scans using simultaneous
localization and mapping (SLAM) algorithms. The map is built by estimating poses through scan
matching and using loop closures for pose graph optimization. This example shows you the workflow
for loading a rosbag of lidar scan data, filtering the data, and building the map. Tune the scan map by
adjusting incremental scan matches and modifying loop closures.

Load Lidar Scan Data

Load the example .mat file into the workspace, which contains a variable, scans, as a cell array of
lidarScan objects.

load slamLidarScans.mat

Open the App

In the Apps tab, under Control System Design and Analysis, click SLAM Map Builder.

Also, you can call the slamMapBuilder function:

slamMapBuilder

Import Lidar Scans

Click Import > Import from workspace to load the scans. Data stored as a rosbag can be loaded
with a ROS Toolbox license.

Select the scans variable in the Scans drop down.
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In the tool bar, set Downsample to (%) to 10. Downsampling evenly samples from the data to reduce
computation time for the SLAM algorithm. For this example, 10% is every 5th scan. Click Apply.

Use the slider or arrow keys at the bottom to preview the scans.

Once you are done importing, click Close.

Tune SLAM Settings

The SLAM algorithm can be tuned using the SLAM Settings dialog. The parameters should be
adjusted based on your sensor specifications, the environment, and your application. For this
example, increase Loop Closure Threshold from 200 to 300. This increased threshold decreases
the likelihood of accepting and using a detected loop closure. Set the Optimization Interval to 10.
With every 10th loop closure accepted, the pose graph is optimized to account for drift.
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Build the Map

After filtering your data and setting the SLAM algorithm settings, click Build. The app begins
processing scans to build the map. You should see the slider progressing and scans being overlaid in
the map. The estimated robot trajectory is plotted on the same scan map. Incremental scan matches
are shown in the Incremental Match pane. Whenever a loop closure is detected, the Loop Closure
pane shows the two scans overlaid on each other.
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Adjust Scan Matches or Loop Closures

At any time during the build process, if you notice the map is distorted or an incremental match or
loop closure looks off, click Pause to select scans for adjustment. You can modify scans at the end of
the build process as well. Navigate using the arrow keys or slider to the point in the file where the
distortion first occurs. Click the Incremental Match or Loop Closure buttons to adjust the
currently displayed scan poses. In this section, the bad loop closure is artificial and only for
illustration purposes.

Click the Loop Closure button. This opens a tab for modifying the loop closure relative pose.
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To ignore the loop closure completely, click Ignore. Otherwise, manually modify the relative scan
pose until the scans line up.

Click Pan Scan or Rotate Scan, then click and drag in the figure to align the two scans. Click
Accept when you are done. You can do this for multiple scans.

After you modify your scan poses for incremental matches and loop closures, click Sync to apply
changes. SyncFast updates the map without searching for new loop closures and reduces
computation time if you have already processed all the scans.
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Export Occupancy Grid

Once you have synced your changes and finished building the map, you should see a fully overlaid
scan map with a robot trajectory.
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Click Export Occupancy Grid to get a final occupancy map of your environment as a
occupancyMap object. Specify the variable name to export the map to the workspace. You can create
a map from a subset of scans by scrolling back to the desired frame before exporting and selecting
Up to currently selected scan.

Call show on the stored map to visualize the occupancy map.

show(myOccMap)
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You can also save a SLAM Map Builder app session using the Save Session button. The app writes
the current state of the app to a .mat file that can be loaded later using Open Session.

• “Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
• “Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Programmatic Use
slamMapBuilder(bag) opens the SLAM Map Builder app and imports the rosbag log file specified
in bag, a BagSelection object created using the rosbag function. The app opens to the Import tab
to filter the sensor data in your rosbag.

slamMapBuilder(sessionFile) opens the SLAM Map Builder app from a saved session file
name, sessionFile. An app session file is created through the Save Session button in the app
toolstrip.

slamMapBuilder(scans) opens the SLAM Map Builder app and imports the scans specified in
scans, a cell array of lidarScan objects. The app assumes you have prefiltered your scans and
skips the import process. Click Build to start building the map.

slamMapBuilder(scans,poses) opens the SLAM Map Builder app and imports the scans and
poses. scans is specified as a cell array of lidarScan objects. poses is a matrix of [x y theta]
vectors that correspond to the poses of scans. The app assumes you have prefiltered your scans and
skips the import process. Click Build to start building the map.
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More About
Import and Filter a rosbag

When you click the Import button, specify the parameters for your rosbag and how you want to filter
the data in the toolstrip. You must Apply your settings to see the scans updated in the figures.

• Select the ROS topic for the lidar scans and odometry (if available).
• In Odom Topic, if you select Use TF, specify the frame of the lidar scan sensor, Lidar Frame,

and the base fixed frame of the vehicle, Fixed Frame. The items in the drop down menu are
generated based on the available frames in the tf transformation tree of the rosbag. The app only
supports /tf and /tf2 topics.

• Specify the Start Time and End Time if you want to trim data from rosbag. You can use the
sliders or manually type in your time values.

• Select the desired downsample percentage of scans in Downsample to (%) . This evenly
downsamples the scans based on the percentage. For example, a value of 25% would only select
every fourth scan.

• Click Apply to see the new filtered scans and apply all settings. Close the tab when you are done.

If you'd like more control over filtering scans in the rosbag, import your rosbag into MATLAB using
rosbag. Filter the rosbag using select. To open the app using your custom filtered rosbag, see
Programmatic Use on page 5-12.

Tune SLAM Settings

To improve the automatic map building process, the SLAM algorithm has tunable parameters. Click
SLAM Settings to tune the parameters. Use Lidar SLAM Parameters to affect different aspects of
the scan alignment and loop closure detection processes. Also, tune the NLP Solver Parameters to
change how the map optimization algorithm improves the overall map based on loop closures.

Lidar SLAM Parameters:

• Map Resolution (cells/m) –– Resolution of the map. The resolution affects the location accuracy
of the scan alignment and defines the output size of the occupancy grid.

• Lidar Range [min,max] (m) –– Range of lidar sensor readings. When processing the lidar scans,
readings outside of the lidar range are ignored.

• Loop Closure Threshold –– Unitless threshold for accepting loop closures. Depending on your
lidar scans, the average loop closure score varies. If the build process does not find loop closures
and the vehicle revisits locations in the map, consider lowering this threshold.

• Loop Closure Search Radius (m) –– Radius to search for loop closures. Based on the odometry
pose, the algorithm searches for loop closures in the existing map within the given radius in
meters.

• Loop Closure Max Attempts –– Number of attempts at finding loop closures. When this number
increases, the algorithm makes more attempts to find loop closures in the map but increases
computation time.

• Loop Closure Auto Rollback –– Allow automatic rejection of loop closures. The algorithm tracks
the residual error from the map optimization. If it detects a sudden change in the error and this
parameter is set to on, the loop closure is rejected.

• Optimization Interval (# of Loop Closures) –– Number of detected loop closures accepted to
trigger optimization. By default, the map is optimized with every loop closure found.
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• Movement Threshold [Linear,Angular] (m,rad) –– Minimum change in pose required to accept
a new scan. If the pose of the vehicle does not exceed this threshold, the next scan is discarded
from the map building process.

NLP Solver Parameters:

• Max Iterations –– Maximum number of iterations for map optimization. Increasing this value may
improve map accuracy but increases computation time.

• Max Time (s) –– Maximum time allowed for map optimization specified in seconds. Increasing
this value may improve map accuracy but increases computation time.

• Gradient Tolerance –– Lower bound on the norm of the gradient of the cost function for
optimization. Lowering this value causes the optimization to run longer to search for a local
minimum but increases the computation time.

• Function Tolerance –– Lower bound on the change in the cost function for optimization.
Lowering this value causes the optimization to run longer to search for a local minimum but
increases the computation time.

• Step Tolerance –– Lower bound on the step size for optimization. Lowering this value causes the
optimization to run longer to search for a local minimum but increases the computation time.

• First Node Pose [x,y,theta] (m,rad) –– Pose of the first node in the graph. If you need to offset
the position of the scans in the map, specify the position, [x y], in meters and orientation,
theta, in radians.

After changing any of these settings, the map building process must be restarted to rebuild the map
with the new parameters.

Modify Incremental Matches and Loop Closures

This app allows you to manually modify incremental scans and adjust detected loop closures. If you
notice scans are not properly aligned after you build the map, use the Incremental Match and Loop
Closure buttons to open their modification tabs. Use the modification toolstrip buttons to adjust the
relative pose between scans.

• Ignore –– When modifying loop closures, you can simply ignore loop closures if they are
inaccurate. The algorithm always discards ignored loop closure if detected in the same app
session. You cannot ignore incremental scan matches.

• Pan Scan –– Click this button to manually shift the pose. After selecting, click and drag inside the
map to shift the scans and overlay them properly. Align all the points of the scans until you are
satisfied. You can manually specify the X, Y location in the Relative Pose section as well.

• Rotate Scan –– Click this button to manually rotate the pose. After selecting, click and drag
inside the map to rotate the scans and overlay them properly. Align all the points of the scans until
you are satisfied. You can manually specify the Theta location in the Relative Pose section as
well.
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Sync the Map

After making modifications to the map building process using Incremental Scans and Loop
Closures, you must sync the map to apply the changes. Based on the changes you make to properly
align scans, the overall map shifts and alignments change for every scan after your modification. You
have two options after making your modifications, Sync or Sync Fast. If you click Sync Fast, the
changes to the poses are automatically applied and no other changes to the map occur. Sync restarts
the entire map building and loop closure detection processes starting at the first modification. The
specified modifications are applied, but the algorithm attempts to realign other scans and search for
new loop closures as well.

Version History
Introduced in R2019b

See Also
Functions
buildMap | matchScans | matchScansGrid | rosbag | optimizePoseGraph

Objects
lidarSLAM | lidarScan | occupancyMap | poseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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